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Abstract

A probability model is presented for the dynamics of mutation–selection balance in a h
infinite-population infinite-sites setting sufficiently general to cover mutation-driven changes
age-specific demographic schedules. The model accommodates epistatic as well as additive
costs. Closed form characterizations are obtained for solutions in finite time, along with pro
convergence to stationary distributions and a proof of the uniqueness of solutions in a restricte
Examples are given of applications to the biodemography of aging.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Arguments from the mathematical genetics of mutation–selection balance
broadly in evolutionary theories of senescence. Available formal models, however,
cover cases brought to the fore by recent progress in biodemography [1]. In this
we present a rigorous general model encompassing these cases, prove results co
existence, uniqueness, and convergence, obtain closed-form representations for s
to the model, and give examples of its application to questions in the demography of

The whole mathematical theory of natural selection may be divided into three
positive mutations, neutral mutations, and deleterious mutations. Positive mutation
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be thought to add up to an optimal adaptation, at least under some conditions, and t
generally studied in that context by demographers. Neutral mutations have their p
effects in alleles which drift randomly to fixation. Deleterious mutations, the focal su
for theories of aging and for this paper, are expected never to achieve fixation in p
tions, except, through founder effects, in very small populations. Their influence in
populations derives from their persistent reintroduction and slow meander to extinct

Sir Peter Medawar [2], in 1952, descried an explanation for senescence in t
cumulation of deleterious alleles with age-specific effects, given the declining for
natural selection with adult age. W.D. Hamilton [3] presented expressions for this d
ing age-specific force, helping others quantify the resulting balance between mutati
selection. B. Charlesworth [4] analyzed the dynamics of age-specific selection. His
guides the thinking of many experimentalists.

At stake are the cumulative effects of numerous mildly deleterious mutations sh
up at some large collection of loci. In our setting, the genotypes determine full age-sp
schedules of mortality and fertility, and the effects of a mutation have to be represen
a perturbation of a whole function of age. A rigorous treatment demands that mut
correspond to points in abstract spaces, such as function spaces. Relationships
our work and the large literature on mutation and selection reviewed by Bürger [5
discussed in Section 8.

Up to now, researchers have relied on linear approximations to cost functions a
stricted their representations of the age-specific effects of mutations to stylized p
like step-functions. Intriguing results have been obtained. Some are discussed in Se
The linear analysis, however, can be deceptive, and the stylized patterns are remo
realistic portrayals of gene action. Cases chosen for analytic tractability give a misle
picture of the full range of possibilities.

Our model is an infinite-population, multiple-sites or infinite-sites model in cont
ous time. The dynamical equation is a fairly standard one, but the space of mathem
objects to which it applies is novel. Our model allows a highly flexible specificatio
pleiotropic gene action. It is especially suited to demographic applications with m
alleles affecting age-specific schedules. The model is a haploid infinite-population
with no recombination. A parallel model with free recombination, introduced in Secti
will be developed in a future paper.

Our contribution is to allow large numbers of interacting genes to make small c
butions to a continuum of linked traits. Traditional analyses which recognize indiv
alleles (thus admitting, in principle, arbitrary configurations of pleiotropy) are amen
only to small numbers of loci; quantitative genetics, which reduces the contributio
individual genes to a continuum, reduces the complexity of pleiotropy to covarianc
trices.

Although multi-locus models without recombination like our own can be form
imbedded in single-locus models, this imbedding will not generally yield useful res
When a multi-locus model is translated into the single-locus framework, it brings alo
extra structure of transition rates, whose complexity grows exponentially with the nu
of loci. When the number of loci is large or, as in our model, effectively infinite, this

tra structure overwhelms the single-locus infrastructure. In our function-space setting, the
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formal embedding itself also poses difficulties. As a consequence, results for single
models are mainly helpful as analogies.

Unlike most models of which we are aware, our model comfortably accommo
epistasis. (A very different approach to epistasis, in the two-allele setting, may be
in [6].) The selective cost of a mutant allele can depend on the configuration of
mutant alleles present in a genome. This property is critical to the study of senes
even without special assumptions about interactions among genes, because the fitne
of cumulative demographic changes are not linear.

We are able to obtain closed-form representations of the entire time path of soluti
our dynamical equation (Theorem 3.1). Our results are not restricted, like much pre
work, to limiting states and equilibrium distributions. We give proofs of convergence
time (Theorem 4.1), and set machinery into place to compute rates of convergen
to cope with changing fitness conditions as well. In Section 5, we present some
about the asymptotic behavior of solutions. Theorem 5.1 gives sufficient condition
the numbers of certain classes of mutant alleles to increase without limit, generalizi
well-known “error threshold” (cf. [7]). In Section 6 we derive the Poisson limit for
non-epistatic case, as well as proving uniqueness of the solution. In the general e
case we do not yet have a proof of uniqueness. In Section 7 we discuss some impli
of our results for the theory of longevity. In Section 8 we review earlier work on rel
problems.

2. The model

We consider an infinite population subject to mutation and selection. There is a
plete, separable metric spaceM of potential mutations, on which is defined a bounde
finite Borel measureν. (In other words,ν assigns finite mass to bounded sets; toge
with the assumptions onM, this condition implies thatν is σ -finite.) We refer to this mea
sure as the “mutation rate”; for any setB, the quantityν(B) represents the rate at whic
there spontaneously arises a mutant allele fromB. Our picture is one in which new muta
alleles are steadily arising, each one tagged by a corresponding point ofM. For conve-
nience, we identify the tag with a description of the effects that the mutant allele prod
for instance, a function on the non-negative real lineR

+ giving the increases in mortalit
attributed to the action of that allele at each age.

The space of “genotypes”G is identified with the integer-valued boundedly finite Bo
measures onM, with a topology to be described shortly. An element ofG has the form∑

δmi
, where themi ∈ M are not necessarily distinct and the number ofmi in any bounded

subset ofM is finite. The notationδx stands in general for a unit mass at the pointx in
the space to whichx belongs. Each genotype represents a set of mutant alleles th
individual may carry. The “null genotype” has wild-type alleles at every locus and ca
none of these mutant alleles.

The state of the population at timet is denotedPt , which is a Borel probability measur
on the measures inG. ThusPt is the distribution of a random measure [8,9]. The evolut
of the population is presumed to be so slow that it can be represented as occur

continuous time, without reference to discrete generations.
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To each genotypeg we assign a“selection cost”S(g); S is a continuous function from
G to R

+. (Including negative costs would be feasible for the finite-time solutions, a
expense of slightly more complicated statements for theorems.) In applications, cos
typically be decrements to growth rates, in effect measuring fitness on a logarithmic

We normalize costs so thatS vanishes on the null genotype, and vanishes for no othg.
On M we writeS(m) for the cost of the singletong = δm. WhenS is linear, meaning tha
S(g + δm) − S(g) is independent ofg, the model is additive, ornon-epistatic.

Any measureP on G, like Pt , may be determined by the expectation values it ass
to a suitably rich collection of functionsF from G to R, as specified below. For brevit
we writePF or P(F) for the expectation valuePF = ∫

GF(g)dP(g) of any measurable
function fromG to R such that

∫ |F(g)|dP(g) < ∞. Since genotypes are measures,
can also writegf = g(f ) = ∫

f (m)dg(m) = ∑
f (mi) whenf :M → R, andg = ∑

δmi
.

Our dynamic equation forPt is

d

dt
PtF = Pt

(∫ [
F(· + δm) − F(·)]dν(m)

)
− Pt (FS) + (PtF )(PtS). (1)

The meaning of the equation is readily described whenF is the indicator function o
a setG of genotypes. The first term inside the integral measures the rate at whic
population is flowing into the states inG out of all sorts of other states because of
addition of a mutantm that lines up just right to enterG. The second term inside th
integral measures the rate at which population flows out ofG because of new mutation
The remaining two terms measure the effect of selection. The proportional rate of c
in mass of the population inG equals the difference between the average fitness co
genotypes inG and the average fitness cost of the whole population.

Measuring fitness relative to the changing average fitness of the whole population
total mass constant and lets the measurePt represent the probability of finding a random
selected individual in a given state, modeling population distribution rather than popu
size. While our equation may be novel, it is strongly analogous to standard muta
selection dynamics on quantitative traits, such as those given in Eq. V.2.11 of [5].

When mutations are identical (so thatM comprises only a single point) we have t
“mutation-counting model” going back to Kimura and Maruyama [10], whose history
be described in Section 8. A genotype is specified by a natural number, the num
mutant alleles present in it, and (1) becomes

dPt(n)

dt
= νPt (n − 1) − νPt (n) − Pt(n)

(
S(n) −

∑
m

S(m)Pt (m)

)
. (2)

In the non-epistatic case, whereS is additive, the mutation-counting model (or its discre
time counterpart) has a Poisson distribution with parameterν/S(1) as its stationary distri
bution.

For generalG, the counterpart of the Poisson distribution is a Poisson random
sure. For the non-epistatic case, Theorem 6.1 establishes conditions for uniquen
convergence to a stationary distribution given by a Poisson random measure with in

(1/S(m))dν(m), the measure onM whose Radon–Nikodym derivative with respect toν
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is 1/S. (A Poisson random measure assigns a Poisson-distributed random integer m
each measurable set, the mean of the mass assigned to a set is the intensity me
the set, and the random masses of disjoint sets are independent random variable
general theory [9, Chapter 7] takes care of technical details. Even in the non-epistati
only rather special starting states lead to the Poisson limit. In the epistatic case, cove
Theorem 3.1, asymptotic distributions, when they exist, may not be Poisson.

We need a suitable notion of weak convergence for boundedly finite random mea
Following Appendix A.2 of [9], we equip the spaceG with the metrizableŵ-topology un-
der which a sequence of measuresg1, g2, . . . ∈ G converges to a measureg ∈ G if and only
if lim n gn(f ) = g(f ) for each bounded continuous functionf :M → R that is supported
on a bounded set. A sequence of probability measuresQ1,Q2, . . . onG (that is, a sequenc
of distributions of boundedly finite random measures onM) converges weakly to the prob
ability measureQ onG with respect to thêw-topology if and only if limn Qn(F ) = Q(F)

for every boundedŵ-continuous funtionF on G. This turns out to be equivalent to th
requirement that limn Qn(F ) = Q(F) for all F of the formF(g) = e−g(f ) for some con-
tinuous boundedly supportedf :M → R

+. This classF is the sufficiently rich class o
functions required for our expectation values to determine our measures: Equality
pectations forF in F implies equality of expectations for all bounded Borel-measurabF

[9, Section 6.4].
We must bear in mind that ordinary theorems guaranteeing existence and uniq

of solutions to differential equations do not extend to our abstract setting. The deriv
on the left-hand side of (1) might not exist, and, in the presence of unboundedS, we
might have infinity minus infinity on the right-hand side. Our proofs are constructiv
the meaningfulness of the equation will follow from the properties of the proferred
tions. We prove a reasonable version of uniqueness in the non-epistatic case. In the
epistatic case, we have not yet ruled out multiple alternative meaningful solutions;
could be a complicated mathematical question lurking here.

3. Existence of solutions

We express the solution in terms of a certain random measure onM × R
+. We letΠ

denote the Poisson random measure on this space with intensity measureν ⊗ Lebesgue
Define a time-homogeneousG-valued Markov process(Xt )t�0 by

Xt := X0 +
∫

M×[0,t]
δm dΠ(m,u), (3)

whereX0 is a random measure with distributionP0, independent ofΠ . Each realization
of Xt may be pictured as a discrete set of points, possibly with duplication; as time p
new points accrete. The cost functionS could be allowed to depend on time, but we ke

time-independent notation here.
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Theorem 3.1. Suppose that there is a positiveT such that

Eexp

(
−

t∫
0

S(Xu)du

)
S(Xt ) < ∞ (4)

for all t ∈ [0, T ). Then Eq.(1) have a solution on[0, T ), given by

PtF = E
[
exp

(− ∫ t

0 S(Xu)du
)
F(Xt )

]
E

[
exp

(− ∫ t

0 S(Xu)du
)] . (5)

Proof. Define a linear operator on the continuous functions on the genotype space

AF =
∫ [

F(· + δm) − F(·)]dν(m) − S(·)F (·). (6)

Given an integrable functionσ(t), put P̃t = exp(− ∫ t

0 σ(u)du)Pt . If we can arrange fo
σ(t) to equal the average selective costPtS, then, thanks to the chain rule, the derivat
of P̃tF must equal̃PtAF .

The operatorA may be unbounded ifν has infinite total mass, but it is well defined
the classF and is the generator of a sub-Markovian semigroup(Γt )t�0. By the Feynman–
Kac formula [11, Section III.19],Γt may be described as

ΓtF (g) = E

[
exp

(
−

t∫
0

S(g + Xu − X0)du

)
F(g + Xt − X0)

]
. (7)

Now, the semigroup(Γt )t�0 solves the forward equationddt
ΓtF = Γt (AF) and it fol-

lows thatP̃tF = P̃0ΓtF , which equals the numerator of (5). By the condition onT , P̃tS is
finite on [0, T ), equalling the derivative of̃PtI , so that we may putPtF = P̃tF/P̃t I and
achieveσ(t) = PtS < ∞ on [0, T). �

4. Representations

Although our solution (5) may look abstract, as long asν(M) is finite PtF can be
expressed as a series expansion whose terms can be evaluated by multiple inte
We now derive this expansion, which makes direct calculations feasible in applica
Whenν(M) is finite, we order the points put down byΠ according to their arrival time
τ(1), τ (2), . . . and writeYn := Xτ(n). Let Jn be the indicator function of genotypes wi
exactly n (possibly overlapping) points:Jn(g) = 1 if g(M) = n, and 0 otherwise. Ou
series expansion forPtF will take the form

∑
n PtJnF . We writex ∧ y for the lesser of

any two quantitiesx andy. Renewal theory calculations turn (5) into a handy formula

probabilities ofn-point genotypes:
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Theorem 4.1. Supposeν(M) < ∞ andP0 puts unit mass at the null state0, withS(0) = 0.
Then the solution(5) may be written asPtF = P̃tF/P̃t1, with

P̃t JnF = ν(M)ne−ν(M)t
E

[(
S(Y1) · · ·S(Yn)

)−1
Ht,nF (Yn)

]
. (8)

HereHt,n is a conditional probability defined in terms of independent unit-rate expone
variablesZ1,Z2, . . . by the formula

Ht,n = P

{∑
Zj/S(Yj ) < t

∣∣Y1, . . . , Yn

}
. (9)

If
∑

ν(M)nE[((S(Y1) · · ·S(Yn))
−1] is finite,Pt converges in distribution ast goes to

infinity. If the sum is infinite,PtJn goes to zero for alln.

Proof. Consider the numerator of (5) withJnF in place ofF . The integral inside the
exponential is the sum of termsS(Yj )(τ (j + 1) ∧ t − τ(j)) for j from 1 ton. The factor
Jn restricts the domain to the event{Xt(M) = n}, an event with probabilitye−νt νntn/n!,
where we writeν for ν(M). Conditional on this event, theY ’s are independent of th
τ ’s, and theτ ’s are distributed like the order statistics of a sample ofn uniform random
variablesu1, . . . , un on [0, t] which may occur in any ofn! orderings. Putun+1 = t .

To obtain the expectation over theτ ’s, we evaluate the integral

n!t−n

t∫
0

t∫
u1

· · ·
t∫

un−1

exp

{
−

n∑
i=1

S(Yi)(ui+1 − ui)

}
dun · · · du2 du1, (10)

The change of variableszi = ui+1 − ui transforms this integral into the produ
n!/(tnS(Y1) · · ·S(Yn)) times∫

· · ·
∫ (

S(Y1)e
−S(Y1)z1

) · · · (S(Yn)e
−S(Yn)zn

)
dz1 dz2 · · · dzn, (11)

The integrations range over all non-negativez1, . . . , zn such thatz1 +· · ·+ zn < t , yielding
the exponential probability expressionHt,n. Closed-form formulas forH are given in [12,
Chapter 1, 13.12]. The probabilitye−ννntn/n! times n!/(tnS(Y1) · · ·S(Yn)) times Ht,n

gives (8).
We boundP̃t JnS by νP̃tJn−1, noting thatHt,n � Ht,n−1. Summing overn, we find

P̃tS � νP̃t1 � ν, verifying the supremum condition for all finiteT . The factors ofe−νt

in the numerator and denominator ofPtJnF cancel. The conditional probabilityHt,n, is
monotone increasing int toward a limit of 1 for each choice ofn andY1, . . . , Yn. Hence
the limit claim follows by monotone convergence.�

In demographic applications we are typically interested in counting the average n
of mutant alleles of a given type that a randomly chosen individual would bear. FoB a

measurable subset ofM, write Rt(B) for the expected number of mutations fromB at
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time t ; that is,Rt(B) = ∫
G g(B)dPt (g). For special starting states, we can obtain a clos

form density forRt .

Theorem 4.2. Suppose the starting distributionP0 is a Poisson measure with intensityπ0.
Then the measureRt has the formζt (m)dν(m) + ηt (m)dπ0(m) where

ζt (m) = E
[
exp

(− ∫ t

0 S(Xu)du
) ∫ t

0 exp
(− ∫ t

τ

[
S(Xu + δm) − S(Xu)

]
du

)
dτ

]
E

[
exp

(− ∫ t

0 S(Xu)du
)] ,

ηt (m) = E
[
exp

(− ∫ t

0 S(Xu + δm)du
)]

E
[
exp

(− ∫ t

0 S(Xu)du
)] . (12)

Proof. When the initial distribution is Poisson, the entire processXt , including X0, is
defined from a Poisson random measureξ = Π + (X0, δ0) on the product spaceM × R

+
with intensity measureH = ν ⊗ Lebesgue+ π0 ⊗ δ0. The local Palm distribution for th
Poisson random measureξ at(m, τ) in M×R

+ is the distribution ofξ itself, augmented by
an atom at(m, τ) [9, Example 12.1(b)]. For any non-negative bounded Borel-measu
functionG(m,τ, ξ) the Palm integral formula [9, Proposition 12.1.IV] makes

E

∫
G(m,τ, ξ)dξ(m, τ) =

∫
EG(m,τ, ξ + δ(m,τ))dH(m,τ). (13)

The integrals are taken overM × R
+, andE operates onξ . Fix t andB ⊂ M and choose

the functionG to be

G(m,τ, ξ) = exp

(
−

t∫
0

S(Xu)du

)
1{m∈B}1{τ�t}. (14)

Bear in mind thatXu is a function ofξ . With thisG, plugging into Eq. (5),̃PtXt (B) is given
by the left-hand side of (13). On the right-hand side, the extra atom at(m, τ) changes the
argument of the exponential function inside (14) into− ∫ τ

0 S(Xu)du − ∫ t

τ
S(Xu + δm)du.

The first term inH , which is ν ⊗ Lebesgue, calls for integration overτ and gives the
contribution in the numerator ofζ in (12) with respect toν. The second term inH puts
τ equal to zero and gives the contribution in the numerator ofη with respect toπ0. The
denominator inζ andη is a constant independent of the setB. It convertsP̃t to Pt . The
indicator function inG arranges that the measureRt(B) is obtained by integrating overB,
soζ andη are indeed Radon–Nikodym derivatives forRt as claimed. �

When the processPt starts from the null genotype we setπ0 = 0. Equations (12) allow
us to compare the influences of different cost functions:

Corollary 4.3. Assume that the conditions of Theorems3.1and4.2are satisfied, and sup
pose thatS is sub-additive; that is,S(g + g′) � S(g) + S(g′). Define the correspondin∫

additive cost functionS(g) := S(δm)dg(m). Let Pt andP t be corresponding genotype



24 D. Steinsaltz et al. / Advances in Applied Mathematics 35 (2005) 16–33

lm

s may
after

e rate
lection-
ay be

t

t
le

of

enom-
ow by
may
distributions produced by(5). ThenPtF � P tF for any linearF of the formF(g) = g(f ),
wheref is non-negative, measurable, and has bounded support.

Proof. The sublinearity ofS and the linearity ofS imply

ζt (m) �
E

[
exp

(− ∫ t

0 S(Xu)du
) ∫

exp(−(t − τ)S(δm))dτ
]

Eexp
(− ∫ t

0 S(Xu)du
)

= 1− e−S(m)t

S(m)
= ζ̄t (m). (15)

Similarly ηt (m) � e−S(m)t η̄t (m). The result follows from the special case of the Pa
integral formula known as Campbell’s Theorem [9, (6.4.11)].�

5. Asymptotic behavior

In contrast to the additive case, genotypes subject to subadditive cost function
tend to explode. In age-structured models, the total effect of mutant alleles acting
some given age is limited, regardless of how many of them may accumulate. If th
at which some class of mutant alleles is generated exceeds any countervailing se
cost increment which they may incur, the number of mutant alleles in that class m
expected to grow without limit.

Theorem 5.1. Assume the conditions of Theorem3.1are satisfied. LetB ⊂ M be a subse
with finiteν-mass. Suppose0 � S(g + g∗) − S(g) � s for all g and for all thoseg∗ with
masses only at points inB, that is, withg∗(B) = g∗(M). LetJ ∗

n be the indicator function
of the set of genotypes withg(B) = n. Thens < ν(B) implies thatPtJ

∗
n goes to zero for

everyn as t goes to infinity.

Proof. We write our Poisson processXt asX∗
t + Xr

t , whereX∗
t is the restriction ofXt

to B andXr
t is the remainder. These components are independent of each other. LeU :=

inf{u: Xt(B) > 0} be the arrival time of the first point inB, an exponential random variab
with mean 1/ν(B). We have

0�
t∫

0

S
(
Xr

u + X∗
u

) − S
(
Xr

u

)
du � s(t − U) ∧ 0. (16)

To boundPtJ
∗
n , we write the numerator of (5),̃PtJ

∗
n , as the expectation of a product

three factors, exp(− ∫ t

0 S(Xr
u)du), exp(− ∫ t

0 S(Xu) − S(Xr
u)du) andJ ∗

n (X∗
t ). The second

factor is bounded above by 1 and the third factor is independent of the first. The d
inator of (5), P̃t I , has the same first factor, the same second factor, bounded bel
exp(−s(t −U)∧ 0), and a third factor identically equal to 1. Using independence, we

cancel the expectations of the first factors in numerator and denominator, so thatPtJ

∗
n is
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less than or equal to the quotient ofEJ ∗
n (X∗

t ) andEexp(−s(t − U) ∧ 0). Writing ν∗ for
ν(B), this quotient equals(ν∗t)n/n! divided by (ν∗e(ν∗−s)t − s)/(ν∗ − s). The quotient
goes to 0 ast → ∞ for everyn. �

6. Non-epistatic cost functions

In the non-epistatic case, when the cost functionS is additive, a proof of uniquenes
and an eminently computable formula can be obtained which lead to conditions fo
vergence ast goes to infinity:

Theorem 6.1. Suppose thatS is an additive(non-epistatic) cost function such that the e
pectation valueν(S ∧1) is finite and suppose thatP0 is an initial probability measure suc
thatP0S is finite. Then Eq.(1) have a unique solution on[0,∞). A random measure chose
according toPt may be represented as the sum of two independent random measure
first component is a Poisson random measure with intensity(1/S(m))(1− e−S(m)t )dν(m).
The second is the initial measureP0, tilted by the weightinge−tgS . That is, the secon
componentQt satisfiesQtF = Q̃tF/Q̃t1 with

Q̃tF =
∫

e−S(g)tF (g)dP0(g) (17)

If ν is finite, this solution is identical with that given in Theorem3.1.

Proof. Linearity of S allows us to transform Eq. (1) into a first-order linear partial d
ferential equation. Suppose we are given an integrable non-negative functionσ(t) which
serves as a candidate forPtS. Let z be a positive real number and letf onG be a bounded
non-negative function with bounded support. We take our test functionsF now to be of the
combined formF(g) = e−gf −zS(g). We writeh(t, z) for the real function which will turn
out to be log(PtF ) satisfying given boundary conditions

h(0, z) = η(z) = logP0F. (18)

Thanks to the form ofF and the linearity ofS, the expression
∫
(F (g + δm) −

F(g))dν(m) from (1) now equalsF(g)ζ(z), where

ζ(z) := ν
(
F(δm) − 1

)
. (19)

Sincef is non-negative,|ζ(z)| is bounded byν(f )+(1+z)ν(S ∧1). The first term is finite
becausef is bounded with bounded support. The second term is finite by assumpti
exp(h) is to satisfy (1), we needh to satisfy the following partial differential equation
the McKendrick type familiar to demographers:

∂h(t, z) ∂h(t, z)
∂t
−

∂z
= ζ(z) + σ(t). (20)
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We have shown that the right-hand side is well defined for all non-negativez andt .
We solve (20) uniquely forh by exploiting the method of characteristic curves

transform it into a system of ordinary differential equations. The characteristic curve
ing through the point(t, z) is the line τ 	→ (τ, t + z − τ) [13, Section 3.2]. Defining
h̃(τ ) := h(τ, t + z − τ), we geth̃′(τ ) = σ(τ) + ζ(t + z − τ) for 0� τ � t + z. Integrating
this equation from 0 tot gives

h(t, z) = η(t + z) +
t∫

0

σ(τ)dτ +
t+z∫
z

ζ(r)dr (21)

The final term inζ is equal to

ν
[−t + (

e−f (m)−zs(m) − e−f (m)−(z+t)s(m)
)/

s(m)
]
. (22)

We now setPtF = exp(h(t, z)). Additivity of S makes the derivative ofPtF equal the
right-hand side of (1) plus(σ (t) − PtS)(PtF ). Also, −PtS is the partial derivative ofh
with respect toz atz = 0 andf ≡ 0, which is the sum ofν(1− etS) andP0Se−tS/P0e

−tS .
Setting−σ(t) equal to this sum is therefore the unique choice which makesPt satisfy (1).
Writing outh and settingz = 0, we recognize the Laplace functional of the convolution
probability measures specified in the theorem.�

The first piece ofPt clearly converges to a Poisson random measure as long asν/S is
boundedly finite. But that is not the complete story of asymptotic behavior. In genera
influence ofP0 in Qt may persist. In the limit, however, we may apply Varadhan’s Lem
[14, Theorem III.13] to show thatQt becomes concentrated on the set of genotype
minimum selective cost.

Corollary 6.2. SupposeP0 andS satisfy the conditions of Theorem6.1, that the suppor
suppP0 is compact, and thatS is continuous. Letσ = inf{S(g): g ∈ suppP0}. If O is any
open neighborhood of{g ∈ suppP0: S(g) = σ }, thenlimt→∞ Qt(O) = 1. In particular, if
P0{0} > 0, the tilted measureQt converges toδ0.

7. Applications to the theory of longevity

We outline a few of the many applications to the biodemography of longevity. We
the space of potential mutationsM to beC[0,∞), the continuous real-valued functio
on R

+, supplied with any of the usual metrics corresponding to uniform convergen
bounded intervals [15, Section 1.44]. A mutation measureν on this space is the distributio
of a stochastic process. We base our selective cost functionS(g) on Eq. 4.9 of Charleswort
[4, p. 140], taking into account more recent discussion [16, p. 930]. The cost funct
defined in terms of the age-specific survival functionlx(g) and the age-specific fertility rat

fx(g) specific to each genotype, along with a conversion factorT , representing a baseline
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value for the length of a generation, and a rater0 representing a population-wide baseli
intrinsic rate of natural increase usually set to zero in applications,

S(g) =
(

1−
∫

e−r0xlx(g)fx(g)dx

)
(1/T ). (23)

7.1. Gompertz hazards

Charlesworth [17] has suggested a possible origin for Gompertzian (exponentia
creasing) hazard rates through a process of mutation–selection balance which fits i
generalized model. Members of a species are taken to be subject to a common hig
ground age-independent hazard rateλ plus age-dependent contributions from mutatio
Each mutant allelem may be represented as a continuous functionm(x) of age added onto
the hazard function for an individual. Charlesworth’s elementary models assume co
fertility at all ages above an ageb of sexual maturity, forgoing any a priori upper age cuto

The selective costS(g) for a genotypeg from (23) takes the following form when tim
is measured in generations rather than years:

S(g) = 1−
∞∫

b

λexp

(
−λx + λb −

∫ x∫
0

m(a)da dg(m)

)
dx. (24)

This cost functionS is a non-additive epistatic cost function. Following established p
tice, Charlesworth substitutes the additive cost function

Ŝ(g) =
∫ ( ∞∫

0

(
e−λ(x−b) ∧ 1

)
m(x)dx

)
dg(m). (25)

This functionŜ is an additive approximation toS.
We first show that under the same premises as [17] our model confirms the sam

clusions. With additive costs as in (25), Theorem 6.1 and Corollary 6.2 give us suffi
conditions for the distribution of genotypes to converge to the Poisson random me
with intensityν/Ŝ. It suffices that the starting state put positive weight on the null s
and have compact support and thatν andν/S be boundedly finite. Then the average
the hazard rates over genotypes will converge toλ + ∫

M(m(x)/Ŝ(m))dν(m), equivalent
to [17, Eq. 4a].

It is worth mentioning that this expression for the average of the hazard rates is n
equilibrium aggregate hazard rate for the whole population, because the heterogene
diated by the Poisson distribution implies attrition of higher-risk genotypes with adva
age. The Poisson expression for the additive genetic variance and covariance also
modification for age-specific attrition.

Charlesworth focuses on translation families of mutations, which we may wri
my(x) = m0(x − y) with effects only after an age of onsety. With dν(my) = ν0 dy on

some[b′,∞), he displays choices form0 which make the average of the hazard rates into
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an exact Gompertz–Makeham functionλ + ν0 exp(−λ(x − b)) on the support ofν, and
others which approximate Gompertz–Makeham shapes for largex. (These shapes do n
include heterogeneity corrections.)

We now observe that our generalized model predicts different qualitative behavior
the additive approximation of (24) by (25) is not guaranteed to hold. The additive th
predicts that a “wall of death” with an infinite equilibrium mean hazard rate appears a
not before, the age at which reproduction comes to an end [17, p. 60]. Theorem 5
plies a more dramatic breakdown. The mean hazard function can actually reach infi
ages at which fertility is still strictly positive, if the full epistatic cost functionS in (24) is
kept in place of the additive approximation (25). The same is also true, if the bou
cost functionS is replaced by an unbounded cost function defined, as in Eq. 4.1
[4, p. 141], to equal the decrement to the intrinsic rate of natural increase resulting fro
mutations contributing to each genotype. Contrary to additive theory, the “wall of d
is not tied to the end of reproduction but involves a fine-tuned balance between mu
rates and tapering costs.

7.2. Gaussian process mutations

We now apply our model to move beyond stylized cases and investigate a wider
of possible specifications for the age-specific effects of mutations. The cases con
in 7.1, in which a constant background mortality imprints a Gompertzian pattern
increments to the hazard function, share the property that every mutant is deleter
every affected age. Is this property essential to the imprinting, or can the age-specifi
of selection readily produce the same kind of outcomes with mutants that mix positiv
negative effects?

Our framework allows quite general pleiotropic specifications. A natural starting po
the case of Gaussian processes. The fitness cost for this brief discussion will be the a
approximation (25). Suppose that the mutation process generates mutations prop
ately to a positive-real-parameter Gaussian process with expectationa(x) and covariance
functionc(x, x′), conditioned on fitness cost bounded away from 0. That is, if we loo
the pattern of age effects in a randomly chosen mutation, it looks like a realization o
Gaussian process, subject tôS(m) > s > 0 for somes. The overall rate of mutation is
constantν0. For rigorous treatment, we also need to condition on events which kee
resulting hazard functions non-negative and insure the validity of the additive appro
tion, but here we shall assume that the choices of parameters keep misbehavior rare
that it can be neglected.

The average over genotypes of the hazard function converges to

h(x) = λ +
∫
M

m(x)dν(m)∫ ∞
0 λe−λz dz

∫ z+b

0 m(y)dy
. (26)

The denominator̂S(m) is obtained from (25) by integration by parts. Since the numer
and denominator of (26), linear functionals ofm, are both Gaussian random variables,
can describe their joint distribution simply by computing their covariance. The expec

of m(x) conditioned on̂S(m) is obtained via linear regression.
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When the Gaussian expectationa(x) ≡ 0, the integral in (26) turns out to b
ν0Em(x)Ŝ(m)/Var(S(m)) times a proportionality constant depending on the bouns.
As one example, take the mutations to be realizations of Brownian motion, so
c(x, x′) = x ∧ x′ anda(x) = 0. The increment to the mean hazard rate then has the
c1 − c2e

−λx for x � b.
Can any Gaussian mutation process with zero mean generate approximati

Gompertz–Makeham hazard functions? The covariance kernel must satisfy|c(x, y)| �
c(x, x)/2 + c(y, y)/2. With a(x) ≡ 0, the incremental mortality is bounded above
c1 + c2c(x, x) for constantsc1 andc2. The mortality thus cannot be exponentially incre
ing over a long range of ages, unless this exponential increase is built into the mu
process itself.

8. Historical background

We discuss in this section the relationship of our model to the existing corpus of
on related topics. It was J.B.S. Haldane [18] who articulated the concept of muta
selection balance as early as 1937. Crow and Kimura [19], Ewens [20], and Kingma
give the foundations of the subject. Bürger [5,22] covers the present state of the art.
authors put only limited emphasis on age structure; Charlesworth [4,23] propoun
age-specific side.

Infinite-population models in which fitness is a function of the number but not the
tity of mutant genes go back to Kimura and Maruyama [10]. They state discrete-tim
continuous-time dynamic equations for special cases which readily suggest the g
“mutation-counting model” (2). They obtain some closed-form equilibrium distributi
Conditions for convergence to stationary states follow from a theorem of Kingman
generalizing theorems of Moran [25,26]. Bürger [5, pp. 298–308] traces the subse
history. Markov-chain versions with stepwise mutations of identical deleterious effec
Poisson stationary distributions (see, e.g., Haigh [27] or Durrett [28, p. 137]). The Po
limit is implicit in estimations of equilibrium genetic variance [17].

Mutation-counting models in the tradition of Kimura and Maruyama are more trac
than the general case considered here because they are a kind of multi-locus mo
can be subsumed under the theory of single-locus models. The count of mutant al
different sites can be likened to the integer label on a countable set of alleles at a
site, subject to constraints on the non-zero interallelic mutation rates. Models defin
various alternative sets of constraints have been studied in some detail.

The most famous of these single-locus models is Sir John Kingman’s “House of C
(HC) described in [29] and [21]. Kingman’s infinite-population discrete-time model p
a single gene with potentially infinitely many alleles. Alleles mutate to new alleles at a
stant rate; each new allele has a random fitness, given by a probability distribution on[0,1].
The state of the system is given by a distribution of fitnesses on[0,1], and the dynamics ar
governed by a standard evolution equation. Kingman [29] gives the original proof th
distribution of fitnesses for the HC process converges to a limiting distribution. This m
has many descendants, including the “HC-approximation” [30] for stabilizing sele

around an intermediate optimum.
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Our model differs from HC and its counterparts in four main ways. Mutant allele
HC have no properties other than fitness. Mutant alleles in our model are tagged
effect represented by a point in a general metric space whose specification determ
fitness through the impact on demographic rates. In HC there is only a single locus.
model we are concerned with the heterogeneity of whole sets of mutant alleles ac
large number of loci within the population. Because HC includes only a single loc
offers no possibility for interactions between the fitnesses of different alleles. Our mo
open to general epistasis. Finally, HC is well suited to the use of Markovian method
sample-path analysis, whereas our proofs require non-Markovian machinery.

A highly versatile general formulation of single-locus models has been develop
Reinhard Bürger [5, Chapter IV.2]. His “general mutation–selection model” warrants
comparison with our own. Like us, Bürger draws mutants from a general space, a
ing to an arbitrary distribution. Bürger requires his space to be locally compact, wh
we allow any complete, separable metric space so as to include mutants identifie
continuous functions on[0,∞).

The substantive difference between Bürger’s model and our own is in their con
ing views of the genome. Bürger focuses on a single locus, with (perhaps) infinitely
potential alleles. Each individual’s genotype is characterized by a single quantity a
population is characterized by a distribution on the mutation space. We take a more
tic view, watching the (perhaps) infinitely many alleles pop up at (perhaps) infinitely m
loci, thereby opening up the representation of population heterogeneity. In our mod
only mutation process is the conversion of an undifferentiated wild type to a random
tant allele, so we need not introduce transition rates between alleles. However, our fl
treatment of heterogeneity means that even the description of the state of the system
be more abstract than is customary in population genetics.

In a different setting, Del Moral and Miclo [31] present results which parallel our T
orem 3.1. Their conditions are more general in some respects and more restric
others. While their concerns are remote from biology, they use the terminology of
tation generators” and “adaptation” in their descriptions. They prove that the differ
equation model which we analyze can be derived as an infinite-population limit of
non-deterministic Moran models for interacting particles. A new book [32] expands
line of investigation.

We accompany Del Moral and Miclo, on a road that diverges from the Markov m
ing, branching processes, branching diffusions, and superprocesses which are so im
to stochastic population theory [33]. Pioneering work in these areas by [34–36] ha
followed by extensive results on particle processes and measure-valued diffusions w
lection, including [37–44]. Such Markov processes, even when they involve selectio
essentially linear. Lineages rise or fall at their own rates, according to their fitnesses
pendent of the outside population. By contrast, the mutation–selection paradigm on
we focus has to be non-linear, since every lineage has negative fitness. The mod
saved from trivial degeneracy by a renormalization, conditioning the process on long
survival. This ingredient introduces a quadratic non-linearity into the evolution equ
inasmuch as the entire population contributes to the selective pressure on each ind

bringing non-Markovian arguments to the fore.



D. Steinsaltz et al. / Advances in Applied Mathematics 35 (2005) 16–33 31

applied
with a
about
le on
th ma-

on of
,45,
tation

n
d

is

te on
5778

chter
thors

Span:
Suppl.)

6 De-

45.
, 1994.
, New
9. Prospects

The generalized model for mutation–selection balance presented here can be
widely to settings where age structure matters. Because the model allows mutations
mixture of positive and negative effects, it gives scope to some blending of ideas
mutation accumulation with ideas about antagonistic pleiotropy. It offers a hand
responses to changing fitness conditions through the finite-time solutions, along wi
chinery for treating epistatic cost functions.

The Palm formula in Section 4 facilitates the construction of an alternative versi
our model which, in contrast to (1), allows for free recombination (FR). In line with [10
46], we postulate conditions on the relative rates of recombination, selection, and mu
which lead, in the continuous-time limit, to a process in whichPt is always a Poisso
random measure onG with some intensity measureρt . Our results in Section 4, derive
in the absence of recombination, give us the form of an equation forρt in this generalized
free-recombination model. Differentiating (12) att = 0 leads to a representation forρt of
the form

ρt = ρ0 + νt −
t∫

0

Dρτ dτ. (27)

HereDρ is a measure whose density with respect toρ at m is E[S(Xρ + δm) − S(Xρ)],
andXρ is the Poisson random measure with intensityρ. Rigorous development of th
alternative is reserved for a future paper.
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