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Abstract

A probability model is presented for the dynamics of mutation—selection balance in a haploid
infinite-population infinite-sites setting sufficiently general to cover mutation-driven changes in full
age-specific demographic schedules. The model accommodates epistatic as well as additive selective
costs. Closed form characterizations are obtained for solutions in finite time, along with proofs of
convergence to stationary distributions and a proof of the uniqueness of solutions in a restricted case.
Examples are given of applications to the biodemography of aging.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Arguments from the mathematical genetics of mutation—selection balance figure
broadly in evolutionary theories of senescence. Available formal models, however, do not
cover cases brought to the fore by recent progress in biodemography [1]. In this paper,
we present a rigorous general model encompassing these cases, prove results concerning
existence, unigueness, and convergence, obtain closed-form representations for solutions
to the model, and give examples of its application to questions in the demography of aging.

The whole mathematical theory of natural selection may be divided into three parts:
positive mutations, neutral mutations, and deleterious mutations. Positive mutations may
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be thought to add up to an optimal adaptation, at least under some conditions, and they are
generally studied in that context by demographers. Neutral mutations have their primary
effects in alleles which drift randomly to fixation. Deleterious mutations, the focal subject
for theories of aging and for this paper, are expected never to achieve fixation in popula-
tions, except, through founder effects, in very small populations. Their influence in large
populations derives from their persistent reintroduction and slow meander to extinction.

Sir Peter Medawar [2], in 1952, descried an explanation for senescence in the ac-
cumulation of deleterious alleles with age-specific effects, given the declining force of
natural selection with adult age. W.D. Hamilton [3] presented expressions for this declin-
ing age-specific force, helping others quantify the resulting balance between mutation and
selection. B. Charlesworth [4] analyzed the dynamics of age-specific selection. His work
guides the thinking of many experimentalists.

At stake are the cumulative effects of numerous mildly deleterious mutations showing
up at some large collection of loci. In our setting, the genotypes determine full age-specific
schedules of mortality and fertility, and the effects of a mutation have to be represented as
a perturbation of a whole function of age. A rigorous treatment demands that mutations
correspond to points in abstract spaces, such as function spaces. Relationships between
our work and the large literature on mutation and selection reviewed by Birger [5] are
discussed in Section 8.

Up to now, researchers have relied on linear approximations to cost functions and re-
stricted their representations of the age-specific effects of mutations to stylized patterns
like step-functions. Intriguing results have been obtained. Some are discussed in Section 7.
The linear analysis, however, can be deceptive, and the stylized patterns are remote from
realistic portrayals of gene action. Cases chosen for analytic tractability give a misleading
picture of the full range of possibilities.

Our model is an infinite-population, multiple-sites or infinite-sites model in continu-
ous time. The dynamical equation is a fairly standard one, but the space of mathematical
objects to which it applies is novel. Our model allows a highly flexible specification of
pleiotropic gene action. It is especially suited to demographic applications with mutant
alleles affecting age-specific schedules. The model is a haploid infinite-population model
with no recombination. A parallel model with free recombination, introduced in Section 9,
will be developed in a future paper.

Our contribution is to allow large numbers of interacting genes to make small contri-
butions to a continuum of linked traits. Traditional analyses which recognize individual
alleles (thus admitting, in principle, arbitrary configurations of pleiotropy) are amenable
only to small numbers of loci; quantitative genetics, which reduces the contributions of
individual genes to a continuum, reduces the complexity of pleiotropy to covariance ma-
trices.

Although multi-locus models without recombination like our own can be formally
imbedded in single-locus models, this imbedding will not generally yield useful results.
When a multi-locus model is translated into the single-locus framework, it brings along an
extra structure of transition rates, whose complexity grows exponentially with the number
of loci. When the number of loci is large or, as in our model, effectively infinite, this ex-
tra structure overwhelms the single-locus infrastructure. In our function-space setting, the
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formal embedding itself also poses difficulties. As a consequence, results for single-locus
models are mainly helpful as analogies.

Unlike most models of which we are aware, our model comfortably accommodates
epistasis. (A very different approach to epistasis, in the two-allele setting, may be found
in [6].) The selective cost of a mutant allele can depend on the configuration of other
mutant alleles present in a genome. This property is critical to the study of senescence,
even without special assumptions about interactions among genes, because the fithess costs
of cumulative demographic changes are not linear.

We are able to obtain closed-form representations of the entire time path of solutions to
our dynamical equation (Theorem 3.1). Our results are not restricted, like much previous
work, to limiting states and equilibrium distributions. We give proofs of convergence over
time (Theorem 4.1), and set machinery into place to compute rates of convergence and
to cope with changing fithess conditions as well. In Section 5, we present some results
about the asymptotic behavior of solutions. Theorem 5.1 gives sufficient conditions for
the numbers of certain classes of mutant alleles to increase without limit, generalizing the
well-known “error threshold” (cf. [7]). In Section 6 we derive the Poisson limit for the
non-epistatic case, as well as proving uniqueness of the solution. In the general epistatic
case we do not yet have a proof of uniqueness. In Section 7 we discuss some implications
of our results for the theory of longevity. In Section 8 we review earlier work on related
problems.

2. Themode€

We consider an infinite population subject to mutation and selection. There is a com-
plete, separable metric spabe€ of potential mutations, on which is defined a boundedly
finite Borel measure. (In other words,y assigns finite mass to bounded sets; together
with the assumptions dNt, this condition implies that is o -finite.) We refer to this mea-
sure as the “mutation rate”; for any sBt the quantityv(B) represents the rate at which
there spontaneously arises a mutant allele fRr@ur picture is one in which new mutant
alleles are steadily arising, each one tagged by a corresponding padifit B6r conve-
nience, we identify the tag with a description of the effects that the mutant allele produces:
for instance, a function on the non-negative real litfe giving the increases in mortality
attributed to the action of that allele at each age.

The space of “genotype$ is identified with the integer-valued boundedly finite Borel
measures oM, with a topology to be described shortly. An elementSotias the form
> 8m,, Where then; € M are not necessarily distinct and the numbernpfn any bounded
subset ofM is finite. The notatiors, stands in general for a unit mass at the pairin
the space to whiclr belongs. Each genotype represents a set of mutant alleles that an
individual may carry. The “null genotype” has wild-type alleles at every locus and carries
none of these mutant alleles.

The state of the population at timés denotedP;, which is a Borel probability measure
on the measures ii. ThusP; is the distribution of a random measure [8,9]. The evolution
of the population is presumed to be so slow that it can be represented as occurring in
continuous time, without reference to discrete generations.
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To each genotype we assign a“selection cosf(g); S is a continuous function from
G to R*. (Including negative costs would be feasible for the finite-time solutions, at the
expense of slightly more complicated statements for theorems.) In applications, costs will
typically be decrements to growth rates, in effect measuring fitness on a logarithmic scale.

We normalize costs so th&tvanishes on the null genotype, and vanishes for no gther
On M we write S(m) for the cost of the singletog = §,,. When§ is linear, meaning that
S(g + 8,) — S(g) is independent of, the model is additive, aron-epistatic

Any measureP on G, like P;, may be determined by the expectation values it assigns
to a suitably rich collection of functiong from G to R, as specified below. For brevity,
we write PF or P(F) for the expectation valu@ F = ng(g) dP(g) of any measurable
function from§ to R such that/ | F(g)|dP(g) < oo. Since genotypes are measures, we
can also writegf = g(f) = [ f(m)dg(m) =" f(m;) whenf:M — R, andg =" 8,.

Our dynamic equation foP, is

d
g = Pz(/[F(~ +6m) — F(')]dv(m)> — Pi(FS) + (P F)(PS). 1

The meaning of the equation is readily described wheis the indicator function of
a setG of genotypes. The first term inside the integral measures the rate at which the
population is flowing into the states i@ out of all sorts of other states because of the
addition of a mutanin that lines up just right to ente&. The second term inside the
integral measures the rate at which population flows out dfecause of new mutations.

The remaining two terms measure the effect of selection. The proportional rate of change
in mass of the population iF equals the difference between the average fitness cost of
genotypes irG and the average fithess cost of the whole population.

Measuring fitness relative to the changing average fitness of the whole population keeps
total mass constant and lets the meagtreepresent the probability of finding a randomly
selected individual in a given state, modeling population distribution rather than population
size. While our equation may be novel, it is strongly analogous to standard mutation—
selection dynamics on quantitative traits, such as those given in Eq. V.2.11 of [5].

When mutations are identical (so tHst comprises only a single point) we have the
“mutation-counting model” going back to Kimura and Maruyama [10], whose history will
be described in Section 8. A genotype is specified by a natural number, the number of
mutant alleles presentin it, and (1) becomes

dp,
ét(n) —vP(n—1) = vP,(n) — P,(n) <S(n) — ZS(m)Pt(m)>. (2)

m

In the non-epistatic case, wheSas additive, the mutation-counting model (or its discrete-
time counterpart) has a Poisson distribution with parametg&¢l) as its stationary distri-
bution.

For generalgG, the counterpart of the Poisson distribution is a Poisson random mea-
sure. For the non-epistatic case, Theorem 6.1 establishes conditions for uniqueness and
convergence to a stationary distribution given by a Poisson random measure with intensity
(1/S(m))dv(m), the measure oM whose Radon—Nikodym derivative with respectito
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is 1/S. (A Poisson random measure assigns a Poisson-distributed random integer mass to
each measurable set, the mean of the mass assigned to a set is the intensity measure of
the set, and the random masses of disjoint sets are independent random variables.) The
general theory [9, Chapter 7] takes care of technical details. Even in the non-epistatic case,
only rather special starting states lead to the Poisson limit. In the epistatic case, covered by
Theorem 3.1, asymptotic distributions, when they exist, may not be Poisson.

We need a suitable notion of weak convergence for boundedly finite random measures.
Following Appendix A.2 of [9], we equip the spagewith the metrizablapn-topology un-
der which a sequence of measuggsgo, ... € G converges to a measuges § if and only
if lim,, g,,(f) = g(f) for each bounded continuous functign M — R that is supported
on a bounded set. A sequence of probability measgre®o, ... on g (thatis, a sequence
of distributions of boundedly finite random measuredvénconverges weakly to the prob-
ability measureQ on § with respect to theb-topology if and only if lim, 0,,(F) = Q(F)
for every boundedv-continuous funtionF on G. This turns out to be equivalent to the
requirement that limQ, (F) = Q(F) for all F of the form F(g) = ¢~¢(Y) for some con-
tinuous boundedly supportefl: M — R*. This class¥ is the sufficiently rich class of
functions required for our expectation values to determine our measures: Equality of ex-
pectations forF in & implies equality of expectations for all bounded Borel-measurable
[9, Section 6.4].

We must bear in mind that ordinary theorems guaranteeing existence and uniqueness
of solutions to differential equations do not extend to our abstract setting. The derivatives
on the left-hand side of (1) might not exist, and, in the presence of unboufidee
might have infinity minus infinity on the right-hand side. Our proofs are constructive, so
the meaningfulness of the equation will follow from the properties of the proferred solu-
tions. We prove a reasonable version of uniqueness in the non-epistatic case. In the general
epistatic case, we have not yet ruled out multiple alternative meaningful solutions; there
could be a complicated mathematical question lurking here.

3. Existence of solutions

We express the solution in terms of a certain random measuref onR*. We let 17
denote the Poisson random measure on this space with intensity measurebesgue.
Define a time-homogeneogsvalued Markov proces&X;);>q by

Mx[0,z]

where X is a random measure with distributidty, independent of 7. Each realization

of X; may be pictured as a discrete set of points, possibly with duplication; as time passes,
new points accrete. The cost functiSrcould be allowed to depend on time, but we keep
time-independent notation here.
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Theorem 3.1. Suppose that there is a positifesuch that

t

Eexp(—/S(XM)du>S(Xt) <00 (4)
0

forall € [0, T). Then Eq(1) have a solution o1f0, T'), given by

E[exp(— f3 S(X,) du) F(X,)]
E[exp(— 3 S(X,)du)]

Proof. Define a linear operator on the continuous functions on the genotype space by

P[FZ

()

AF — /[F( +8m) — F()]dv(m) — SC)F (). 6)

Given an integrable functioa (), put P, = exp(— fé o (u)du) P,. If we can arrange for
o (¢) to equal the average selective c@5F, then, thanks to the chain rule, the derivative
of P,F must equalP, AF.

The operatord may be unbounded if has infinite total mass, but it is well defined on
the classT and is the generator of a sub-Markovian semigrolip; >o. By the Feynman—
Kac formula [11, Section 111.19]]; may be described as

t

FtF(g)=]E[eXp<—/S(g+Xu—Xo)du>F(g+Xz—Xo)] (7)

0

Now, the semigrouml",),>o solves the forward equatioﬁ]",F I;(AF) and it fol-
lows thatP,F POF,F which equals the numerator of (5). By the condmonYQnP,S is
finite on [0, T), equalling the derivative oP,I so that we may pub; F = P, F/P,I and
achieves (t) = P,S <ocoon[0,T). O

4. Representations

Although our solution (5) may look abstract, as long&®1) is finite P,F can be
expressed as a series expansion whose terms can be evaluated by multiple integration.
We now derive this expansion, which makes direct calculations feasible in applications.
Whenv () is finite, we order the points put down Hy according to their arrival times
(1), 7(2), ... and writeY, := X.(,. Let J, be the indicator function of genotypes with
exactlyn (possibly overlapping) pointsi,(g) = 1 if g(M) = n, and 0 otherwise. Our
series expansion faP; F will take the form) ", P;J, F. We writex A y for the lesser of
any two quantities andy. Renewal theory calculations turn (5) into a handy formula for
probabilities ofr-point genotypes:
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Theorem 4.1. Suppose (M) < oo and Py putSEnit mass at the null stabewith §(0) = 0.
Then the solutiof5) may be written as®; F = P, F/ P, 1, with

Py F = v e "V E[(S(Y1) - S(¥V)) " Hen F(Y)]. (8)

Here H, ,, is a conditional probability defined in terms of independent unit-rate exponential
variablesZi, Zo, ... by the formula

H,,,Z=P[ZZ,-/S(Y,»)<t|Y1,...,Yn}. (9)

If > vVO"E[((S(Y1) - - S(Y,))~Y is finite, P, converges in distribution as goes to
infinity. If the sum is infiniteP; J,, goes to zero for alk.

Proof. Consider the numerator of (5) withh, F in place of F. The integral inside the
exponential is the sum of tern$Y;)(z (j + 1) At — t(j)) for j from 1 ton. The factor
J,, restricts the domain to the evef; (M) = »n}, an event with probabilitg=""v"¢" /n!,
where we writev for v(M). Conditional on this event, thE’s are independent of the
t’s, and ther’s are distributed like the order statistics of a sample afiform random
variablesuy, ..., u, on[0, ] which may occur in any af! orderings. Pul,, 11 = 1.

To obtain the expectation over thés, we evaluate the integral

t ot t n
e [ [ f exp[—ZS(Yixu,»H—u,-) Qu, o dizdis, (10)
i=1

0 uy Up—1

The change of variables; = u; 11 — u; transforms this integral into the product
n!/(t"S(Y1) --- S(Y,)) times

/ o / (S(Yl)e—S(Yl)Zl) ... (S(Yn)e_S(Y")Z") dz1dzo --- dz,, (1)

The integrations range over all non-negatye. . ., z, suchthati +---+z, < ¢, yielding
the exponential probability expressiéh ,. Closed-form formulas fof are given in [12,
Chapter 1, 13.12]. The probability Vv"¢" /n! timesn!/(t"S(Y1)--- S(Yy)) times H; ,
gives (8).

We bound?, J,S by vP,J,_1, noting thatH, ,, < H, ,_1. Summing oven, we find
PS<vP1<v, verifying the supremum condition for all finité. The factors ofe™*
in the numerator and denominator BfJ, F cancel. The conditional probabilité, ,, is
monotone increasing intoward a limit of 1 for each choice of andYs, ..., Y,. Hence
the limit claim follows by monotone convergences

In demographic applications we are typically interested in counting the average number
of mutant alleles of a given type that a randomly chosen individual would beatB For
measurable subset off, write R,(B) for the expected number of mutations fraBnat
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timez; that is,R;(B) = f9 g(B)dP,(g). For special starting states, we can obtain a closed-
form density forr;.

Theorem 4.2. Suppose the starting distributiaPy is a Poisson measure with intensity.
Then the measurg, has the form;, (m) dv(m) + n; (m) dro(m) where

E[exp(— [y S(X.) du) [ exp(— [T [S(Xu + 8m) — S(X,)] du) dr]
E[exp(— [y S(X.) du)]

E[exp(— fo S(Xu + 8m) du)]
E[exp(— [y S(X.) du)]

$(m) =

’

e (m) = (12)

Proof. When the initial distribution is Poisson, the entire proc&ssincluding Xo, is
defined from a Poisson random meastire IT + (X, 8o) on the product spack( x R*

with intensity measurél = v ® Lebesguer g ® dg. The local Palm distribution for the
Poisson random measurat (m, t) in M x RT is the distribution of itself, augmented by

an atom aim, t) [9, Example 12.1(b)]. For any non-negative bounded Borel-measurable
functionG (m, t, &) the Palm integral formula [9, Proposition 12.1.1V] makes

E/G(m, 7,8)dE(m, 1) =/EG(m,t,.§ + 8¢n.7)) AH (m, 7). (13)

The integrals are taken ovaf x R*, andE operates oi§. Fix r and B Cc M and choose
the functionG to be

t

G(m,, S) = exp(— / S(X,) du) 1{meB}l{r§t}' (14)

0

Bear in mind thafX,, is a function of. With thisG, plugging into Eq. (5)]5,X,(B) is given
by the left-hand side of (13). On the right-hand side, the extra atam ,at) changes the
argument of the exponential function inside (14) intgy S(X,) du — ff S(X, + &) Ou.
The first term inH, which isv ® Lebesgue, calls for integration overand gives the
contribution in the numerator af in (12) with respect to. The second term i puts
7 equal to zero and gives the contribution in the numerator with respect targ. The
denominator iry andn is a constant independent of the #&etlt convertsp, to P,. The
indicator function inG arranges that the measuRg(B) is obtained by integrating ovet,
so¢ andn are indeed Radon—Nikodym derivatives fyras claimed. O

When the process, starts from the null genotype we sef = 0. Equations (12) allow
us to compare the influences of different cost functions:

Coroallary 4.3. Assume that the conditions of Theore3risand 4.2 are satisfied, and sup-
pose thatS is sub-additivethat is, S(g + g") < S(g) + S(g'). Define the corresponding
additive cost functior(g) := [ S(8,,) dg(m). Let P, and P, be corresponding genotype
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distributions produced bgs). ThenP, F > P, F for any linearF of the formF (g) = g(f),
where f is non-negative, measurable, and has bounded support.

Proof. The sublinearity ofs and the linearity ofS imply

E[exp(— fo S(X,) du) [ exp(—(t — 7)S(8m)) dr |

>
lm) Eexp(— 2 S(X,) du)

1— e—S(m)t

Similarly n,(m) > e~5"5,(m). The result follows from the special case of the Palm
integral formula known as Campbell's Theorem [9, (6.4.11)}

5. Asymptotic behavior

In contrast to the additive case, genotypes subject to subadditive cost functions may
tend to explode. In age-structured models, the total effect of mutant alleles acting after
some given age is limited, regardless of how many of them may accumulate. If the rate
at which some class of mutant alleles is generated exceeds any countervailing selection-
cost increment which they may incur, the nhumber of mutant alleles in that class may be
expected to grow without limit.

Theorem 5.1. Assume the conditions of Theor8m are satisfied. LeB c M be a subset
with finite v-mass. Suppose< S(g + g*) — S(g) < s for all g and for all thoseg* with
masses only at points iB, that is, withg*(B) = g*(M). Let J¥ be the indicator function
of the set of genotypes wigh(B) = n. Thens < v(B) implies thatP, J;* goes to zero for
everyn ast goes to infinity.

Proof. We write our Poisson process asX; + X;, whereX; is the restriction ofX;

to B andX; is the remainder. These components are independent of each othEr:+et
inf{u: X;(B) > 0} be the arrival time of the first point i, an exponential random variable
with mean Yv(B). We have

t
o</s(x;+x;j) —S(X0) du < st — U) AO. (16)
0

To boundP, J*, we write the numerator of (5)?, J¥, as the expectation of a product of
three factors, exp- [ S(X%) du), exp(— [o S(X,) — S(X7) du) and J;*(X}). The second
factor is bounded above by 1 and the third factor is independent of the first. The denom-
inator of (5), 2,1, has the same first factor, the same second factor, bounded below by
exp(—s(t — U) A 0), and a third factor identically equal to 1. Using independence, we may
cancel the expectations of the first factors in numerator and denominator, 9 ffias
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less than or equal to the quotientl®¥* (X;) andE exp(—s(t — U) A 0). Writing v* for
v(B), this quotient equalgv*r)" /n! divided by (v*e™" ~9)" — 5)/(v* — 5). The quotient
goes to 0 ag — oo foreveryn. O

6. Non-epistatic cost functions

In the non-epistatic case, when the cost functois additive, a proof of uniqueness
and an eminently computable formula can be obtained which lead to conditions for con-
vergence as goes to infinity:

Theorem 6.1. Suppose tha$ is an additive(non-epistati¢ cost function such that the ex-
pectation value (S A 1) is finite and suppose thd is an initial probability measure such

that PoS is finite. Then Eq(1) have a unique solution di, co). A random measure chosen
according toP; may be represented as the sum of two independent random measures. The
first component is a Poisson random measure with intexjty(m)) (1 — e =51 dv (m).

The second is the initial measuf®, tilted by the weighting—¢5. That is, the second
componen, satisfiesQ, F = Q,F/étlwith

0 = [ 5 Fg)dpoce) (17)
If v is finite, this solution is identical with that given in Theor8ri.

Proof. Linearity of S allows us to transform Eg. (1) into a first-order linear partial dif-
ferential equation. Suppose we are given an integrable non-negative fuactiowhich
serves as a candidate fBfS. Let z be a positive real number and |gton G be a bounded
non-negative function with bounded support. We take our test functiomsw to be of the
combined formF (g) = e~%/ 25 We writeh(t, z) for the real function which will turn
out to be log P, F) satisfying given boundary conditions

h(0,z) =n(z) =log PoF. (18)

Thanks to the form ofF and the linearity ofS, the expression/(F(g + 8m) —
F(g))dv(m) from (1) now equald”(g)¢ (z), where

() = v(F(Sy) — 1), (19)

Sincef is non-negativel{ (z)| is bounded by (f) + (1+2z)v(S A 1). The first term is finite
becausef is bounded with bounded support. The second term is finite by assumption. If
exp(h) is to satisfy (1), we need to satisfy the following partial differential equation of
the McKendrick type familiar to demographers:

oh(t,z)  0h(1,2)

Py e = C(@) +o(1). (20)
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We have shown that the right-hand side is well defined for all non-negativelz.

We solve (20) uniquely for: by exploiting the method of characteristic curves to
transform it into a system of ordinary differential equations. The characteristic curve pass-
ing through the pointz, z) is the linet — (t,7 + z — ) [13, Section 3.2]. Defining
h(t):=h(t,t+z—1),We geth'(t) =0 (r) + {(t +z— 1) for 0< v <1 + z. Integrating
this equation from 0 to gives

t t+z
h(t,z)=n(t+z)+f6(r)dr+ f ¢(rydr (21)
0 z
The final term in¢ is equal to
vt + (eSO _ ==+t ()], (22)

We now setP, F = exp(h(t, z)). Additivity of S makes the derivative af; F equal the
right-hand side of (1) pluso (t) — P;S)(PF). Also, — P, S is the partial derivative ofi
with respect tq; atz = 0 and f = 0, which is the sum of (1 — ¢'S) and PgSe "5 / Pge™!5.
Setting—o (¢) equal to this sum is therefore the unique choice which mékestisfy (1).
Writing out 4 and setting; = 0, we recognize the Laplace functional of the convolution of
probability measures specified in the theorerm

The first piece ofP; clearly converges to a Poisson random measure as longSais
boundedly finite. But that is not the complete story of asymptotic behavior. In general, the
influence of Py in Q; may persist. In the limit, however, we may apply Varadhan’s Lemma
[14, Theorem I11.13] to show thaf, becomes concentrated on the set of genotypes of
minimum selective cost.

Corollary 6.2. SupposePy and S satisfy the conditions of Theorednl, that the support
SuppPo is compact, and thaf is continuous. Let = inf{S(g): g € suppPo}. If O is any

open neighborhood dfg € suppPo: S(g) = o}, thenlim;_,» Q;(0) = 1. In particular, if

Po{0} > 0, the tilted measurg), converges tdo.

7. Applicationsto the theory of longevity

We outline a few of the many applications to the biodemography of longevity. We take
the space of potential mutatiod to be C[0, oo), the continuous real-valued functions
onR™, supplied with any of the usual metrics corresponding to uniform convergence on
bounded intervals [15, Section 1.44]. A mutation measua this space is the distribution
of a stochastic process. We base our selective cost fungtigron Eg. 4.9 of Charlesworth
[4, p. 140], taking into account more recent discussion [16, p. 930]. The cost function is
defined in terms of the age-specific survival functip(z) and the age-specific fertility rate
fx(g) specific to each genotype, along with a conversion faEtaepresenting a baseline
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value for the length of a generation, and a nateepresenting a population-wide baseline
intrinsic rate of natural increase usually set to zero in applications,

S(g) = (1—/e_’o"lx(g)fx(g)dX>(1/T)- (23)

7.1. Gompertz hazards

Charlesworth [17] has suggested a possible origin for Gompertzian (exponentially in-
creasing) hazard rates through a process of mutation—selection balance which fits into our
generalized model. Members of a species are taken to be subject to a common high back-
ground age-independent hazard ratplus age-dependent contributions from mutations.
Each mutant allele: may be represented as a continuous functign) of age added onto
the hazard function for an individual. Charlesworth’s elementary models assume constant
fertility at all ages above an ageof sexual maturity, forgoing any a priori upper age cutoff.

The selective cosf(g) for a genotype from (23) takes the following form when time
is measured in generations rather than years:

e e]

S(g) = 1—fkexp(—kx +Ab — //m(a) da dg(m)) dx. (24)
b 0

This cost functionS is a non-additive epistatic cost function. Following established prac-
tice, Charlesworth substitutes the additive cost function

oo

§(g) = /(/ (ef)‘(xfb) A 1)m(x) dx) dg(m). (25)

0

This functions is an additive approximation ts.

We first show that under the same premises as [17] our model confirms the same con-
clusions. With additive costs as in (25), Theorem 6.1 and Corollary 6.2 give us sufficient
conditions for the distribution of genotypes to converge to the Poisson random measure
with intensityv/?. It suffices that the starting state put positive weight on the null state
and have compact support and thadndv/S be boundedly finite. Then the average of
the hazard rates over genotypes will converge tefM(m(x)/§(m))dv(m), equivalent
to [17, Eq. 4a].

It is worth mentioning that this expression for the average of the hazard rates is not the
equilibrium aggregate hazard rate for the whole population, because the heterogeneity me-
diated by the Poisson distribution implies attrition of higher-risk genotypes with advancing
age. The Poisson expression for the additive genetic variance and covariance also require
modification for age-specific attrition.

Charlesworth focuses on translation families of mutations, which we may write as
my(x) = mo(x — y) with effects only after an age of onset With dv(m,) = vody on
some[b’, 00), he displays choices fatig which make the average of the hazard rates into



28 D. Steinsaltz et al. / Advances in Applied Mathematics 35 (2005) 16-33

an exact Gompertz—Makeham functiant vgexp(—A(x — b)) on the support of, and
others which approximate Gompertz—Makeham shapes for lar{fEnese shapes do not
include heterogeneity corrections.)

We now observe that our generalized model predicts different qualitative behavior when
the additive approximation of (24) by (25) is not guaranteed to hold. The additive theory
predicts that a “wall of death” with an infinite equilibrium mean hazard rate appears at, but
not before, the age at which reproduction comes to an end [17, p. 60]. Theorem 5.1 im-
plies a more dramatic breakdown. The mean hazard function can actually reach infinity at
ages at which fertility is still strictly positive, if the full epistatic cost functiSrn (24) is
kept in place of the additive approximation (25). The same is also true, if the bounded
cost functionsS is replaced by an unbounded cost function defined, as in Eq. 4.12 of
[4, p. 141], to equal the decrement to the intrinsic rate of natural increase resulting from the
mutations contributing to each genotype. Contrary to additive theory, the “wall of death”
is not tied to the end of reproduction but involves a fine-tuned balance between mutation
rates and tapering costs.

7.2. Gaussian process mutations

We now apply our model to move beyond stylized cases and investigate a wider range
of possible specifications for the age-specific effects of mutations. The cases considered
in 7.1, in which a constant background mortality imprints a Gompertzian pattern onto
increments to the hazard function, share the property that every mutant is deleterious at
every affected age. Is this property essential to the imprinting, or can the age-specific force
of selection readily produce the same kind of outcomes with mutants that mix positive and
negative effects?

Our framework allows quite general pleiotropic specifications. A natural starting point is
the case of Gaussian processes. The fitness cost for this brief discussion will be the additive
approximation (25). Suppose that the mutation process generates mutations proportion-
ately to a positive-real-parameter Gaussian process with expeciatip@and covariance
functionc(x, x”), conditioned on fitness cost bounded away from 0. That is, if we look at
the pattern of age effects in a randomly chosen mutation, it looks like a realization of this
Gaussian process, subjectf‘f()n) > s > 0 for somes. The overall rate of mutation is a
constantvg. For rigorous treatment, we also need to condition on events which keep the
resulting hazard functions non-negative and insure the validity of the additive approxima-
tion, but here we shall assume that the choices of parameters keep misbehavior rare enough
that it can be neglected.

The average over genotypes of the hazard function converges to

h(x)=A+/ m(x) dv(m) .
o f(;)o)»e—"zdz OHbm(y)dy

(26)

The denominatos () is obtained from (25) by integration by parts. Since the numerator
and denominator of (26), linear functionals:ef are both Gaussian random variables, we
can describe their joint distribution simply by computing their covariance. The expectation
of m(x) conditioned orﬁ(m) is obtained via linear regression.
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When the Gaussian expectatien(x) = 0, the integral in (26) turns out to be
voEm(x)§(m)/Var(S(m)) times a proportionality constant depending on the bornd
As one example, take the mutations to be realizations of Brownian motion, so that
c(x,x") =x Ax’ anda(x) = 0. The increment to the mean hazard rate then has the form
c1 — coe M for x > b.

Can any Gaussian mutation process with zero mean generate approximations to
Gompertz—Makeham hazard functions? The covariance kernel must datisfy)| <
c(x,x)/2+ c(y, y)/2. With a(x) = 0, the incremental mortality is bounded above by
c1+ c2c(x, x) for constantg1 andcy. The mortality thus cannot be exponentially increas-
ing over a long range of ages, unless this exponential increase is built into the mutation
process itself.

8. Historical background

We discuss in this section the relationship of our model to the existing corpus of work
on related topics. It was J.B.S. Haldane [18] who articulated the concept of mutation—
selection balance as early as 1937. Crow and Kimura [19], Ewens [20], and Kingman [21]
give the foundations of the subject. Burger [5,22] covers the present state of the art. These
authors put only limited emphasis on age structure; Charlesworth [4,23] propounds the
age-specific side.

Infinite-population models in which fitness is a function of the number but not the iden-
tity of mutant genes go back to Kimura and Maruyama [10]. They state discrete-time and
continuous-time dynamic equations for special cases which readily suggest the general
“mutation-counting model” (2). They obtain some closed-form equilibrium distributions.
Conditions for convergence to stationary states follow from a theorem of Kingman [24],
generalizing theorems of Moran [25,26]. Blrger [5, pp. 298-308] traces the subsequent
history. Markov-chain versions with stepwise mutations of identical deleterious effect have
Poisson stationary distributions (see, e.g., Haigh [27] or Durrett [28, p. 137]). The Poisson
limit is implicit in estimations of equilibrium genetic variance [17].

Mutation-counting models in the tradition of Kimura and Maruyama are more tractable
than the general case considered here because they are a kind of multi-locus model that
can be subsumed under the theory of single-locus models. The count of mutant alleles at
different sites can be likened to the integer label on a countable set of alleles at a single
site, subject to constraints on the non-zero interallelic mutation rates. Models defined by
various alternative sets of constraints have been studied in some detail.

The most famous of these single-locus models is Sir John Kingman’s “House of Cards
(HC) described in [29] and [21]. Kingman’s infinite-population discrete-time model posits
a single gene with potentially infinitely many alleles. Alleles mutate to new alleles at a con-
stant rate; each new allele has a random fitness, given by a probability distribufi@ripn
The state of the system is given by a distribution of fithessd8,dlj, and the dynamics are
governed by a standard evolution equation. Kingman [29] gives the original proof that the
distribution of fitnesses for the HC process converges to a limiting distribution. This model
has many descendants, including the “HC-approximation” [30] for stabilizing selection
around an intermediate optimum.
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Our model differs from HC and its counterparts in four main ways. Mutant alleles in
HC have no properties other than fitness. Mutant alleles in our model are tagged by an
effect represented by a point in a general metric space whose specification determines the
fitness through the impact on demographic rates. In HC there is only a single locus. In our
model we are concerned with the heterogeneity of whole sets of mutant alleles across a
large number of loci within the population. Because HC includes only a single locus, it
offers no possibility for interactions between the fithesses of different alleles. Our model is
open to general epistasis. Finally, HC is well suited to the use of Markovian methods and
sample-path analysis, whereas our proofs require hon-Markovian machinery.

A highly versatile general formulation of single-locus models has been developed by
Reinhard Birger [5, Chapter IV.2]. His “general mutation—selection model” warrants close
comparison with our own. Like us, Burger draws mutants from a general space, accord-
ing to an arbitrary distribution. Birger requires his space to be locally compact, whereas
we allow any complete, separable metric space so as to include mutants identified with
continuous functions of0, o).

The substantive difference between Birger's model and our own is in their contrast-
ing views of the genome. Biirger focuses on a single locus, with (perhaps) infinitely many
potential alleles. Each individual’s genotype is characterized by a single quantity and the
population is characterized by a distribution on the mutation space. We take a more synop-
tic view, watching the (perhaps) infinitely many alleles pop up at (perhaps) infinitely many
loci, thereby opening up the representation of population heterogeneity. In our model, the
only mutation process is the conversion of an undifferentiated wild type to a random mu-
tant allele, so we need not introduce transition rates between alleles. However, our flexible
treatment of heterogeneity means that even the description of the state of the system has to
be more abstract than is customary in population genetics.

In a different setting, Del Moral and Miclo [31] present results which parallel our The-
orem 3.1. Their conditions are more general in some respects and more restrictive in
others. While their concerns are remote from biology, they use the terminology of “mu-
tation generators” and “adaptation” in their descriptions. They prove that the differential
equation model which we analyze can be derived as an infinite-population limit of finite
non-deterministic Moran models for interacting particles. A new book [32] expands this
line of investigation.

We accompany Del Moral and Miclo, on a road that diverges from the Markov model-
ing, branching processes, branching diffusions, and superprocesses which are so important
to stochastic population theory [33]. Pioneering work in these areas by [34-36] has been
followed by extensive results on particle processes and measure-valued diffusions with se-
lection, including [37—44]. Such Markov processes, even when they involve selection, are
essentially linear. Lineages rise or fall at their own rates, according to their fithesses, inde-
pendent of the outside population. By contrast, the mutation—selection paradigm on which
we focus has to be non-linear, since every lineage has negative fitness. The models are
saved from trivial degeneracy by a renormalization, conditioning the process on long-term
survival. This ingredient introduces a quadratic non-linearity into the evolution equation,
inasmuch as the entire population contributes to the selective pressure on each individual,
bringing non-Markovian arguments to the fore.
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9. Prospects

The generalized model for mutation—selection balance presented here can be applied
widely to settings where age structure matters. Because the model allows mutations with a
mixture of positive and negative effects, it gives scope to some blending of ideas about
mutation accumulation with ideas about antagonistic pleiotropy. It offers a handle on
responses to changing fithess conditions through the finite-time solutions, along with ma-
chinery for treating epistatic cost functions.

The Palm formula in Section 4 facilitates the construction of an alternative version of
our model which, in contrast to (1), allows for free recombination (FR). In line with [10,45,
46], we postulate conditions on the relative rates of recombination, selection, and mutation
which lead, in the continuous-time limit, to a process in whighis always a Poisson
random measure of with some intensity measurg. Our results in Section 4, derived
in the absence of recombination, give us the form of an equatiop, fiorthis generalized
free-recombination model. Differentiating (12)zat O leads to a representation for of
the form

t

0 = po + vt — / Do, dr. (27)
0

Here Dp is a measure whose density with respecptat m is E[S(X” + §,,) — S(X?)],
and X* is the Poisson random measure with intengityRigorous development of this
alternative is reserved for a future paper.
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