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1. Introduction

The almost sure limit theorem (ASLT) for the maximum of independent identically distributed (i.i.d.) random variables
has been studied by Fahrner and Stadtmiiller [6] and Cheng et al. [4] respectively. For more related works on ASLT, see
[1,10-13]. For the weakly dependent stationary Gaussian sequence {X, n > 1} with E X; =0, Var X; = 1, Csdki and Gonchig-
danzan [5] obtained the ASLT for the maxima if their correlation r, = E X1 Xn41 satisfies r, logn(loglogn)!té = 0(1) for
some ¢ > 0. For some extensions see [2] and [9]. Chen et al. [3] studied the ASLT of extremes for weakly dependent station-
ary Gaussian vector sequences. For some potential applications of ASLT, see [10]. Lin [8] extended this principle to a kind of
strongly dependent Gaussian sequence. He proved

o
1 &1 (Mg—b
lim — —I[(u gx) = / exp(—e_x_p+mz)¢(z)dz as. (1.1)
n—o0 logn p k ax
if
Irnlogn — p|(loglogn)'** = 0 (1), (12)

where the normalizing constants are

a=Q2 logn)‘”z, b, = an_1 — an(loglogn + log4m) /2. (1.3)
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For the multivariate setting, let {X;, s > 1} be a standard stationary d-dimensional Gaussian sequence, i.e., X =
(Xs1, Xs2, ..., Xsq) wWith EXg; = 0, Var Xg; _1 and correlations rij(|t — s|) = Cov(Xy;, X¢j) for 1 <1, j<d, s,t > 1. Suppose
that rjj(n) satisfies

rij(n) logn — pjj € (0,00), 1<, j<d, (1.4)

as n — oo and

sup |rij(m] < 1. (1.5)
1<i,j<d
n>1

Let Mﬁ,k) stand for the d-dimensional vector of kth extreme-order statistic of the sequence {Xs, 1 <s <n}, where 1 <k<n

ie, MY = (Mg;), M;kz), .. M(k)) where M(k) denotes the kth order statistic of {Xsj, 1 <s<n}, j= 1 2,...,d. Thus we have

M,g]) as the vector maxima and M,([') as the vector minima. We also define the normalized constants

a;, =(p, ..., 0qn), by = (bn, ..., by)

where a, and b, are defined by (1.3). Wisniewski [14] investigated the limit distribution of Mﬁlk) for a kind of Gaussian
vector sequence with equal correlation. Under conditions (1.4) and (1.5), WiSniewski [15] studied the limiting distribution
of the d-variate point processes of exceedances formed by {Xs, 1 <s <n} and obtained:

Theorem A. Let X1, X, ... be a standardized stationary Gaussian vector sequence satisfying (1.4) and (1.5), then for fixed k,

M(k) —by, d

S MY +RyZ, (1.6)
an

where Ry = (v/2pii)1<i<d and Z is the standard Gaussian vector with the covariance coefficients Cov(Z;, Z;) = pij//piiPjj- Z and
MS‘) are independent and

k=1 xi—piixm
1) —Xi—pii (e i n)
pOup <) = Jewp(-esom 3 0
This paper is devoted to the study of the ASLT for the maxima of {X;, 1 <s < n} under conditions similar to (1.2). This
paper is organized as follows: In Section 2, we give the main result. Related proofs are provided in Section 3.

2. Main result

In this section we state our main result, i.e., for the ASLT of the maxima of {X;, 1 < s < n}. The main result is:

Theorem 2.1. Let {X;, s > 1} be a sequence of d-dimensional stationary standard Gaussian random vectors with correlation r;j(s)
satisfying conditions (1.4) and (1.5), and additionally for 1 < i, j < d let the following condition hold:

|rij(m) — tj(m)| (logn) (log logn)' ™ = 0 (1). (2.1)

Then we have
. 1 1_/M;—Dbs
lim —— —I| —— <X )| =(Ap xDPy)(X), a.s.
) (s (Ap * )0
forx € RY, where tij(n) = pij/logn, Ms = Mgl), and p = (p11, P22, - - - » Pdd)- Operator x denotes convolution, and

Ap®) =Ax+p).  AX) =] [exp(—e),
i=1

D,(x) =@ (272xA7 1 (p))

and @ represents the joint distribution function of a Gaussian vector Yo with Cov(Yo) = (0ij//PiiPjj)1<i, j<d and EYo = 0. A1)
is the inverse of A(t), and the latter is defined by (3.2).
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3. Proofs of the main results

We first define a triangular array of d-dimensional random Gaussian vectors {Y,S'J): 1<m<n,n> 1}, the rows of
{Y,(,'{'): 1 <m < n} are standard Gaussian equally correlated sequences with the covariance coefficients

Cov(Ya Yil) =rij0,  Cov(Yi, V") =ti(m), (31)

where 1 <m#I1<n and n > 1. And suppose that {Xs, s > 1} and {Yﬁ,'f): 1<m<n,n> 1} are independent. Write M;, for

the vector maxima in {Y,(T'.f): 1 <m < n}. For each s € (0, 00)¢ and v € (0, 00)? denote

5%/2 ... 0 A—vpl2 ... 0
A= + - |, Bw= : : (3.2)
0 .- si/? 0 e (=2

The following representation of the standard Gaussian array {Y,(,?): 1<m<n, n> 1} is due to Wisniewski [14]:

Lemma 3.1. Assume that the standard Gaussian array {Y,(g): 1 <m < n, n> 1} satisfies condition (3.1). Then the rows of the array
can be represented by means of sums of independent vectors in the following way:

(Y, ) E (2P A () + ZVB(tm)), ..., 20 Atm) + Z0UB(tm))),

where t(n) = (t11(n), ..., tgqg(n)) and {Zf,'f): m € {0} U N} is an independent Gaussian sequence with covariance matrices

Cov(ZB")) _ ( tij(n)

Vtii (Mt i (n) >1§i,j<d7

Cov(z" :< rij (0) — £i(n) )
ov(Zm) JA—ta@)d — ;™) ) 11 <

and with vectors of mean values

EZ)" =EZ) =o0.
Proof. See Proposition 1 of [14]. O
The following bound is from the Normal Comparison Lemma (cf. [7]):

Lemma 3.2. Suppose that the Gaussian vector sequence {X,, n > 1} satisfies the conditions (1.4) and (1.5) and the triangular Gaussian

array {Y,E”), 1 <k < nj satisfies (3.1). Set u, = a;x + by, then we have

2 .2
Uji Uy, }

d
[P(My <wp) — P(M; Swy)| <€) ) |r.-j(|r—s|)—ti;<n>\exp{—2(1+wij(|t_s|’n))

i,j=11<s,t<n

where w;j (s, n) = max{|r;j(s)|, tjj(n)} and € is an absolute positive constant which may change from line to line.
Proof. Using Theorem 4.2.1 in [7], we get the desired result. O

Lemma 3.3. Suppose that the condition (2.1) holds and set u, = a,X + by,. Then for large n we have

d n uZ + u,
sup k rii (s) — tii (n) exp{—lim} < €(loglogn)~(1+9),
1<k<n ,.J.Z::] ;| Y 5| 2(1 + wjj(s, n))

Proof. As t;j(n) = p;j/logn, for large n we have
o():= sup |wjm,D|<1
1<m,I<n
1<i,j<d

by (1.5). According to Leadbetter et al. [7], for large n we have

2 Cup 1 .
expl —2t~ =2 uy~Qlogn)z, for1<i<d. (33)
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Notice
d n 0 "
Ui + Uy }
K rij(s) —tjj(n)|expy —————
Z Z| ij(s) — tij(n)| p{ 2(1 + wij(s,n))
l,]:1 s=1
d_ uj; +up,
ki nj
—k rij(s) —tij(n)|expy —o—————~
ijzzjlsg]] ij(s) — tij(n)| p{ 2(1 +w,-j(s,n))}

Uy + Up;
+kz Z |rij(s) — t,](n)|exp{ m}

i,j=1s=[n%]+1
=T1+ T2,
where 0 <a < (1 —0(1))/(1+0(1)). For Tq, by using (3.3), we have
d 2 2
us 4+ us.
T <k Z n“exp{—u}
i 2(1+0(1)

1/(1+0 (1))
Uil
<e Z kn® ( ki n])

i,j=1
d
<e Z n1+e=2/(+0 (1) (g gy 1/ 1+ (1)
i,j=1
As 1+a—2/(1+0(1) <0, we get T; < ¢n~? for some § > 0. The remainder is to estimate the bound of T,. Letting
p = [n%], we have

d
. _ Matuy
Ta<k Y Y |rij(s) fu(")|exp{ 2(1+a(p))}

i,j=1p<s<n
d uZ, +u?,
ki nj
ISP 2
i,j=1 20+0(p) ) 52,
kn uZ, +u§j logn t
- logn exP{_2(1+o(p))} n > i) —tim)|

p<s<n

:M‘ I M“

Il
_

Dj;.
L)

By the arguments similar to those of Lemma 2.1 in [8], we get
Dj; < ¢(loglogn)~1+#)

uniformly for 1 <i, j <d. The proof is complete. O

Lemma 3.4. Under the conditions of Lemma 3.2, we have

n n
1 1
Var( E © I{M; <ug}— E © I{M; < uk}) < ¢(logn)?(loglogn)~(1+9).

k=1 k=1

Proof. Note that
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+2 ) %COV(H{MI' <w) —I{M; <ui} I(M; < uj} — I{MY < uj})
1<i<j<n
=1+ J2.
Obviously J1 < oo. To estimate [, for i < j define M; j = max{X;: i+ 1 <s < j}. Similarly define M* and Ml] Notice for
i<j

1
< [Cov(I{M; <wi} — H{M} <wi}, I{M; <wj} — [{M] <ujf — (I{M; ; <uj} — I{M; <uj}))|
+ |Cov(IfM; < i} — T{MF <u;}, T{M; j < uj} —T{M}; <uj})|
= P{) 4+ PP

|Cov(I{M; < i} — I{M; < wi}, T{M; < uj} — I{ME <uj})

(1)
For Pi,j we get

P <2E[T{M; <uj) — (M j <uj}| + 2E[1{M} <uj} —T{M;

]

1 uj
=2(P(M;j < “1)—P(M1<“1)) 2(P(M;; <uj) — P(M] <uj))
=2[P(M;j <uj) — P(M}; <uj)] — [P<M1<uf>— (M} <uj)| +4(P(M]; <uj) — P(M] <uj))
<2|P(M;j <uj) — (M* uJ]+2|P(MJ uj)— P (Mj<u1|+4 Mi,jguj)—P(Mjfguj))

< ¢(loglog j)~1+8) 4 4P(Mi > Mi,j)
< ¢(loglog j)~(1+ +4d] (3.4)

The third inequality follows by Lemmas 3.2 and 3.3. The last inequality comes from Lemma 3.1 and the arguments in [1].
For szj), noting that the {Xs, s > 1} and {Y,(,'})} are independent, for i < j <n we can get
P(Z) |P(M; <u;, M j <uj) + P(MF <ui, M <uj)
— P(M; <u))P(M; j <uj) — P(M] <) P(M]; <uj)|
< |[P(M; <ui, M j <uj) — P(Mf <uy, M <uj)
PO ) P <)+ PO <)~ PO, < )|
+2[P(M} <wi, Mj; <uj) = P(M; <wi)P(M]; <uy)l.
By the Normal Comparison Lemma, we can check that

logn

|P(M} <u, M;; <uj) — P(M; <) P(M]; <uj) Z (z])“’g"‘fplrn [(logi) log]]2<‘°g"+f’lm> (logn)~ 1. (3.5)
1<, m<d
Hence by Lemmas 3.2 and 3.3 and (3.5),
Plm logn
P{% < €((loglogi)~"**) + (loglog )= %))+ " (ij) ™" 7in [(logi) log ] " A (logm) ™" (3.6)
1<I,m<d
for i < j <n.By (3.4) and (3.6), we have
1<1<]<n
< 4d Z —+¢ Z (loglogz) (48 4 (loglog j)~ 1))
1<1<]<n 1<1<]<n

D DD D L (ijy i [log log 1]+ 7m (logm)~!

1<lm<d1<z<J<n
=:F1+ Fy+ F3.
Clearly,

F1 < €logn < €(logn)?(loglogn)~1+&
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and

—logn

Z (logn)logn+plm Z]logn+plm leogn+plm

1<I,m<d

_—2logn

< Z (log n) Iogn+p1m Z ] logn+p1m
1<l m<d logn+p, =1

+1

2 2 Jul 2py
’Olm ( ogn) logn+r/n7{m n logn+n;)[m
<y dogn + pim)?
shms

r<lmd logn + pim

logl
< @exp(— ogzogn) = ¢(logn)~1/2

-3 21 logl 20mm 1
Z ZPﬁnexp< Bpim + 2logn) loglogn + 2 pym Ogn>

247

for large n. We also need to estimate F,. For large n, let A be an integer such that log A ~ (logn)® for some 0 < § < 1.

Hence

F,=¢ ( oo+ ) ) ((loglogi)™*®) + (loglog j)~*9))

1<i<j<n 1<i<j<n
i<A i>A
< €(logn)?(loglogn)~(1+9).

The proof is complete. O

Lemma 3.5. Let (1,,) be a sequence of bounded random variables. If

n

1

Var(Z E”k) < @(IOgn)2(loglogn)—(1+s) forsome & > 0,
k=1

then

Zk(nk En) =0 as.

n—>oo ]ogn

Proof. See Lemma 3.1 of [5]. O

Proof of Theorem 2.1. By Lemma 3.5 and Theorem A, we only need to check that Lemma 3.5 holds for (I{M; < u}, k>

By the well-known C,-inequality, we have

n n n
1 1 1
Var( E EH{Mk <llk}> = Var( E EH{Mk Sw— E EH{M* S
k=1

k=1 k=1

n
< 2|:Var<Z%H{M,f < uk}> +Var(

k=1
=:2(L1 + L2).

By Lemma 3.4, we get L, < ¢(logn)2(loglogn)~1+¢). The remainder is to estimate L;. Using Lemma 3.1, write L; as

E(i I%(H{M,’; <w}—P{M; < “k})>2

k=1

k=1

n

n

> M -

k=1

n
}+Z%]I{M* <y
k=1

k

= (i ’1—< (M < (w — ZJ A(tK)) B (tk)) | — P{M < (e — Z{" A(t(k))) B! (t(k))}))

1).

(3.7)
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where

My = (max{z{?. z$)..... &} 1< j<d),

and

e =T{My < (g — zA(t(K))) B~ (t(k)) } — P{My < (g — zA(t(k))) B~ (k) ).
Notice
n 2

1 |L(t29]
E( D% Zszlzk +2 ) =: Hi + Ha. (3.8)

K
k=1 1<k<I<n

Clearly, H1 <Y 4 ,2 < 00 as |¢] < 1. To estimate the bound of Hy, for k <1 we get

Bz | < |Cov(T{My < (g — zA(t(k))) B~ (t(k)) ),
I{M; < (u — zA(t(1))B1 (t)) } — [{ My,
<2[E[I{M; < (w —zA(¢))B™ (¢0) } - I
=2[P{Mk,:<( w = zA(t)))B (¢0)] - P{M

(w —zA(tD))B~' (tD)})]

<
T{ My < (w —zA(tM))B (t0)}]]

| < (w —zA(tD))B (t0)}]
-k d I

_1 _1

=2|([]e((wi —zveu®) (1 —ta®)"2) | = [T® (i — ziv/ta®) (1 = tis)) " 2)
i=1 i=1
<ek
X l
Thus
Hy<¢ Z l:_l(’l{) Clogn < €(logn)*(loglogn) =1+, (3.9)

1<k<I<n

Combining with (3.7), (3.8) and (3.9), we can get L1 < €(logn)?(loglogn)~(1+¢). The proof is complete. O
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