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Abstract: The differential equations governing the dusty fluid flow in porous media are developed based on Saffman’s 
dusty gas flow equations. The model equations are cast in vorticity-streamfunction forms and applied to study the flow 
in a rectangular cavity. A numerical solution is obtained for the flow considered and the results are compared with the 
solution for a clean fluid flow in porous media. 
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1. Introduction 

Fluid flow in porous media is described by the continuity equation together with the 
momentum equations, which usually take the form of Darcy’s law, provided the flow is of the 
seepage type and the porosity of the medium is sufficiently small. 

In cases where the porous medium is not a naturally occurring one, but rather the solid matrix 
is composed of a loose distribution of solids fixed in space, such as a macromolecular 
distribution, the porosity might cease to be small enough for Darcy’s law to accurately describe 
the flow phenomena. The momentum equations must take a different form in order to describe 
the flow more accurately and to account for the relatively high porosity of the medium. One such 
model is Brinkman’s equation, which has proven to be a very important model in describing flow 
through porous media with high porosities [3]. 

Many applications of fluid flow through porous media, where Brinkman’s model is applicable, 
were discussed by Wiegel[6]. He considered the flow domain to be composed of a distribution of 
macromolecules and discussed at length its applications in biophysics. The same model was 
implemented by Hamdan and Barron [2] in a vorticity-streamfunction formulation to study 
separated flow in the driven porous cavity. 

One of the many important applications of porous media flow is in irrigation problems. In 
such a case one usually assumes the applicability of Darcy’s law in the media considered and 
single or two-phase flow is usually studied [7]. In cases where the porosity of the medium is high 
and the flowing fluid contains a small distribution of solid particles we propose a dusty gas flow 
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model through porous media. Such a model is formulated in terms of Brinkman’s equation and is 
based on Saffman’s dusty gas equations. This model has direct applicability to irrigation 
problems in which the fluid may contain some undissolved solids (fertilizers) or in cases of salty 
layers of sand undergoing a flushing process. 

The flow equations which are developed are cast into vorticity-streamfunction form and 
applied to study the characteristics of dusty fluid flow in the driven porous cavity model. The 
structure of the separated corner eddies is also studied to demonstrate the effect of the dust 
parameters on the flow. Differences between the porous cavity dusty gas flow and the regular 
cavity dusty gas flow are also indicated. 

A numerical approach is taken to accomplish the above study. 

2. Model development 

The equations governing the flow of an incompressible dusty fluid, in the absence of body 
forces, can be expressed in the following form [4]: 

for fluid-phase: 
conservation of mass: 

v.u=o; (I) 

conservation of linear momentum: 

P g+(u.v)u [ 1 
= -vp+pv2u+kn(u-u); 

for dust-phase: 
conservation of mass: 

conservation of linear momentum: 

mn g+(u.v)Y 
[ I =kn(u-u); 

where u is the fluid-phase microscopic velocity vector, u is the dust-phase microscopic velocity 
vector, p is the fluid density, p is the pressure, p is the dynamic viscosity, n is the dust particle 
number density, m is the mass of a single dust particle and k is the Stokes coefficient of 
resistance. 

In order to develop a dusty fluid porous media flow analogy to the above equations we 
consider Saffman’s assumption to be valid for the case of a porous medium. Thus, we assume a 
very small volume fraction of the dust-phase and consequently zero interaction between the 
particles. This permits assuming a macroscopic continuum behaviour for the dust particles 
distribution, and hence we develop a set of equations for the dust-phase and another for the 
fluid-phase. 

Averaging the Navier-Stokes equations using the procedure outlined by Semrau [5] and 
implementing Saffman’s assumptions the following macroscopic governing equations are ob- 
tained for each phase: 
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fluid-phase equations: 

v*U=O; 

where E; is the sum of external forces exerted on a unit volume of the fluid-phase, U is the 
fluid-phase macroscopic velocity vector and PI is the macroscopic fluid-phase partial pressure. 

The term & is assumed to be comprised of two forces, fit and fi2, where fit is the friction 
force per unit volume of the fluid-phase due to the solid matrix of the porous medium. In order 
to derive an expression for fil we employ Darcy’s law in the form 

(u- V) = - ZVP, (7) 

where we have assumed that the seepage velocity in Darcy’s law is the relative velocity of the 
fluid- and dust-phases. Accordingly, the friction force fit balances the Darcy’s pressure gradient 
and thus takes the form 

f*1= +vp= -f(u- v), (8) 

where n is the permeability and V is the macroscopic dust-phase velocity vector. The term fi2 is 
the force per unit volume of the fluid-phase due to the influence of dust. Denoting the 
macroscopic particle number density by N, the assumption of a small concentration of dust, by 
volume, leads to the following expression for the dust effect on the clean fluid: 

fi2 = WV- u>, (9) 

where K is the coefficient of resistance in the porous medium, which is constant under the 
assumption of uniform size and distribution of the dust particles. 

For small Reynolds number Re the inertia terms in equation (6) are negligible (cf. [6]) and 
thus the fluid-phase momentum equations take the following vector form, when equations (8) 
and (9) are employed in equation (6), 

dust-phase equations: 
The macroscopic dust-phase equations take the form 

~+v.(lvv)=o; 

g+(Vv)V 
1 

=E;, 

(11) 

(14 
where the force F2 represents the sum of external forces exerted on a unit volume of the dust. 
Although it might be possible to consider that F2 is composed of two forces, one due to the 
effect of the fluid-phase on the dust-phase while the other is the friction force due to the solid 
matrix, it is reasonable to assume that the latter force is much smaller than the first due to the 
assumption of a very small bulk concentration of dust. Furthermore, such small bulk concentra- 
tion of the dust inhibits the consideration of a separate permeability for the dust-phase and the 
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relative permeability model is therefore invalid in this context. Thus a separate Darcy’s law 
cannot be considered for the dust-phase. 

The saturation in this context will refer only to the fluid, in general, since the idea of miscible 
and/or immiscible displacement is nonexistent for the type of flow considered. 

According to the above the only contributing force is due to the fluid-phase influence on the 
dust and is given by 

F2 = KN(U- V). (13) 

Thus the dust-phase momentum equation takes the form 

i3V 
miv at + (v. v)v =KN(U- v). 

I I (14) 

As can be seen from equation (14), in this model for the flow of a dusty fluid in porous media, 
the dust-phase behaviour does not depend directly on the permeability of the medium. It should 
be noted that the inertia terms in the dust-phase equations are not negligible, for small Re, as in 
the case of the fluid-phase equations due to the fact that the dust inertia is much larger than that 
of the fluid-phase. 

3. The porous cavity model 

The equations developed in the previous section are used to study the dusty fluid motion in a 
rectangular cavity. Such a motion is assumed to be generated by the steady sliding motion of the 
top wall of the cavity in its own plane. The cavity walls are assumed to be impermeable while the 
flow domain is assumed to consist of a porous material. 

By considering the steady, rotational, laminar, plane flow of an incompressible viscous dusty 
fluid, the governing equations reduce to the following: 

for dust-phase: 

v* (NV) = 0; 05) 

mN( v* v) v= KN(U- v); (16) 

for fluid-phase: 

v*u=o; (17) 

-vp,+pv2u+(v-u)(;+KN)=O. (18) 

Equations (15)-(18) represent a system of six equations in the six unknowns U, V, N and PI. 
By taking N to be constant throughout the flow field we notice that the above governing 
equations render an overdetermined system of six equations and five unknowns. This suggests 
that the governing dust-phase equations in streamfunction-vorticity form might yield dust-phase 
velocity components that do not necessarily satisfy equation (16). The dust-phase streamfunc- 
tion-vorticity formulation is, nevertheless, facilitated by modifying equation (16) to include 
dust-phase partial pressure P2 and thus equation (16) is replaced by 

mN(V*v)V= -vP2+KN(U- v). (19) 
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Using equation (19) and taking N to be constant in equations (15), (18) and (19), the 
equations of motion are expressed in (nondimensional) streamfunction-vorticity form as: 

for dust-phase : 

~2~_~_~; (20) 

(21) 

(22) 

for fluid-phase : 

a% a% - - 
ax2 + ay2 

KN* Re+ f)(C2-t1) =O; (23) 

where q1 is the fluid-phase streamfunction, ‘k2 is the dust-phase streamfunction, [I is the 
fluid-phase vorticity, t2 is the dust-phase vorticity, A4 is the mass of a dust particle, N* is the 
number density, X and Y are the dimensionless independent variables, n* is the dimensionless 
permeability, Re = pLVo/p is the Reynolds number, V, is the moving wall velocity and L is the 
cavity width. 

The governing equations, in streamfunction-vorticity form, were rendered dimensionless with 
respect to the width of the cavity and with respect to the velocity of the moving wall. The terms 
K/M and KN/p have the dimensions of relaxation time and frequency, respectively. In what 
follows the asterisk will be dropped from n* and N *. 

For the type of flow medium considered, it is reasonable to assume that the inertial terms are 
negligible compared to the dominant viscous terms. In this case the term involving Re in 
equation (23) vanishes and this equation reduces to 

a% a% -- 
ax2 + ay2 

+352-tl~=o. (24) 

By contrast, the equations governing this same type of flow when the flow domain is a regular 
(nonporous) cavity and Re = 0 take the following streamfunction-vorticity form: 

for fluid-phase : 

for dust-phase: 

aq2 x2 at2 a\k, ---~- 
ay ax ay ax = g&h -f,); (27) 

(28) t2= _C&!3. 
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In order to check the validity of the current formulation we expect that when the porosity of 
the medium approaches unity the porous media dusty fluid flow equations correspond to the 
regular dusty fluid cavity flow equations at Re = 0 and that when the porosity of the medium 
becomes small and the velocity is of the seepage type then our governing equations should reduce 
to Darcy’s law. 

We notice that, in (24), when the porosity is equal to unity, or equivalently the permeability n 
becomes infinite, (24) reduces to (25). When the porosity of the medium is small, effectively 
n -X 1, (24) reduces to .$I - c1 = 0, which is exactly equation (7) or Darcy’s law for the dusty fluid 
flow considered, with the pressure terms eliminated. 

It has been shown [l] that for the dusty fluid flow at Re = 0 in a regular cavity, the fluid-phase 
vorticity and streamfunction equations are the same as Navier-Stokes equations for the clean 
fluid flow. It is thus expected that, when 17 = 1 in the case of porous media dusty fluid flow, the 
fluid-phase will behave in a similar manner to the clean fluid flow which in turn behaves like the 
nonporous media flow at Re = 0. This is due to the fact that all three sets of equations become 
basically the same when porosity is unity, or equivalently nondimensional permeability is unity. 

In terms of the streamfunctions, the dimensionless velocity components are defined by 

a*1 
ui=ar, 

a% 
v,= -ax> 

a% 
G=ay’ 

a** 
V*= -ax. 

The dimensionless vorticities are defined by 

av, au, 
L=JJym and 

av, au, 
t2 = ax - m. 

Once the coupled equations (20)-(22) and (24) are solved for the streamfunction and vorticity 
of each respective phase, the dust-phase velocity components can be evaluated from the above 
expressions for U, and V, in terms of the dust-phase streamfunction. With the knowledge of U, 
and V,, (19) can then be solved for P2, which is the dust-phase partial pressure necessary for the 
computed dust-phase velocity components to satisfy (19) with N taken as a constant. 

4. Finite-difference approximations 

In order to integrate the governing equations numerically over the chosen flow domain we use 
the second-order accurate 3-point central differencing scheme to approximate all of the deriva- 
tives involved over a uniformly discretized square grid. The difference equations resulting from 
such approximations are then cast into relations of the form 

ai j4. j_1 + b, jE;;. j + c~,~E. j+l = di,j, 1 . 1 , 

where &,j represents any one of .$i, t2, ?Pi or ?PZ at node (i, j), for i = 1, 2,. . . , Imax and 
j=l,2 , . . . , Jmax, and a, b, c, d are coefficients. Such a form is suitable for successive line 
overrelaxation with sweep along each grid line, i = 2, 3,. . . , Imax - 1. 

The above form of the difference equations produces tridiagonal matrices once (20)-(22) and 
(24) are expressed for every node (i, j). Diagonal dominance of the resulting tridiagonal 
matrices is clear for (20), (21) and (24). For (22) diagonal dominance of the resulting matrix is 
guaranteed provided that the following criterion is met: 

lhK/Ml > l(V,)i,,I for i=2, 3 ,..., Imax-l and j=2, 3 ,..., Jmax-1, 

where h is the step-size. 
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Boundary conditions 

Since all of the dependent and independent variables have been rendered dimensionless with 
respect to the velocity of the moving wall and the width of the cavity, the cavity will be of unit 
width and of any convenient depth. In this study the depth is taken to be unity and thus we are 
dealing with a square cavity. 

According to the above nondimensionalization, the moving wall has a velocity of magnitude 
unity. The direction is taken, for convenience, to be in the direction of the negative X-axis so 
that the streamfunctions obtained will assume positive values. 

The only boundary condition used for the fluid-phase is that of no-slip on all of the four 
cavity walls. Such a condition translates into the following conditions on \k,: 

a% 
‘k,= 3X -=0 forx=O,l and O<Y<l, 

a% 
‘k,= ay -=0 fory=O and O<X<l, 

a\k, 
!Pi = 0 and a~ = -1 for Y=l,O<X<l. 

Since the above conditions do not involve conditions on the fluid-phase vorticity (‘i, the 
vorticity boundary conditions are derived by assuming the validity of the flow equations at the 
boundary and deriving expressions for the fluid-phase vorticity on the four walls in terms of the 
fluid-phase streamfunction at interior grid points. This of course excludes the top two comers 
where the vorticity remains undefined due to the difference in velocities on the moving wall and 
the left and right walls. 

Using the image line technique, the following second-order accurate expressions for the 
fluid-phase vorticity at the walls are obtained: 

at the left wall: 

(*l)z,j for j= l,...,Jmax- 1; 

at the right wall: 

(51>Imax, j = f$ (‘Pl)l,,,_l,j for j=l,...,Jmax- 1; 

at the lower wall: 

(~1),,I=-$(YPI)~,2 for i=2,...,Imax-1; 

at the moving wall: 

(&)i,Jmax = ~(~Ji,J,,-I 2 +m for i=2,...,Imax-1. 

With regard to the dust-phase boundary conditions we note that a no-slip condition on the 
dust-phase velocity components cannot be imposed in light of the facts that the dust-phase 
viscous effects are absent and the deposition and collision of some dust particles on the walls 
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usually causes some other particles to slide off resulting in a slip condition. The assumption of 
constant number density, however, allows the possibility of assuming zero normal velocity 
components on the walls, with the nonzero tangential components to be determined. 

The assumption of vanishing normal velocity at the four walls of the cavity implies that !PZ is 
constant on all four walls. For convenience we can choose the walls to constitute the streamline 
!PZ = 0 and thus the dust-phase boundary conditions take the following form: 

a% 
%= - ax -=0 for Y=O,l and O<X<l; 

a** 
%= ay -=0 forX=O,l and O<Y<l. 

The above conditions do not give direct conditions for the dust-phase vorticity on the four 
walls but vorticity conditions are derived by assuming the validity of the dust-phase flow 
equations at the boundary and deriving expressions for the vorticity on the four walls in terms of 
the dust-phase streamfunction at interior grid points. By using second-order accurate forward 
and backward differencing schemes, together with the fact that !PZ = 0 on the walls, the following 
expressions for the dust-phase vorticity boundary conditions are obtained: 

on the lower wall: 

for i=2,...,Imax-1; 

on the upper wall: 

(52);,Jmax = 2(4)i’““-~y!a,‘.“.’ for i=2,...,Imax-1; 

on the left wall: 

W2)2,j - P2h.j 

(t,)l,j = Ax2 for j=2,...,Jmax- 1; 

on the right wall: 

(t2)Imax,j= 2(~2)l,,,-l~X!4)lmr.-2.j 
for j=2,...,Jmax- 1. 

6. Solution algorithm 

The resulting tridiagonal system is solved using a tridiagonal solver, Thomas’ algorithm, with 
successive line relaxation in the Y-direction. The streamfunction equations have been overrelaxed 
and the momentum equations underrelaxed. 

The solution to the coupled equations together with the pertinent boundary conditions is 
obtained by implementing the following computational procedure. 

For a given permeability 77 and dust parameters K/M: 
Step 1: The flow domain is initialized by giving \k,, !P2, <i and t2 some small starting values. 
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Step 2: 
2.1: 

2.2: 

Step 3: 
Step 4: 

Step 5: 
Step 6: 
Step 7: 

Step 8: 

Step 9: 

Solve the fluid-phase streamfunction equation, for !Pi, using the TRIDIAGONAL solver 
along each grid line, i = 2, 3,. . . , Imax - 1. The solution is iterated along each i using 
SLOR of the form 

!P n+l= 9” + a( *;+I - *k”), 

where ?I$+’ is the value obtained by the TRIDIAGONAL solver, and \k” is the value 
obtained from the previous iteration. 
Step 2.1 is repeated five times in order to accelerate convergence. 
Solve the dust-phase streamfunction equation, for \k,, using the method of Step 2. 
The values of t1 and t2 are calculated at the four walls (excluding the top two cavity 
corners) using expressions discussed in Section 5 for the vorticities at the walls. 
Solve the fluid-phase vorticity equation, for E1, by a similar method to that in Step 2. 
Solve the dust-phase vorticity equation, for t2, using the method of Step 2. 
Repeat Steps 2-6 until the following convergence criterion is met: 

where c is the error tolerance, taken as 5 . 10e5. 
The velocity components U,, Vi, U, and V, are calculated in the flow field using 
second-order accurate central differencing of their respective definitions in terms of +i 
and !Pz. 
The velocity component U, is then calculated on the lower and upper walls and V, is 
calculated on the right and left walls using the following second-order accurate upwind 
differencing schemes: 
on the lower wall: 

(u), = 4wi,*- (*2)i,, . 
2 r,l 2AY ) 

on the upper wall: 

twi,Jmax = (~2L,Jmax-2 - 4(*2)i,Jmax-l ; 
2 AY 

on the left wall: 

t K>l,j = 
4(\k,)2,j- (*2)3,j. 

2AX ) 

on the right wall: 

tV,)hmx,j = 

W2Lm-2,j - 4W2hmax-~,j 

2 AX 

In the above algorithm the error check is made at all grid points (i, j) if &,j stands for 
vorticities and is made at all interior grid points if Fjj stands for the streamfunctions. Solutions 
using the above algorithm were obtained for the range of dust parameters K/M = 5, 10 and 20 
and for permeability values 77 = 0.1, 0.01 and 0.001 and also for Re = 0. The step-size used is 
h = AX = AY = 0.05, which corresponds to a 21 X 21 grid. 

It should be noted that the obtained solutions satisfied both of the continuity equations to 
within a maximum error of lo+. 
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7. Results and discussion 

7. I. Moving wall vorticities 

Table 1 shows the values of dust-phase vorticity at the moving wall of the cavity for different 
characteristic permeability values and different dust parameters. The comparison is also made 
with the dust-phase vorticity when Re = 0. 

For all of the cases considered Table 1 demonstrates that the minimum vorticity occurs at 
X = 0.95 on the moving wall. The maximum value of vorticity occurs at X = 0.1 when Re = 0 
and at X = 0.85 when K/M = 10 and n = 0.1 and 0.01. A further decrease in permeability, when 
K/M = 10, results in shifting the location of the maximum vorticity towards the downstream 
direction on the upper wall, as can be seen when q = 0.001 the maximum vorticity value occurs 
at X = 0.8. The nonuniform increase and decrease in the moving wall dust-phase vorticity occurs 
near the upstream and downstream corners on the moving wall. 

For a given characteristic permeability and different dust parameters Table 1 also shows the 
dust-phase vorticity values at the moving wall for n = 0.01 and K/M = 5, 10 and 20. The 
minimum value of vorticity for all of these cases occurs at X = 0.95. The maximum value occurs 
at X= 0.85 for K/M = 20 and 10 and with a further reduction of K/M the location of 
maximum vorticity occurs further downstream, at X = 0.8 when K/M = 5. 

In Table 2 the fluid-phase vorticity values at the moving wall are illustrated for different 
permeability values and different dust parameters. The data demonstrates the symmetric vortic- 

Table 1 
Dust-phase vorticity at the moving wall for different flow parameters 

X 

0.05 

0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

K/M = 10 T) = 0.01 

Re=O ?j = 0.1 ?J = 0.01 TJ = 0.001 K/M=5 K/M = 20 

6.3368 6.3248 6.2155 5.3178 5.4270 6.2818 

7.9173 7.8940 7.6893 6.3433 6.5766 8.2463 
7.5419 7.5166 7.3026 6.2136 6.5245 7.9190 

6.9369 6.9144 6.7303 6.0281 6.2004 7.2096 
6.3439 6.3259 6.1861 5.8968 6.9331 6.5345 
5.9234 5.9110 5.8227 5.9124 5.7645 6.0242 
5.6430 5.6361 5.5985 6.0108 5.7071 5.6777 
5.5056 5.5042 5.5158 6.1993 5.7382 5.4793 

5.4877 5.4916 5.5478 6.4399 5.8481 5.4124 

5.5848 5.5934 5.6887 6.7301 6.0201 5.4673 

5.7884 5.8008 5.9271 7.0494 6.2449 5.6406 
6.0950 6.1102 6.2572 7.3900 6.5084 5.9336 

6.4956 6.5122 6.6670 7.7336 6.7954 6.3478 

6.9695 6.9857 7.1335 8.0575 7.0791 6.8769 
7.4652 7.4792 7.6046 8.3158 7.3114 7.4861 

7.8648 7.8751 7.9656 8.4168 7.3978 8.0684 

7.9143 7.9202 7.9713 8.1629 7.1492 8.3511 

7.1136 7.1159 7.1353 7.1432 6.2033 7.7354 

4.6771 4.6776 4.6820 4.6423 3.9965 5.1972 
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Table 2 
Fluid-phase vorticity at the moving wall for different flow parameters 

X 

0.05 

0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

K/M = 10 1) = 0.01 

Re=O ?j=O.l T) = 0.01 TJ = 0.001 K/M=5 K/M = 20 

29.921 28.894 28.657 27.077 28.563 28.769 

19.792 19.752 19.408 17.559 19.272 19.557 
14.186 14.147 13.821 12.362 13.658 13.962 
10.863 10.829 10.551 9.509 10.396 10.676 
8.839 8.812 8.590 7.978 8.484 8.694 
7.564 7.543 7.375 7.188 7.297 7.456 
6.750 6.734 6.617 6.899 6.601 6.673 
6.243 6.233 6.167 6.953 6.224 6.195 
5.965 5.960 5.948 7.276 6.087 5.944 
5.876 5.878 5.925 7.814 6.149 5.883 
5.965 5.974 6.089 8.544 6.399 6.003 
6.243 6.260 6.452 9.459 6.844 6.318 
6.750 6.777 7.054 10.574 7.517 6.867 
7.564 7.602 7.970 11.933 8.487 7.732 
8.839 8.888 9.345 13.627 9.886 9.061 

10.863 10.921 11.445 15.834 11.970 11.136 
14.186 14.247 14.785 18.908 15.238 14.488 
19.792 19.843 20.292 23.534 20.610 20.061 
29.921 28.947 29.173 30.772 29.309 29.065 

ity values for Re = 0 and the loss of such symmetry when the dust is introduced. The minimum 
value of fluid-phase vorticity is seen to occur at X = 0.5 for the cases of K/M = 10 and Re = 0, 
17 = 0.1 and n = 0.01. Whe n the permeability is reduced to 0.001 the minimum vorticity occurs at 
X = 0.35. The maximum vorticity values occur at X = 0.95 for all cases considered, except at 
Re = 0 where the maximum occurs at X = 0.05 and X = 0.95. 

When n = 0.01 Table 2 also demonstrates the fluid-phase vorticity at the moving wall for 
different K/M and shows that while minimum vorticity occurs at X = 0.5 when 17 = 0.01 and 
K/M = 10 and K/M = 20, this minimum occurs at X = 0.45 when K/M = 5. By contrast with 
the dust-phase vorticity at the moving wall, fluid-phase vorticity varies more uniformly. This 
behaviour indicates that the dust-phase does not have much influence on the fluid-phase vorticity 
at the moving wall for the type of the porous medium considered. 

7.2. Velocity profiles 

As explained earlier, the velocity boundary condition employed for the fluid-phase is that of 
no-slip at all solid walls but the condition of vanishing normal components of velocity at all four 
walls was employed for the dust-phase. This latter condition is a consequence of assuming a 
constant number density for the dust-phase and thus the dust particles are assumed to reflect off 
the walls. Of course, this leaves the tangential components of dust-phase velocity to be- 
determined. 

In Fig. 1 the dust-phase tangential velocity component at the moving wall is illustrated for 
different dust parameters and permeability n = 0.01. The figure shows that the velocity curves 
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Fig. 1. Q-velocity component along the moving wall for different K/M, q = 0.01. 
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Fig. 2. &-velocity component at the moving wall for different permeabilities, K/M = 10. 
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Fig. 3. Q-velocity component along the vertical centreline for different permeabilities, K/M = 10. 

are close to each other in the downstream half of the moving wall while the velocity increases, in 
absolute value, with increasing K/M in the upstream half of the moving wall. For K/M = 10 
and different permeability values Fig. 2 illustrates the dust-phase tangential component of 
velocity at the moving wall and demonstrates the reduction of this component with decreasing 
permeability. 

In Fig. 3 the dust-phase horizontal component of velocity at the vertical centreline of the 
cavity is illustrated for K/M = 10 and different permeability values and it shows that the profiles 
are very close to each other when Re = 0 and n = 0.1. When q = 0.001, a difference in the 
velocity occurs and the dust-phase horizontal component of velocity is slightly larger than that 
when Re = 0 in the interval 0 -C Y < 0.45 and is smaller in the interval 0.45 < Y G 1. 

The fluid-phase horizontal component of velocity along the vertical centreline of the cavity is 
illustrated in Fig. 4 which demonstrates the velocity for n = 0.001 when K/M = 10 and 
compares it with the velocity for q = 0.1. The figure shows that such velocity is slower in the first 
case than in the second in the interval 0.45 < Y < 1 and is slightly faster in the interval 
0 < Y < 0.45. 

Although the effect of dust on the fluid-phase horizontal component of velocity along the 
vertical centreline is hardly noticible, the dust effect is more accentuated when the vertical 
fluid-phase velocity component along the horizontal centreline of the cavity is considered. Figure 
5 illustrates this velocity component for q = 0.001 and K/M = 10, 77 = 0.01 and K/M = 5 and 
20 and demonstrates that when 17 = 0.001 and K/M = 10 this velocity component is larger, in 
absolute value, than that for the other cases in the interval 0 < X c 0.3 and is smaller, in absolute 
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Fig. 5. VI-velocity component along the horizontal centreline for different permeabilities. 
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value, than that for the other cases in the interval 0.3 < X < 1. Figure 5 also shows the effect of 
increasing and decreasing K/M, for 17 = 0.01, on the vertical velocity component. 

7.3. Vortex centre location 

Table 3 illustrates the magnitudes of the largest fluid-phase streamfunction for all of the cases 
considered. It also gives the comparison with the dust-phase streamfunction magnitude at the 
same locations. When K/M = 10 the streamfunctions of highest values are largest for Re = 0. As 
permeability is decreased, the streamfunction values decrease at the fluid-phase vortex centres. 
The location of each of these vortex centres is at (X, Y) = (0.5, 0.75) except in the case of 
q = 0.001 when the vortex centre occurs at (X, Y) = (0.4, 0.75). For 17 = 0.01 and different 
K/M, Table 3 demonstrates the increase in the vortex centre streamfunction values, for both of 
the phases present, with increasing K/M. For 17 = 0.01, the location of the vortex centre is, once 
again, at (X, Y) = (0.5, 0.75) except when K/M = 5, when the centre is at (X, Y) = (0.45, 0.75). 

7.4. Flow development 

The flow development for K/M = 10 and different permeability values is shown in Fig. 6. 
This figure illustrates the fluid-phase streamlines !Pi = 0.09, 0.04 and 0.01 for K/M = 10 and 
77 = 0.1 and 0.001. 

When q = 0.1 the streamlines are very close to the streamlines at Re = 0 and thus are not 
shown here. For a given K/M the streamline !Pi = 0.09 spans a smaller area when the 
permeability is reduced from 0.1 to 0.001. A shift in this streamline, towards the downstream of 
the upper part of the cavity, also takes place. Such a shift is also noted for the streamlines 
!Pr = 0.04 and 0.01, except that it is less severe than the shift in qr = 0.09. The area spanned by 
the streamline ?Pi = 0.04 is almost the same for both permeabilities considered. 

For a given permeability and different dust parameters the streamlines remain close to each 
other, indicating the minimal effect that the dust-phase has on these streamlines. This fact was 
also seen when discussing the velocity profiles. 

Table 3 
Streamfunctions at the fluid-phase vortex centres 

K/M 5 

Re=O 91 
‘k2 

q = 0.1 *I 
% 

1) = 0.01 *I 0.097183 
4 0.096284 

1) = 0.001 *I 
\k, 

10 20 

0.099235 
0.098674 

0.099206 
0.098622 

0.098545 0.099073 
0.097743 0.098872 

0.094327 
0.094033 
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Fig. 6. Primary and secondary streamlines. 

7.5. Secondary eddies 

For the case of clean fluid flow in a porous rectangular cavity, secondary corner eddies 
developed for all values of permeability [3]. The secondary eddy with largest streamfunction 
value occurred when q = 1 with fluid streamfunction value of - 0.12 . 10e4. A reduction in the 
permeability resulted in a reduction of the streamfunction value of the secondary eddy. For 
q = 0.5 it took the value - 0.11 * lop4 while for q = 0.1 the maximum streamfunction of the 
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secondary eddy was found to be - 0.67 * 10e5. These values were the same for both the upstream 
and downstream eddies and both of these eddies retained the same dimensions. 

As dust is introduced to the fluid it is found that when K/M = 10 the secondary eddies have 
the same dimensions both upstream and downstream for both of the phases present, provided 
that q 2 0.01. The largest streamfunction values are, nevertheless, different for each phase. For 
Re = 0 the largest fluid-phase streamfunction value in the secondary eddy is ?Pt = - 0.12 - 10P4, 
both upstream and downstream, and this value is the same for n = 0.1 and 0.01. The dust-phase 
streamfunction has the value !Pz = -0.16 . lop4 in the downstream corner, while it has the value 
- 0.18 . 10e4 in the upstream corner, when Re = 0, and these values remain the same for -q = 0.1 
and 0.01. 

When K/M is increased from 10 to 20 it is noticed that the fluid-phase secondary eddies have 
the same values as those when Re = 0 but the dust-phase streamfunction values in the secondary 
eddies are different, the upstream one taking the value - 0.14 - 1O-4 while the downstream one 
has the value -0.13. 10P4. 

For the cases of K/M = 5 and q = 0.01, and K/M = 10 and q = 0.001, Fig. 6 also demon- 
strates the relative sizes of the secondary eddies of the two phases involved. 

References 

[l] R.M. Barron and M.H. Hamdan, The structure of separated dusty gas flow at low and moderate Re, Internat. J. 
Engrg. Sci. 27 (3) (1989) 261-275. 

[2] M.H. Hamdan and R.M. Barron, Shear-driven flow in a porous cavity, J. Flui& Engrg. ASME Trans. 111 (1989) 
433-438. 

[3] J. Rubinstein, Effective equations for flow in porous media with a large number of scales, J. Fluid Mech. 170 
(1986) 379-383. 

[4] P.G. Saffman, On the stability of laminar flow of a dusty gas, J. Fluid Mech. 13 (1) (1962) 120-128. 
[5] J.T. Semrau, Analysis of two phase flow through low-permeability media, Ph.D. Thesis, School of Advanced 

Studies of Illinois Institute of Technology, Chicago, IL, 1986. 
[6] F.W. Wiegel, FIuid Flow Through Porous MacromolecuIar Systems, Lecture Notes in Phys. 121 (Springer, Berlin, 

1980). 
[7] C.H. Yih, Dynamics of Nonhomogeneous Fluids (Macmillan, New York, 1965). 


