A Generalization of Ehrenfeucht's Irreducibility Criterion

G. Angermüller

Mathematisches Institut der Universität Erlangen-Nürnberg, Bismarckstr. 1b, D-8520 Erlangen, West Germany

Communicated by H. L. Montgomery

Received June 1, 1985

For polynomials of the form \(Q = P(f(X), g(Y)) \), where \(P \) is a generalized difference polynomial and \(f, g \) are polynomials in several variables, we prove a sufficient criterion for irreducibility. Moreover, we show that (in characteristic 0) any two non-constant factors of \(Q \) cannot generate the unit ideal in the polynomial ring with variables \(X, Y \).

Let \(k \) be a field of characteristic \(p \geq 0 \) and \(X = X_1, \ldots, X_m, Y = Y_1, \ldots, Y_n \) be independent systems of variables over \(k \). Recall [1, 4] that a generalized difference polynomial of type \((d, e)\) is a polynomial

\[
P(U, V) = cU^e + \sum_{i=1}^{e} P_i(V) U^{e-i}
\]

in two variables \(U, V \) such that \(e > 0 \), \(c \) is a non-zero constant, \(d = \deg P_e(V) > 0 \), and \(\deg P_i(V) < di/e \) for \(0 < i < e \). The aim of this note is to prove the following theorem and its corollaries:

Theorem. Let \(P(U, V) \) be a generalized difference polynomial of type \((d, e)\) and \(f(X) \in k[X], g(Y) \in k[Y] \); further, let \(q(X, Y) = P(f(X), g(Y)) \). Then we have:

(a) If \(p \mid de(deg f)(deg g) \) and \(r, s \in k[X, Y] \) are non-constant factors of \(q \), then \((r, s) \neq (1) \) in \(k[X, Y] \). In particular, if \(k \) is algebraically closed, \(r \) and \(s \) have a common zero.

(b) If \(\gcd(e \cdot \deg f, d \cdot \deg g) = 1 \) then \(q \) is irreducible.

Part (a) generalizes the main result from [1, 4], whereas part (b) extends Ehrenfeucht's criterion [2, 3, 6].

Let us state two important special cases in the corollaries.

Corollary 1. Let \(f(X) \in k[X], g(Y) \in k[Y] \). Then we have:

80
(a) If \(p \nmid (\deg f)(\deg g) \) and \(r, s \in k[X, Y] \) are non-constant factors of \(f(X) + g(Y) \) then \((r, s) \neq (1)\) in \(k[X, Y] \). In particular, if \(k \) is algebraically closed, \(r \) and \(s \) have a common zero.

(b) If \(\gcd(\deg f, \deg g) = 1 \) then \(f(X) + g(Y) \) is irreducible.

To obtain a proof of corollary 1, we only have to apply the theorem with \(P(U, V) = U + V \).

Corollary 2. Let \(P(U, V) \) be a generalized difference polynomial of type \((d, e)\). Then we have:

(a) If \(p \nmid de \) and \(r, s \) are non-constant factors of \(P \) then \((r, s) \neq (1)\) in \(k[U, V] \). In particular, if \(k \) is algebraically closed, \(r \) and \(s \) have a common zero.

(b) If \(\gcd (d, e) = 1 \) then \(P \) is irreducible.

This is the special case \(f = U, g = V \) of the theorem.

Remarks. (1) Let \(p > 0 \). The identity

\[
U + U^p + V + V^p = (U + V)(1 + (U + V)^{p-1})
\]

shows that in part (a) of the above corollaries the assumption on \(p \) cannot be omitted.

(2) Let \(k \) be an algebraically closed field. Under the assumptions of part (a) of the Theorem it follows that the zero-set of \(q \) is connected in the Zariski topology. If more specially, \(k \) is the complex number field, the zero-set is connected in the usual topology too; in fact, any Zariski-closed irreducible set is connected in the usual topology and trivially any union of pairwise intersecting connected sets is connected.

To prove the theorem, we shall use the following notation: For \(0 \neq f \in k[X] \) let \(f = f_0 + \cdots + f_d \) with \(f_d \neq 0 \) be the decomposition of \(f \) in homogeneous polynomials \(f_i \) of degree \(i \); \(f_d \) is called the degree form of \(f \). We call \(f \) squarefree, if no square of a non-constant polynomial divides \(f \).

We shall see that part (a) of the theorem is a special case of the following

Proposition. Let \(f \in k[X] \) be a polynomial with squarefree degree form. If \(r, s \) are non-constant factors of \(f \), then \((r, s) \neq 1\) in \(k[X] \); in particular, if \(k \) is algebraically closed, \(r \) and \(s \) have a common zero.

Proof. Observe that the additional remark is an immediate consequence of Hilbert's Nullstellsatz.
Replacing \(k \) by a simple transcendental extension of \(k \) we can assume that \(k \) has infinitely many elements. So we can find variables

\[
U_1 = X_1, \quad U_2 = X_2 + c_2 X_1, \quad ..., \quad U_m = X_m + c_m X_1
\]

with \(c_2, ..., c_m \in k \) such that \(f \) is unitary in \(U = U_1 \) and \(\deg_U f = \deg f \).

Now assume \((r, s) = (1)\) and choose \(a, b \in k[X] \) such that

\[
ar + bs = 1.
\]

To obtain a contradiction, we proceed as in the proof of Theorem (1) in [4]. Let \(R \) (resp. \(F \)) be the degree form of \(r \) (resp. \(f \)). From \(r \mid f \) we conclude \(R \mid F \) and so we see that \(r \) is a unitary polynomial in \(U \) such that

\[
deg r = \deg R = \deg_U R = \deg_U r.
\]

Applying the Euclidean algorithm we obtain \(c, d \in k[X] \) such that

\[
b = cr + d, \quad \deg_U d < \deg_U r.
\]

Inserting (3) in (1) we obtain the relation

\[
(a + cs)r + ds = 1.
\]

Now let \(D \) (resp. \(S \)) be the degree form of \(d \) (resp. \(s \)). By (4) we have \(d \neq 0 \) and \(R \mid DS \). Further, by (2), (3) we obtain

\[
\deg_U D \leq \deg_U d < \deg_U r = \deg_U R
\]

and thus a non-constant factor of \(R \) has to divide \(S \). This implies that \(F \) is not squarefree, a contradiction. So our hypothesis is false, i.e., \((r, s) \neq (1)\).

Corollary. Let \(f \in k[X] \) be a polynomial with squarefree degree form and such that \((f, \partial f/\partial X_1, ..., \partial f/\partial X_m) = (1)\). Then \(f \) is absolutely irreducible.

Proof. Obviously we can assume \(k \) algebraically closed. If \(f \) could be written as \(f = rs \) with non-constant \(r, s \) there would be a common zero of \(r \) and \(s \) by the proposition; but such a zero is a common zero of \(f, \partial f/\partial X_1, ..., \partial f/\partial X_m \), contradicting the assumption. This shows that \(f \) is irreducible.

Proof of the Theorem. (a) As in the proof of the proposition we can assume that \(f \) (resp. \(g \)) is unitary in \(U = X_1 \) (resp. \(V = Y_1 \)) and \(u = \deg f = \deg_U f, \quad v = \deg g = \deg_V g \).

Now assume \((r, s) = (1)\). Then

\[
r' = r(X_1^{d_0}, X_2, ..., X_m, Y_1^{e_0}, Y_2, ..., Y_n)
\]
and
\[s' = s(X_1^{du}, X_2, ..., X_m, Y_1^{eu}, Y_2, ..., Y_n) \]
are non-constant factors of
\[q' = P(f(X_1^{du}, X_2, ..., X_m), g(Y_1^{eu}, Y_2, ..., Y_n) \]
such that \((r', s') = (1)\). If \(du = 1\) or \(eu = 1\), \(q\) is linear and unitary in \(Y_1\) or in \(X_1\), whence the assertion follows trivially. Otherwise, the degree form of \(q'\) is
\[aX_1^{du} + bY_1^{eu} \quad \text{with} \quad a, b \in k^\times, \]
which is squarefree, as \(p \nmid deuv\). But this contradicts the proposition and proves \((r, s) \neq (1)\).

(b) Assume that \(P(f(X), g(Y))\) is reducible. Then by \([5]\) there are polynomials \(F \in k[U] \), \(G \in k[V] \), \(r \in k[X] \), \(s \in k[Y] \) such that \(f(X) = F(r(X)) \), \(g(Y) = G(s(Y))\) and \(P(F(U), G(V))\) is reducible. From \(\deg F \mid \deg f\) and \(\deg G \mid \deg g\) we see that \(\gcd(e \cdot \deg F, d \cdot \deg G) = 1\); moreover, by \([1]\), \(P(F(U), G(V))\) is a generalized difference polynomial of type \((e \cdot \deg F, d \cdot \deg G)\). So it suffices to prove the assertion of part (b) of Corollary 2. With the notation used there assume that there are non-constant polynomials \(q_1, q_2\) such that
\[P(U, V) = q_1(U, V) q_2(U, V). \]
This implies
\[P(U^d, V^e) = q_1(U^d, V^e) q_2(U^d, V^e). \]
Now let \(Q_i\) be the degree form of \(q_i(U^d, V^e)\) \((i = 1, 2)\). Looking at the degree form in (2), we obtain an equation
\[aU^{de} + bV^{de} = Q_1 Q_2 \quad \text{with} \quad a, b \in k^\times. \]
If \(e = 1\), \(P\) is linear in \(U\); i.e., \(P\) is irreducible. Now let \(e > 1\). Then by (3), there is a monomial of the form \(U^{du}, 0 < u < e\), occurring in \(Q_1\). If \(U^{di} V^{ej}\), \(i, j \geq 0\), is any monomial which occurs in \(Q_1\), we have
\[di + ej = du \quad \text{and} \quad i \leq u < e. \]
As \(\gcd(d, e) = 1\), (4) implies \(u = i\) and \(j = 0\), i.e., \(Q_1 = cU^{du}\) for some \(c \in k^\times\). This is a contradiction to (3), which finishes the proof.
REFERENCES

