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Abstract

When an advantageous mutation occurs in a population, the favorable allele may spread to

the entire population in a short time, an event known as a selective sweep. As a result, when we

sample n individuals from a population and trace their ancestral lines backwards in time, many

lineages may coalesce almost instantaneously at the time of a selective sweep. We show that as

the population size goes to infinity, this process converges to a coalescent process called a

coalescent with multiple collisions. A better approximation for finite populations can be

obtained using a coalescent with simultaneous multiple collisions. We also show how these

coalescent approximations can be used to get insight into how beneficial mutations affect the

behavior of statistics that have been used to detect departures from the usual Kingman’s

coalescent.
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1. Introduction

Our goal in this paper is to describe the coalescent processes that arise when we
consider the genealogy of a population that is affected by repeated beneficial
mutations. The starting point for this analysis will be the continuous-time
population model introduced by Moran [22]. In this model, the population size is
fixed at 2N. Each individual independently lives for a time that is exponentially
distributed with mean 1 and then is replaced by a new individual. The parent of the
new individual is chosen at random from the 2N individuals, including the one being
replaced. Note that we can think of the population as consisting of 2N chromosomes
of N diploid individuals, so each member of the population has just one parent.

Suppose we sample n individuals at random from this population at time zero. To
describe the genealogy of the sample, we will define the ancestral process, which will
be a continuous-time Markov process ðCN ðtÞ; tX0Þ whose state space is the set Pn of
partitions of f1; . . . ; ng. The ancestral process describes the coalescence of lineages as
we follow the ancestral lines of the sampled individuals backwards in time. More
precisely, CN ð0Þ is the partition of f1; . . . ; ng into n singletons, and CN ðtÞ is the
partition of f1; . . . ; ng such that i and j are in the same block of CN ðtÞ if and only if
the ith and jth individuals in the sample have the same ancestor at time �Nt. It is
well-known that the process ðCNðtÞ; tX0Þ is Kingman’s coalescent, a coalescent
process introduced by Kingman [17]. Kingman’s coalescent is a Pn-valued Markov
process that starts from the partition of f1; . . . ; ng into singletons. All transitions
involve exactly two blocks of the partition merging together, and each such
transition occurs at rate one.

Within the last decade, progress has been made on describing the genealogy of
populations in models that allow for natural selection. Krone and Neuhauser [19]
and Neuhauser and Krone [23] studied a model in which each individual can be of
type 1 or 2. An individual of type i produces offspring at rate li, with l24l1 so that
type 2 is advantageous. Each new offspring replaces a randomly chosen individual
from the population, and is the same type as its parent with probability 1� uN and
the opposite type with probability uN . Under certain assumptions, they show that the
genealogy of a sample from the population can be described using what they call an
ancestral selection graph. Additional work of Donnelly and Kurtz [7] and Barton
et al. [3] has incorporated recombination as well as selection into the model.

The ancestral selection graph arises in the limit as N ! 1 in the case of weak
selection, where the selective advantage l2=l1 � 1 and the mutation rates uN are
Oð1=NÞ. Then, as N ! 1 the fraction of individuals with the favored allele can be
approximated by a diffusion process. In this paper, we consider strong selection,
where the selective advantage is Oð1Þ. With strong selection, when a beneficial
mutation occurs, there is a positive probability that the beneficial allele will spread to
the entire population, an event known as a selective sweep.

At the end of a selective sweep, the entire population has the favorable allele, and
every member of the population will trace that favorable allele back to the individual
that had the beneficial mutation that caused the selective sweep. However, the
genealogy becomes more complicated when we consider recombination. Diploid
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individuals usually do not inherit an identical copy of one of their parent’s
chromosomes. Instead, the inherited chromosome consists of pieces of each of a
parent’s two chromosomes. Since a chromosome is coming from two places, we need
to consider the genealogy not of an entire chromosome but of a particular site of
interest on the chromosome. When a selective sweep is caused by a beneficial
mutation at a site other than the site of interest, many individuals may trace their
gene at the site of interest back to the individual that had the beneficial mutation at
the beginning of the selective sweep, while others may trace their gene at the site of
interest to a different ancestor because of recombination between the two sites on the
chromosome. This effect was first studied by Maynard Smith and Haigh [20], who
called it the ‘‘hitchhiking effect.’’

As we will show, the typical duration of a selective sweep is only OðlogNÞ.
Therefore, when we speed up time by a factor of N to define the ancestral process,
the selective sweep takes place almost instantaneously. Consequently, if we sample n

individuals some time after a selective sweep and define the ancestral process as
before, the ancestral process behaves like Kingman’s coalescent until we get back to
the time of a selective sweep. At that time, many lineages may coalesce because they
get traced back to the individual with the mutation that caused the selective sweep.
This possibility was observed by Gillespie [13], who referred to the resulting
coalescent process as the ‘‘pseudohitchhiking model.’’ We will show that if selective
sweeps happen repeatedly throughout the history of a population at times of a
Poisson process, as proposed by Gillespie [13], then under suitable assumptions the
ancestral processes will converge as N ! 1 to a coalescent with multiple collisions,
which is a Pn-valued Markov process in which many blocks of the partition can
merge at once into a single block. These coalescent processes were introduced by
Pitman [24] and Sagitov [26].

While coalescents with multiple collisions are the limiting coalescent processes
as N ! 1, an improved approximation for finite N can be obtained using a
coalescent with simultaneous multiple collisions. Coalescents with simultaneous
multiple collisions, which were introduced by Schweinsberg [28] and Möhle and
Sagitov [21], are coalescent processes in which many blocks can merge at once into a
single block, and many such mergers can occur simultaneously. They provide a
better approximation than coalescents with multiple collisions in this context
because, as noted by Barton [2], Durrett and Schweinsberg [9], and Schweinsberg
and Durrett [30], multiple groups of lineages can coalesce at the time of a selective
sweep.

Coalescents with multiple or simultaneous multiple collisions arise as limits of
ancestral processes in populations that occasionally have very large families because
ancestral lines that go back to an individual with many offspring will coalesce at the
same time. Coalescents with multiple collisions arise when a single large family is
possible in a given generation, while coalescents with simultaneous multiple
collisions arise when one generation can contain many large families. For more
details, see Sagitov [26,27], Möhle and Sagitov [21], and Schweinsberg [29]. The
results in this paper provide a different biological application of these coalescent
processes.
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The rest of this paper is organized as follows. In Section 2, we describe our model
for how the population evolves when there can be beneficial mutations. We state our
main result, which is that the genealogy of this process converges to a coalescent with
multiple collisions. In Section 3, we present the improved approximation involving a
coalescent with simultaneous multiple collisions. The next two sections are devoted
to applications of these results. In Section 4, we discuss how multiple mergers affect
the number of segregating sites and pairwise differences in a sample of DNA. These
quantities are used in Tajima’s D-statistic (see [33]), which can be used to detect
departures from the standard Kingman’s coalescent. In Section 5 we discuss how
multiple mergers affect the number of mutations that appear on just a single
individual in the sample, which is relevant to the test proposed by Fu and Li [11] for
detecting departures from Kingman’s coalescent. Our results suggest that Fu and
Li’s test should have less power to detect selective sweeps, at least in large samples,
than Tajima’s D-statistic. Finally, in Section 6, we prove the convergence and
approximation theorems stated in Sections 2 and 3.
2. Convergence to a coalescent with multiple collisions

In this section, we give a precise description of our model of a population that
experiences beneficial mutations, and we state our main convergence theorem. We
describe what happens following a single beneficial mutation in Section 2.1, and we
consider recurrent beneficial mutations in Section 2.2. Then in Section 2.3, we state
the convergence result and give some examples.

2.1. The effect of a single beneficial mutation

In this subsection we describe how the population evolves after one of the 2N

individuals experiences a beneficial mutation. We will denote the new favorable allele
by B and the other allele by b. We assume the relative fitnesses of the two alleles are 1
and 1� s, so the B alleles will tend to survive longer. Immediately after the mutation,
one individual has the B allele and 2N � 1 have the b allele. Kaplan et al. [14] and
Stephan et al. [32] proposed modeling the fraction of individuals pðtÞ with the B allele
at time t by using the logistic differential equation

dp

dt
¼ spð1� pÞ.

This approach has been popular in simulation studies. However, Durrett and
Schweinsberg [9] showed that this approximation is not very accurate. Consequently,
we will consider instead a modification to the Moran model that was studied by
Durrett and Schweinsberg [9] and Schweinsberg and Durrett [30].

At one site, each chromosome has a B or b allele, but we will be interested in the
genealogy at another neutral site at which all alleles have the same fitness. As in the
Moran model, each individual survives for a time that is exponentially distributed
with mean 1, and then a replacement is proposed in which the parent of the proposed
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new individual is chosen at random from the 2N members of the population.
However, to account for natural selection, whenever a replacement of a B

chromosome with a b chromosome is proposed, the change is rejected with
probability s. Also, to incorporate recombination into the model, we say that when a
new individual is born, it inherits its alleles at both sites from the same parent with
probability 1� r. However, with probability r, there is recombination between the
two sites, so the new individual inherits its allele at the neutral site from its parent’s
other chromosome. Because we are treating an individual’s two chromosomes as two
separate members of the population, we model this by saying that, with probability r,
the new individual inherits the two alleles from two ancestors chosen independently
at random from the population.

Suppose the beneficial mutation appears on one chromosome at time 0, and let
X ðtÞ be the number of chromosomes with the favorable allele at time t. Let t ¼
infft : X ðtÞ 2 f0; 2Ngg be the time at which either the B or b allele disappears from
the population. Suppose we take a random sample of n individuals from the
population at time t. Let Y be the partition of f1; . . . ; ng such that i and j are in the
same block of Y if and only if the ith and jth individuals in the sample have the same
ancestor at time zero when we follow the ancestral lines associated with the neutral
site of interest. The partitionY then describes how the beneficial mutation affects the
genealogy of the sample. We have the following result concerning the distribution
of Y. Here Qp;n, for p 2 ½0; 1�, is the distribution of a random partition P obtained
as follows. First, define a sequence of independent random variables ðxiÞ

n
i¼1 such

that Pðxi ¼ 1Þ ¼ p and Pðxi ¼ 0Þ ¼ 1� p for i ¼ 1; . . . ; n. Then define P such that
one block of P consists of fipn : xi ¼ 1g and the remaining blocks of P
are singletons.

Proposition 2.1. Fix n 2 N, and fix s 2 ð0; 1Þ. Assume there is a constant C0 such that

rpC0=ðlogNÞ for all N. Let a ¼ r logð2NÞ=s, and let p ¼ e�a.
(1)
 There exists a positive constant C, depending continuously on s and a but not

depending on N, such that jPðY ¼ pjX ðtÞ ¼ 2NÞ � Qp;nðpÞjpC=ðlogNÞ for all

p 2 Pn.

(2)
 Let k0 be the partition of f1; . . . ; ng into singletons. There exists a constant C,

depending continuously on s and a but not depending on N, such that

PðYak0 and X ðtÞ ¼ 0ÞpCN�1=2.
Note that in this proposition, the selective advantage s is assumed to be fixed, but
the recombination probability r depends on N. Part 1 of the proposition, which is a
restatement of Theorem 1.1 of Schweinsberg and Durrett [30], implies that as
N ! 1, the distribution of Y, conditional on the event that a selective sweep
occurs, converges to Qp;n, where p represents the approximate fraction of lineages
that coalesce at the time of the selective sweep. Part 2 of the proposition, which we
prove in Section 6, shows that lineages typically do not coalesce when the favorable
B allele dies out. The probability that a selective sweep occurs, and therefore Part 1
of the proposition applies, is s=ð1� ð1� sÞ2N

Þ (see [8] or [30]).
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2.2. A model with recurrent beneficial mutations

To model a population in which beneficial mutations can occur repeatedly, we
assume that beneficial mutations at different points on the chromosome occur at
times of a Poisson process. The selective advantage that these mutations provide and
the rate of recombination between the site of interest and the site of the mutation will
be random. When there is a beneficial mutation in the population, the population
will evolve as described in the previous subsection. Between these times, the
population will follow the standard Moran model.

To be more precise, we will consider the chromosome to be the line segment
½�L;L�. Our goal will be to describe the genealogy of the site 0. For each N, the
beneficial mutations will be governed by a Poisson process KN on R� ½�L;L��
½0; 1�. If ðt;x; sÞ is a point in KN , then at time t, a mutation, which provides a selective
advantage of s, will appear at location x on one of the 2N chromosomes. The
intensity measure of KN will be l� mN , where l denotes Lebesgue measure on R and
mN is a finite measure on ½�L;L� � ½0; 1� which governs the rates of beneficial
mutations. The recombination probabilities will be determined by a function
rN : ½�L;L� ! ½0; 1�. We assume that rNð0Þ ¼ 0 and rN is nonincreasing on ½�L; 0�
and nondecreasing on ½0;L�. Beginning at time t, the population will evolve
according to the model described in the previous subsection of a population with a
beneficial allele having selective advantage s and recombination probability rN ðxÞ.
We let tðtÞ denote the first time that the beneficial mutation that appears at time t

either disappears from the population or is present on all 2N chromosomes.
Let TN ¼ ft : ðt;x; sÞ is a point in KN for some x and sg be the times at which

beneficial mutations are proposed. Note, however, that we cannot define the
evolution of the population as explained above if, for some t1; t2 2 TN , the intervals
½t1; tðt1Þ� and ½t2; tðt2Þ� overlap. There has been some work in the biology literature on
the question of how a selective sweep is affected by another selective sweep
happening at the same time (see, for example, [1,12,15]). However, as we will show,
in our model this overlap occurs too infrequently to have any affect on our results, so
we avoid the issue of defining the population during periods of overlap by allowing a
new beneficial mutation to occur only when there is no other beneficial mutation
currently in the population. That is, beneficial mutations will occur at the times in
T0

N ¼ ft 2 TN : tðuÞot for all u 2 TN such that uotg. Let

IN ¼
[

t2T0
N

½t; tðtÞ�.

A beneficial mutation will be present in the population at time u if and only if
u 2 IN . For the intervals in IN , the evolution of the population was defined in
Section 2.1. For the times in RnIN , we will say that the population evolves
according to the standard Moran model so that the evolution of the population is
well-defined for all of R.

To define the ancestral process CN ¼ ðCN ðtÞ; tX0Þ, we sample n of the 2N

individuals at random from the population at time zero. We then define CN ðtÞ to be
the partition of f1; . . . ; ng such that i and j are in the same block of CNðtÞ if and only
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if the ith and jth individuals in the sample got their allele at location 0 on the
chromosome from the same ancestor at time �Nt. Note that we are again speeding
up time by a factor of N so that, if there are no beneficial mutations (i.e. if mN is the
zero measure), the ancestral process CN ¼ ðCN ðtÞ; tX0Þ is Kingman’s coalescent.
When we do have beneficial mutations, the ancestral processes will converge as
N ! 1, under suitable conditions, to a coalescent with multiple collisions.

2.3. The main convergence theorem and examples

Pitman [24] introduced coalescents with multiple collisions, in which many blocks
of the partition can merge into one. These coalescent processes are in one-to-one
correspondence with finite measures L on ½0; 1�, and the coalescent process
associated with a particular measure L is called the L-coalescent. We will consider
here only Pn-valued coalescents because they are what we will need to approximate
the genealogy of a sample of size n. However, the constructions can be extended,
using Kolmogorov’s Extension Theorem, to yield coalescent processes that take their
values in the set of partitions of N ¼ f1; 2; . . .g.

Suppose ðPnðtÞ; tX0Þ is the Pn-valued L-coalescent. Then Pnð0Þ is the partition of
f1; . . . ; ng into singletons. If PnðtÞ has b blocks, then every possible transition
involves merging k of the blocks into one, where 2pkpb. Denoting the rate of this
transition by lb;k, we have

lb;k ¼

Z 1

0

xk�2ð1� xÞb�kLðdxÞ. (2.1)

If L ¼ d0, where d0 denotes a unit mass at zero, then every transition that involves
two blocks merging into one happens at rate one, and no other transitions are
possible. Thus, the d0-coalescent is Kingman’s coalescent.

The theorem below states that when we do have beneficial mutations, the ancestral
processes converge as N ! 1, under suitable conditions, to a coalescent with
multiple collisions. The multiple mergers happen at times of selective sweeps. Note
that the convergence is in the sense of finite-dimensional distributions. Convergence
in the stronger Skorohod topology does not hold because, during the short time
intervals when selective sweeps are taking place, CN may undergo multiple
transitions.

Theorem 2.2. Let m be a finite measure on ½�L;L� � ½0; 1�, and let r : ½�L;L� ! ½0;1Þ

be a bounded continuous function such that rð0Þ ¼ 0 and r is nonincreasing on ½�L; 0�
and nondecreasing on ½0;L�. Suppose that, as N ! 1, the measures NmN converge

weakly to m and the functions ðlog 2NÞrN converge uniformly to r. Let Z be the measure

on ð0; 1� such that

Zð½y; 1�Þ ¼
Z L

�L

Z 1

0

s1fe�rðxÞ=sXygmðdx � dsÞ

for all y 2 ð0; 1�. Let L be the measure on ½0; 1� defined by L ¼ d0 þ L0, where

L0ðdxÞ ¼ x2ZðdxÞ. Let P ¼ ðPðtÞ; tX0Þ be the Pn-valued L-coalescent. Then, as
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N ! 1, the finite-dimensional distributions of CN converge to the finite-dimensional

distributions of P.

Note that in Theorem 2.2, the recombination probability is Oð1=ðlogNÞÞ. The
function r is assumed to be monotone on ½�L; 0� and ½0;L� because the greater the
distance between 0 and the site of the mutation, the greater the likelihood of
recombination between the two sites. Also, the rate of beneficial mutations is
Oð1=NÞ, so that the multiple mergers caused by selective sweeps and the ordinary
mergers of two lineages at a time are happening on the same time scale. If the rate of
selective sweeps were oð1=NÞ, then the multiple mergers would disappear in the limit.
If selective sweeps occurred on a faster time scale than Oð1=NÞ, then the multiple
mergers would dominate for large N and the limiting coalescent would have no d0
component. Gillespie [13] considers this possibility and proposes that it may explain
why observed genetic variation does not appear to be as sensitive to population size
as Kingman’s coalescent model predicts. However, in this paper we focus on the case
in which both types of mergers happen on the same time scale.

We now derive the limiting coalescent with multiple collisions in two natural
examples.

Example 2.3. Consider the case in which we are concerned only with mutations at a
single site, all of which have the same selective advantage. Fix a40, and let mN ¼

aN�1dðz;sÞ for some s 2 ð0; 1� and z 2 ½�L;L�. This means that beneficial mutations
that provide selective advantage s appear on the chromosome at site z at times of a
Poisson process. The measures NmN converge to m ¼ adðz;sÞ. Assume that the
recombination functions rN are defined such that the sequence ðlog 2NÞrN converges
uniformly to r, and let b ¼ rðzÞ. Then, for all y 2 ð0; 1�, we have

Zð½y; 1�Þ ¼
Z L

�L

Z 1

0

u1fe�rðxÞ=uXygmðdx � duÞ ¼ sa1fe�b=sXyg.

Therefore, Z consists of a mass sa at p ¼ e�b=s. It follows from Theorem 2.2 that the
limiting coalescent process is the L-coalescent, where L ¼ d0 þ sap2dp. Thus, in
addition to the mergers involving just two blocks, we have coalescence events at
times of a Poisson process in which we flip p-coins for each lineage and merge the
lineages whose coins come up heads.

Example 2.4. It is also natural to consider the case in which mutations occur
uniformly along the chromosome. For simplicity, we will assume that the selective
advantage s is fixed. Let l denote Lebesgue measure on ½�L;L�. Suppose
mN ¼ N�1ðal� dsÞ, so the measures NmN converge to m ¼ al� ds. To model
recombination occurring uniformly along the chromosome, we assume that the
functions ðlog 2NÞrN converge uniformly to the function rðxÞ ¼ bjxj, so the
probability of recombination is proportional to the distance between the two sites
on the chromosome. For all y 2 ð0; 1�, we have

Zð½y; 1�Þ ¼ as

Z L

�L

1fe�rðxÞ=sXyg dx ¼ as

Z L

�L

1fe�bjxj=sXyg dx.
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Since e�bjxj=s
Xy if and only if jxjp� ðs=bÞðlog yÞ, we have

Zð½y; 1�Þ ¼ min
�2as2 log y

b
; 2asL

� �
.

Therefore, for yXe�bL=s, we have

d

dy
Zð½y; 1�Þ ¼ �

2as2

by
.

Let c ¼ 2as2=b. It follows that Z has a density given by gLðyÞ ¼ c=y for e�bL=spyp1
and gLðyÞ ¼ 0 otherwise. By Theorem 2.2, the finite-dimensional distributions of the
ancestral processes CN converge to those of the L-coalescent, where L ¼ d0 þ L0

and L0 has density hLðyÞ ¼ y2gLðyÞ. Note that as L ! 1, the density hLðyÞ

converges to hðyÞ, where hðyÞ ¼ cy for y 2 ½0; 1� and hðyÞ ¼ 0 otherwise. We can think
of this as the limiting coalescent for an infinitely long chromosome.

Example 2.5. Finally, we show that any L-coalescent with a unit mass at zero can
arise as a limit of ancestral processes in this model. We first show how to obtain
coalescents of the form L ¼ d0 þ L0, where L0 is a finite measure on ½�; 1� and
0o�o1. Note that in Theorem 2.2, we have L0ðdxÞ ¼ x2ZðdxÞ, so it suffices to show
that m and r can be chosen to make Z an arbitrary finite measure on ½�; 1�. Let
G : ½�; 1� ! ½0;1Þ be any nonincreasing left-continuous function. We will choose m
and r so that Zð½y; 1�Þ ¼ GðyÞ for �pyp1 and Zð½0; �ÞÞ ¼ 0. Let L ¼ � 1

2
log �, and let n

be the measure on ½�L;L� such that nð½�L; 0ÞÞ ¼ 0 and, for �pyp1,
nð½0;� 1

2
log y�Þ ¼ 2GðyÞ. Suppose rðxÞ ¼ jxj and m ¼ n� d1=2. Then, for �pyp1,

Zð½y; 1�Þ ¼
Z L

�L

Z 1

0

s1fe�rðxÞ=sXygmðdx � dsÞ

¼
1

2

Z L

0

1fe�2xXygnðdxÞ ¼
1

2
nð½0;�ðlog yÞ=2�Þ ¼ GðyÞ,

as claimed. Thus, we can get the L-coalescent in the limit if L0ðð0; �ÞÞ ¼ 0. We can
obtain an arbitrary L-coalescent by then taking a limit as L ! 1 (or � # 0) as in
Example 2.4.
3. Approximation by a coalescent with simultaneous multiple collisions

A key ingredient in the proof of Theorem 2.2 is part 1 of Proposition 2.1. Part 1 of
Proposition 2.1 says that, up to an error of Oð1=ðlogNÞÞ, we can approximate the
effect of a selective sweep on the genealogy by flipping a p-coin for each lineage and
merging the lineages whose coins come up heads. However, Durrett and
Schweinsberg [9] observed in simulations that for N between 10,000 and 1,000,000,
the approximation in Proposition 2.1 works poorly, largely because it is possible for
multiple groups of lineages to coalesce at the time of a selective sweep. By taking this
into account, they were able to give a more complicated approximation that works
much better in simulations and has an error of only Oð1=ðlogNÞ

2
Þ.
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Before stating this result, we review Kingman’s [16] paintbox construction of
exchangeable random partitions of f1; . . . ; ng. Let

D ¼ ðx1;x2; . . .Þ : x1Xx2X � � �X0;
X1
i¼1

xip1

( )
,

and let G be a probability measure on D. We define a G-partition P of f1; . . . ; ng as
follows. Let Y ¼ ðY 1;Y 2; . . .Þ be a D-valued random variable with distribution G.
Define a sequence ðZiÞ

n
i¼1 to be conditionally i.i.d. given Y such that PðZi ¼ jjY Þ ¼

Y j for all positive integers j and PðZi ¼ 0jY Þ ¼ 1�
P1

j¼1Y j. Then define P to be the
partition such that distinct integers i and j are in the same block if and only if
Zi ¼ ZjX1. We denote the distribution of a G-partition of f1; . . . ; ng by QG;n. Note
that if G is a unit mass at ðp; 0; 0; . . .Þ, then QG;n ¼ Qp;n.

Next, we define a family of distributions Rðy;MÞ on D by using a stick-breaking
construction. Let y 2 ½0; 1�, and let M be a positive integer. Let ðW kÞ

M
k¼2 be

independent random variables such that W k has a Beta(1; k � 1) distribution. Let
ðzkÞ

M
k¼2 be a sequence of independent random variables such that Pðzk ¼ 1Þ ¼ y and

Pðzk ¼ 0Þ ¼ 1� y for all k. For k ¼ 2; 3; . . . ;M, let Vk ¼ zkW k. To perform the
stick breaking, we first break off a fraction W M of the unit interval, then break off a
fraction W M�1 of what is left over, and so on until we get down to W 2. For

k ¼ 2; . . . ;M, the length of the kth fragment is ~Y k ¼ V k

QM
j¼kþ1ð1� V jÞ, and the

length of the first fragment is ~Y 1 ¼
QM

j¼2ð1� VjÞ. Note that
PM

k¼1
~Y k ¼ 1. Let Y ¼

ðY 1;Y 2; . . . ;Y M ; 0; 0; . . .Þ 2 D be the sequence obtained by ranking the interval
lengths ~Y 1; . . . ; ~Y M in decreasing order and then appending an infinite sequence of
zeros. Finally, let Rðy;MÞ be the distribution of Y.

These distributions Rðy;MÞ were studied in Durrett and Schweinsberg [10], who
used them to approximate the distribution of family sizes in a Yule process with
infinitely many types. They arise in the proposition below because, after a beneficial
mutation, the number of lineages with the B allele that do not eventually die out can
be approximated by a Yule process. The result below is Theorem 1.2 of
Schweinsberg and Durrett [30].

Proposition 3.1. Fix n 2 N, and fix s 2 ð0; 1Þ. Assume there is a constant C0 such that

rpC0=ðlogNÞ for all N. Let a ¼ r logð2NÞ=s, and let p ¼ e�a. Then there exists a

positive constant C, depending continuously on s and a but not depending on N, such

that

jPðY ¼ pjX ðtÞ ¼ 2NÞ � QRðr=s;b2NscÞ;nðpÞjpC=ðlogNÞ
2

for all p 2 Pn, where bmc denotes the greatest integer less than or equal to m.

Because the improved approximation allows many groups of lineages to coalesce
at the time of a selective sweep, this result suggests that, for finite N, a coalescent
with simultaneous multiple collisions should provide a better approximation of the
ancestral process than a coalescent with multiple collisions. Coalescents with
simultaneous multiple collisions, which were studied by Möhle and Sagitov [20],
Schweinsberg [28], and Bertoin and LeGall [4], have the property that many blocks
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can merge at once into a single block, and many such mergers can occur
simultaneously. Coalescents with simultaneous multiple collisions are in one-to-
one correspondence with finite measures X on D.

Suppose p is a partition of f1; . . . ; ng whose blocks are B1; . . . ;Bm, and suppose p0

is a partition of f1; . . . ; n0g with n0
Xm whose blocks are B0

1; . . . ;B
0
k. Following

Bertoin and LeGall [4], define the coagulation of p by p0 to be the partition whose
blocks are given by

S
j2B0

i
Bj for i ¼ 1; . . . ; k. Suppose ðPnðtÞ; tX0Þ is the Pn-valued

X-coalescent. If there are b blocks at time t� and a merger occurs at time t, then
there exists a unique partition p 2 Pb such that PnðtÞ is the coagulation of Pnðt�Þ

by p. If p has r þ s blocks, s of which are singletons and the other r of which have
sizes k1; . . . ; krX2, where b ¼ k1 þ � � � þ kr þ s, then the rate of this transition is

lb;k1;...;kr;s ¼

Z
D

Qdx ;bðpÞ
X1
j¼1

x2
j

 !�1

X0ðdxÞ þ a1fr¼1;k1¼2g, (3.1)

where dx denotes a unit mass at x ¼ ðx1;x2; . . .Þ 2 D and X has been written as
adð0;0;...Þ þ X0 with X0ðfð0; 0; . . .ÞgÞ ¼ 0. Coalescents with multiple collisions are a
special case in which X is concentrated on points in which only the first coordinate is
nonzero.

Coalescents with multiple and simultaneous multiple collisions can be constructed
from Poisson point processes (see [24,28]). Consider a Poisson process on ð0;1Þ �

Pn whose intensity measure is the product of Lebesgue measure on ð0;1Þ and a
measure L on Pn defined as follows. Let S � Pn be the set of all partitions consisting
of one block of size 2 and n � 2 singletons. If p 2 Pn, let LðpÞ ¼ 0 if p is the partition
consisting of n singletons. Otherwise, let

LðpÞ ¼
Z
D

Qdx ;nðpÞ
X1
j¼1

x2
j

 !�1

X0ðdxÞ þ a1fp2Sg. (3.2)

Since L is a finite measure, it is easy to definePn ¼ ðPnðtÞ; tX0Þ such thatPnð0Þ is the
partition consisting of n singletons and, at the times of points ðt; pÞ of the Poisson
point process, the partition PnðtÞ is the coagulation of Pnðt�Þ by p, and these are the
only jump times of Pn. This coalescent process is the Pn-valued X-coalescent. The
construction of the L-coalescent is the same, except that if p has at least one block
that is not a singleton, we define

LðpÞ ¼
Z 1

0

Qp;nðpÞp
�2L0ðdpÞ þ a1fp2Sg, (3.3)

where L ¼ d0 þ L0 and L0ðf0gÞ ¼ 0.
Under some additional assumptions, most significantly restricting the selective

advantage resulting from each beneficial mutation to be at least �40, we are able to
obtain bounds on the difference between the finite-dimensional distributions of CN

and the finite-dimensional distributions of the approximating coalescent process.
Proposition 3.2 below shows that indeed the coalescent with simultaneous multiple
collisions gives a more accurate approximation.
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Proposition 3.2. Let m be a finite measure on ½�L;L� � ½�; 1�, where �40, and let

r : ½�L;L� ! ½0; 1� be a function such that rð0Þ ¼ 0 and r is nonincreasing on ½�L; 0�
and nondecreasing on ½0;L�. Suppose that, for all N, we have mN ¼ N�1m. Also, assume

that rN ðxÞ ¼ rðxÞ= logð2NÞ for all N and x. Fix times 0ou1o � � �oum, and let

p1; . . . ;pm 2 Pn.
(1)
 Define Z and L as in Theorem 2.2. Let P ¼ ðPðtÞ; tX0Þ be the Pn-valued

L-coalescent. Then there exists a constant C such that

jPðCN ðuiÞ ¼ pi for i ¼ 1; . . . ;mÞ � PðPðuiÞ ¼ pi for i ¼ 1; . . . ;mÞjp
C

logN
.

(2)
 Let GN be the measure on D such that for all measurable subsets A � D, we have

GN ðAÞ ¼

Z L

�L

Z 1

0

sRðrNðxÞ=s; b2NscÞðAÞmðdx � dsÞ.

Let XN be the measure on D given by XN ¼ dð0;0;...Þ þ XN ;0, where XN ;0 is defined

by XN;0ðdxÞ ¼ ð
P1

j¼1 x2
j ÞGN ðdxÞ. Let UN ¼ ðUNðtÞ; tX0Þ be the Pn-valued XN -

coalescent. Then there exists a constant C such that

jPðCN ðuiÞ ¼ pi for i ¼ 1; . . . ;mÞ � PðUN ðuiÞ ¼ pi for i ¼ 1; . . . ;mÞjp
C

ðlogNÞ
2
.

4. Segregating sites and pairwise differences

One motivation for modeling a population that experiences recurrent selective
sweeps by coalescents with multiple or simultaneous multiple collisions is that these
coalescent models can provide insight into tests used to detect selective sweeps. In
view of part 2 of Proposition 3.2 and the simulation results in Durrett and
Schweinsberg [9], there should be little loss of accuracy in studying the behavior of
these tests under the assumption that the genealogy of a sample follows a coalescent
with simultaneous multiple collisions. One commonly used test is based on Tajima’s
D-statistic (see [33]). Given a sample of n strands of DNA from the same region on a
chromosome, let Dij be the number of sites at which the ith and jth segments differ,
and let Dn ¼ n

2

 ��1P
iaj Dij be the average number of pairwise differences over the n

2

 �
possible pairs. Let Sn be the number of segregating sites in the sample, that is, the
number of sites at which at least one pair of segments differs. Tajima’s D-statistic
compares the statistics Dn and Sn.

Suppose the ancestral history of a sample of N individuals is given by a coalescent
with multiple or simultaneous multiple collisions. Let lb be the total rate of all
mergers when the coalescent has b blocks. Assume that, on the time scale of the
coalescent process, mutations happen at rate y=2. Any mutation on the ith or jth
lineage before these lineages coalesce will cause the ith and jth segments to differ at
some site. Since the expected time for these lineages to coalesce is l�1

2 , we have
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E½Dij � ¼ yl�1
2 . Therefore

E½Dn� ¼ yl�1
2 . (4.1)

Note that l2 ¼ Lð½0; 1�Þ for coalescents with multiple collisions and l2 ¼ XðDÞ for
coalescents with simultaneous multiple collisions.

To calculate the expected number of segregating sites, we note that any mutation
in the ancestral tree before all n lineages have coalesced into one adds to the number
of segregating sites. If, at some time, the coalescent has exactly b blocks, the expected
time that the coalescent has b blocks is l�1

b . Let GnðbÞ be the probability that the
coalescent, starting with n blocks, will have exactly b blocks at some time. Then

E½Sn� ¼
y
2

Xn

b¼2

bl�1
b GnðbÞ. (4.2)

Although we do not have a closed-form expression for GnðbÞ, these quantities can be
calculated recursively because (2.1) and (3.1) allow us to express GnðbÞ in terms of
GkðbÞ for kon. As a result, it would not be difficult to evaluate the expression in (4.2)
numerically.

Suppose the ancestral process is given by Kingman’s coalescent, which would be
the case if there were no selective sweeps. Then lb ¼ b

2

 �
for all bX2. Also, the

number of blocks never decreases by more than one at a time, so GnðbÞ ¼ 1 whenever
2pbpn. It follows that E½Dn� ¼ y and

E½Sn� ¼
y
2

Xn

b¼2

b
b

2

� ��1

¼ y
Xn

b¼2

1

b � 1
¼ yhn�1, (4.3)

where hn�1 ¼
Pn�1

i¼1 ð1=iÞ. Thus, E½Dn � Sn=hn�1� ¼ 0. This observation is the basis
for Tajima’s D-statistic, which is given by

D ¼
Dn � Sn=hn�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

anSn þ bnSnðSn � 1Þ
p , (4.4)

where an and bn are somewhat complicated constants that are chosen to make the
variance of D approximately one when the ancestral tree is given by Kingman’s
coalescent. See Section 4.1 of Durrett [8] for details.

After a selective sweep, the new mutants will tend to have low frequency. As a
result, a recent selective sweep should decrease Dn more than Sn, causing the
numerator of Tajima’s D-statistic to be negative. Braverman et al. [6] found in
simulations that Tajima’s D-statistic indeed tends to be negative after a selective
sweep. Simonsen et al. [31] studied this question further and argued that unless the
selective sweep was recent, Tajima’s D-statistic had relatively little power to detect
selective sweeps. See also Przeworski [25], who discusses the power of Tajima’s
D-statistic to detect selective sweeps. Our coalescent approximation allows us to
obtain the following result regarding the expected number of segregating sites when
the population experiences recurrent selective sweeps.
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Proposition 4.1. Consider a L-coalescent in which L ¼ d0 þ L0, where L0ðf0gÞ ¼ 0,
or a X-coalescent in which X ¼ dð0;0;...Þ þ X0 and X0ðfð0; 0; . . .ÞgÞ ¼ 0. Let ab ¼ lb �

b
2

 �
.

Suppose

X1
b¼2

ab log b

b2
o1. (4.5)

Then, there exists a constant rX0 such that

lim
n!1

E½Sn� � yhn�1 ¼ �r. (4.6)

Furthermore, defining G1ðbÞ ¼ limn!1 GnðbÞ, we have

r ¼
y
2

X1
b¼2

b
b

2

� ��1

� l�1
b

 !
þ

y
2

X1
b¼2

bl�1
b ð1� G1ðbÞÞ. (4.7)

Condition (4.5) prevents L0 or X0 from having too much mass near zero. Note
that (4.1) implies that E½Dn� decreases by a constant as a result of the beneficial
mutations, while Proposition 4.1 implies that when (4.5) holds, E½Sn=hn�1� decreases
by approximately r=hn�1, which is Oð1=ðlog nÞÞ. Therefore, Proposition 4.1 shows
that for sufficiently large samples we do expect Tajima’s D-statistic to be negative
when the population is affected by recurrent selective sweeps. Before proving this
proposition, we consider some examples.

Example 4.2. Suppose, as in Example 2.3, we have a L-coalescent in which
L ¼ d0 þ sap�2dp. Since p-mergers occur at rate sa, we have lbp b

2

 �
þ sa and thus

abpsa for all b. Condition (4.5) follows immediately.
Suppose instead we have the L-coalescent of Example 2.4, where L ¼ d0 þ L0 and

L0ðdxÞ ¼ cxdx. Note that ab is the same as the total merger rate of the L0-coalescent
when there are b blocks. Using the fact that if Z�Binomialðb; xÞ then
PðZX2Þ ¼ 1� ð1� xÞb � bxð1� xÞb�1, we have

ab ¼

Z 1

0

ð1� ð1� xÞb � bxð1� xÞb�1
Þx�2L0ðdxÞ

¼ c

Z 1

0

ð1� ð1� xÞb � bxð1� xÞb�1
Þx�1 dxpc

Z 1

0

ð1� ð1� xÞbÞx�1 dx

¼ c

Z 1=b

0

ð1� ð1� xÞbÞx�1 dx þ c

Z 1

1=b

ð1� ð1� xÞbÞx�1 dx

pc

Z 1=b

0

bdx þ c

Z 1

1=b

x�1 dx ¼ cð1þ log bÞ, ð4:8Þ

which implies (4.5).

Example 4.3. Although (4.5) holds in the natural cases given in Examples 2.3
and 2.4, we show here that it does not hold for all coalescents. Suppose L ¼ d0 þ L0,
where L0 is the uniform distribution on ð0; 1Þ. Note that there exists a constant
C40 such that if Z�Binomialðb;xÞ with xX1=b and bX2, then PðZX2ÞXC.
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Therefore,

ab ¼

Z 1

0

ð1� ð1� xÞb � bxð1� xÞb�1
Þx�2 dx

X

Z 1

1=b

ð1� ð1� xÞb � bxð1� xÞb�1
Þx�2 dx

XC

Z 1

1=b

x�2 dx ¼ Cðb � 1Þ,

so (4.5) does not hold in this case.
Proof of Proposition 4.1. When the coalescent has n þ 1 blocks, the probability that
the next coalescence event will take the coalescent down to fewer than n blocks is at
most ½lnþ1 �

nþ1
2

 �
�=lnþ1. Therefore, if 2pbpn, then

jGnþ1ðbÞ � GnðbÞjp
lnþ1 �

nþ1
2

 �
lnþ1

¼
anþ1

lnþ1
p

2anþ1

nðn þ 1Þ
. (4.9)

Therefore, when (4.5) holds, the sequence ðGnðbÞÞ
1
n¼b is Cauchy and thus has a limit

G1ðbÞ.
It follows from (4.2) and (4.3) that

E½Sn� � yhn�1 ¼
y
2

Xn

b¼2

bl�1
b GnðbÞ �

y
2

Xn

b¼2

b
b

2

 !�1

¼
y
2

Xn

b¼2

b l�1
b �

b

2

 !�1
0
@

1
A�

y
2

Xn

b¼2

bl�1
b ð1� G1ðbÞÞ

þ
y
2

Xn

b¼2

bl�1
b ðGnðbÞ � G1ðbÞÞ. ð4:10Þ

To prove Proposition 4.1, we need to take the limit as n ! 1 of the three terms on
the right-hand side of (4.10).

For the first term, we note that

b

2

� ��1

� l�1
b ¼

lb �
b
2

 �
b
2

 �
lb

pab

b

2

� ��2

¼
4ab

b2
ðb � 1Þ2

.

Therefore, when (4.5) holds, we have a summable series and

lim
n!1

y
2

Xn

b¼2

b l�1
b �

b

2

� ��1
 !

¼ �
y
2

X1
b¼2

b
b

2

� ��1

� l�1
b

 !
. (4.11)
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For the second term, note that (4.9) and the fact that GbðbÞ ¼ 1 imply

X1
b¼2

bl�1
b ð1� G1ðbÞÞp

X1
b¼2

2

b � 1

X1
m¼b

2amþ1

mðm þ 1Þ

 !

¼
X1
m¼2

2amþ1

mðm þ 1Þ

Xm

b¼2

2

b � 1
p
X1
m¼2

4amþ1ð1þ logðm � 1ÞÞ

mðm þ 1Þ
,

which is finite by (4.5). Therefore,

lim
n!1

y
2

Xn

b¼2

bl�1
b ð1� G1ðbÞÞ ¼

y
2

X1
b¼2

bl�1
b ð1� G1ðbÞÞ. (4.12)

Finally, for the third term,

lim sup
n!1

Xn

b¼2

bl�1
b jGnðbÞ � G1ðbÞj

p lim sup
n!1

Xn

b¼2

2

b � 1

X1
m¼n

2amþ1

mðm þ 1Þ

 !

p lim sup
n!1

1

log n

Xn

b¼2

2

b � 1

X1
m¼n

2amþ1 logm

mðm þ 1Þ

 !

p lim sup
n!1

2ð1þ logðn � 1ÞÞ

log n

X1
m¼n

2amþ1 logm

mðm þ 1Þ
¼ 0 ð4:13Þ

by (4.5). The proposition follows from (4.10)–(4.13). &
5. The number of singletons

Fu and Li [11] proposed another test to detect departures from Kingman’s
coalescent. They considered the ancestral tree in which the leaves are the n

individuals in the sample. They defined the branches connecting a leaf to an internal
node to be external branches and the other branches to be internal branches. Let Ze

denote the number of mutations on external branches, and let Zi be the number of
mutations on internal branches. Every mutation produces a segregating site, so
Ze þ Zi ¼ Sn. If a mutation occurs on an external branch, the mutant gene appears
on just one of the n individuals in the sample, while if a mutation occurs on an
internal branch, the mutant gene appears on between 2 and n � 1 of the individuals
in the sample. Therefore, to determine Ze, we simply count the number of mutations
that appear on just one of the sampled chromosomes. Note that unless an outgroup
is available, it will not be possible to distinguish between a mutation that appears on
one of the sampled chromosomes and a mutation that appears on n � 1 of the
sampled chromosomes. Fu and Li [11] proposed a modification of their test for when
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there is no outgroup, but for the analysis in this section, we assume that we have an
outgroup that enables us to make this distinction.

Let Jn be the sum of the lengths of the external branches. In terms of the
associated coalescent process, Jn is the sum, over i between 1 and n, of the amount of
time that the integer i is in a singleton block. Let In be the sum of the lengths of the
internal branches. Assuming, as before, that mutations occur at rate y=2 on the time
scale of the coalescent process, we have E½ZejJn� ¼ ðy=2ÞJn and E½ZijIn� ¼ ðy=2ÞIn.

Fu and Li’s D-statistic is based on comparing Zi with ðhn�1 � 1ÞZe. Note that
Zi � ðhn�1 � 1ÞZe ¼ Sn � hn�1Ze. To see that this has mean zero when the ancestral
tree is given by Kingman’s coalescent, we follow the explanation in Durrett [8, p.
163]. In the case of Kingman’s coalescent, (4.3) gives E½Sn� ¼ yhn�1. Therefore,
E½Sn � hn�1Ze� ¼ yhn�1 � yhn�1E½Jn�=2, so it remains to show that E½Jn� ¼ 2. Let Kn

be the amount of time that the integer 1 is in a singleton block of the partition, so
E½Jn� ¼ nE½Kn�. Let Tn be the amount of time before the first coalescence event, and
note that E½Tn� ¼ 2=½nðn � 1Þ�. The probability that 1 coalesces with another integer
at time Tn is 2=n, and this event is independent of Tn. If 1 does not coalesce at this
time, then the expected additional time that 1 is a singleton is E½Kn�1�. Therefore, we
get the recursion

E½Kn� ¼
2

n
E½Tn� þ

n � 2

n
E½Tn þ Kn�1� ¼

2

nðn � 1Þ
þ

n � 2

n
E½Kn�1�.

Note that E½K2� ¼ 1, and then it is easy to show by induction that E½Kn� ¼ 2=n for
all n, and so E½Jn� ¼ 2 for all n, as claimed.

We can write Fu and Li’s D-statistic as

D ¼
Sn � hn�1Zeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cnSn þ dnS2

n

q , (5.1)

where, as in (4.4), cn and dn are constants chosen to make the variance of the statistic
approximately one when the genealogy is given by Kingman’s coalescent. Details of
the variance computation are given in Section 4.2 in Durrett [8], where an error of Fu
and Li [11] is corrected.

When multiple mergers cause many lineages to coalesce at once, one expects In to
be reduced more than Jn because there is still an external branch associated with
each leaf, but there are fewer internal branches because of multiple mergers. This
would cause Fu and Li’s D-statistic to be negative. The next proposition shows that
this is indeed the case.

Proposition 5.1. Let ðPnðtÞ; tX0Þ be a Pn-valued L-coalescent in which L ¼ d0 þ L0,
where L0ðf0gÞ ¼ 0, or a Pn-valued X-coalescent in which X ¼ dð0;0;...Þ þ X0 and

X0ðfð0; 0; . . .ÞgÞ ¼ 0. Let ab ¼ lb �
b
2

 �
, and suppose (4.5) holds. Then

lim
n!1

E½Sn � hn�1Ze� ¼ �r, (5.2)

where r is the constant defined in (4.7).

The key to the proof of this proposition is the following lemma.
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Lemma 5.2. Under the assumptions of Proposition 5.1, there is a positive constant C

such that

0pE½2� Jn�p
C

n

Xn

b¼2

ab

b
(5.3)

for all nX2.

The first inequality in (5.3), which does not require condition (4.5), shows that the
expected sum of the lengths of the external branches is never greater than 2, which
means that it is largest for Kingman’s coalescent. The second inequality gives a
rather sharp bound on the difference. Recall that in Example 2.3, we have abpsa, so
E½2� Jn�pC0ðlog nÞ=n for some other constant C0. In Example 2.4, (4.8) gives
abpcð1þ log bÞpcð1þ log nÞ, which implies E½2� Jn�pC00ðlog nÞ2=n for some
constant C00. Thus, in these examples, the lengths of the external branches are
affected very little by multiple mergers when the sample size is large. The reason is
that, in large samples, a lot of coalescence occurs very quickly, so most ancestral
lines have merged with at least one other ancestral line before the first multiple
merger takes place.

Proof of Lemma 5.2. We start by proving the first inequality in (5.3) by induction. As
before, let Kn be the amount of time that the integer 1 is in a singleton block. We
need to show that E½Kn�p2=n for all nX2. First, note that E½K2� ¼ l�1

2 p1. Now,
suppose for some nX3, we have E½Kj�p2=j for j ¼ 2; . . . ; n � 1, and consider E½Kn�.
Let Tn be the time of the first merger when the coalescent starts with n blocks, and let
BX2 be the number of blocks involved in the merger at time Tn. Note that B is
independent of Tn. Conditional on B, the probability that 1 merges with at least
oneother block at time Tn is B=n. If this does not happen, then at least n � B þ 1
blocks remain after the merger, so by the induction hypothesis, the expected time
after Tn that f1g will remain a singleton is at most 2=ðn � B þ 1Þ. Therefore,

E½KnjTn;B�p
B

n

� �
Tn þ

n � B

n

� �
Tn þ

2

n � B þ 1

� �
¼ Tn þ

2ðn � BÞ

nðn � B þ 1Þ
.

Since 2pBpn, we have ðn � BÞ=ðn � B þ 1Þpðn � 2Þ=ðn � 1Þ. Also, E½Tn� ¼ l�1
n p

2=½nðn � 1Þ�, so

E½Kn�p
2

nðn � 1Þ
þ

2ðn � 2Þ

nðn � 1Þ
¼

2

n
,

which proves the first inequality.
The proof of the second inequality requires a coupling argument. Let ðPnðtÞ; tX0Þ

be the coalescent process defined in the statement of Proposition 5.1, and let
ðUnðtÞ; tX0Þ be Kingman’s coalescent, started from the partition of 1; . . . ; n into
singletons. We may assume that the coalescent processes Pn and Un are constructed
from Poisson processes N1 and N2, respectively, on ð0;1Þ �Pn, as described in
Section 3. That is, whenever ðt;pÞ is a point of N1, the partition PnðtÞ is the
coagulation of Pnðt�Þ by p, and whenever ðt;pÞ is a point of N2, the partition UnðtÞ is
the coagulation of Unðt�Þ by p. Furthermore, these are the only jump times of Pn
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and Un. Let L1 and L2 be the intensity measures of the second coordinate for the
Poisson processes N1 and N2, respectively. Then, for p 2 Pn, we have L2ðpÞ ¼ 1 if p
consists of one block of size 2 and n � 2 singletons, and L2ðpÞ ¼ 0 otherwise. Also,
L1ðpÞXL2ðpÞ for all p 2 Pn. Therefore, we may assume that the Poisson processes
N1 and N2 are coupled such that ifðt;pÞ is a point of N2 then ðt;pÞ is a point of N1.
The points ðt; pÞ in both N1 and N2 correspond to mergers in which two blocks
coalesce at a time, while the points ðt;pÞ in N1 but not N2 correspond to multiple
mergers caused by selective sweeps.

To compare the two processes, note that Kn ¼ infft : f1g is not a singleton in
PnðtÞg, and let K 0

n ¼ infft : f1g is not a singleton in UnðtÞg. We have E½Jn� ¼ nE½Kn�.
By our previous results for Kingman’s coalescent, we have E½K 0

n� ¼ 2=n, and so
E½2� Jn� ¼ nE½K 0

n � Kn�. Let t ¼ infft : PnðtÞaUnðtÞg, where we say t ¼ 1 if
PnðtÞ ¼ UnðtÞ for all t. For p 2 Pn, denote by jpj the number of blocks in p. Since
PnðtÞ ¼ UnðtÞ for all tpt, we have

E½2� Jn� ¼ nE½K 0
n � Kn�pnE½ðK 0

n � tÞ1ftoK 0
ng
�

¼ n
Xn

b¼2

E½ðK 0
n � tÞ1ftoK 0

ng
1fjUnðtÞj¼bg�.

For b ¼ 1; 2; . . . ; n, define Tb ¼ infft : jUnðtÞj ¼ bg. If toK 0
n and jUnðtÞj ¼ b, then

K 0
n4Tb. Therefore,

E½2� Jn�pn
Xn

b¼2

E½K 0
n � tjftoK 0

ng \ fjUnðtÞj ¼ bg�PðfK 0
n4Tbg \ fjUnðtÞj ¼ bgÞ.

(5.4)

If toK 0
n and jUnðtÞj ¼ b, then f1g is one of b blocks of UnðtÞ, and by our previous

results on Kingman’s coalescent, the expected time before it merges with another
block is 2=b. Thus, we have

E½K 0
n � tjftoK 0

ng \ fjUnðtÞj ¼ bg� ¼
2

b
. (5.5)

Note that K 0
n4Tb whenever f1g remains a singleton at the time that Kingman’s

coalescent is down to b blocks. Whenever the coalescent goes from j blocks to j � 1,
the probability that the integer 1 is involved in the merger is 2=j, so

PðK 0
n4TbÞ ¼

Yn

j¼bþ1

1�
2

j

� �
p exp �

Xn

j¼bþ1

2

j

 !
p exp 1� 2

Z n

b

1

x
dx

� �

¼ e
b

n

� �2

. ð5:6Þ

If jUnðtÞj ¼ b, then both Pn and Un have the same b blocks at time Tb, but at
time t the process Pn has a transition but Un does not. Since the total merger rate for
Pn after time Tb is lb ¼ ab þ

b
2

 �
and the total merger rate for Un after time Tb is

b
2

 �
,
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we have

PðjUnðtÞj ¼ bjK 0
n4TbÞp

ab

lb

p
2ab

bðb � 1Þ
. (5.7)

Combining (5.4)–(5.7), we get

E½2� Jn�pn
Xn

b¼2

4eabb2

b2
ðb � 1Þn2

p
C

n

Xn

b¼2

ab

b
,

which is the second inequality in (5.3). &

Proof of Proposition 5.1. We have

E½Sn � hn�1Ze� ¼ ðE½Sn� � yhn�1Þ þ hn�1ðy� E½Ze�Þ

¼ ðE½Sn� � yhn�1Þ þ
hn�1y
2

E½2� Jn�. ð5:8Þ

By Proposition 4.1, limn!1ðE½Sn� � yhn�1Þ ¼ �r. It thus remains only to show that
the second term on the right-hand side of (5.8) goes to zero as n ! 1. Let �40. By
(4.5), there exists a positive integer N such that

X1
b¼N

abð1þ log bÞ

b2
o�.

Therefore, by Lemma 5.2,

lim sup
n!1

hn�1y
2

E½2� Jn�p lim sup
n!1

Chn�1y
2n

Xn

b¼2

ab

b

¼ lim sup
n!1

Chn�1y
2n

XN

b¼2

ab

b
þ
Xn

b¼N

ab

b

 !

p0þ
Cy
2

lim sup
n!1

Xn

b¼N

abhn�1

bn

p
Cy
2

lim sup
n!1

Xn

b¼N

abð1þ log bÞ

b2
p

Cy�
2

.

Since this is true for all �40, and since E½2� Jn�X0 for all n by Lemma 5.2, we have

lim
n!1

hn�1y
2

E½2� Jn� ¼ 0,

which completes the proof of the proposition. &

We conclude this section with some comments about the power of Tajima’s
D-statistic and Fu and Li’s D-statistic to detect selective sweeps. The numerators of
these two statistics, which are Dn � Sn=hn�1 and Sn � hn�1Ze, each have mean zero
when the ancestral process is Kingman’s coalescent. The expected values of these two
numerators both converge to a negative constant as the sample size goes to infinity
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when multiple mergers can occur. These statistics are used to test for departures from
Kingman’s coalescent. If the goal is to test for multiple mergers caused by selective
sweeps, one would reject the null hypothesis of no selective sweeps if the value of the
statistic is too small (i.e. more negative than would be expected with Kingman’s
coalescent).

A natural question, then, is how much power these tests have to detect selective
sweeps. While a full analysis of this question would require a simulation study, we
can obtain some insight from the analytical results presented above. From the values
of an and bn in (4.4), which can be found in Section 4.1 of Durrett [8], we see that the
standard deviation of the numerator of Tajima’s D-statistic is Oð1Þ when the
genealogy is given by Kingman’s coalescent. However, from the values of cn and dn

in (5.1), which can be found in Section 4.2 of Durrett [8], we see that the numerator
of Fu and Li’s D-statistic has a standard deviation which is Oðlog nÞ. This means
that, for large n, moderate negative values for the numerator of Fu and Li’s D-
statistic are not strong evidence against the null model of Kingman’s coalescent, and
thus a test based on Fu and Li’s D-statistic will most likely have low power. These
observations are consistent with simulation results of Simonsen et al. [31], who found
that Tajima’s D-statistic has more power to detect selective sweeps than Fu and Li’s
D-statistic.

Neither of these tests has the desirable feature of many tests in classical statistics,
which is that for all a40, the power of the level a test tends to 1 as the sample size n

tends to infinity. Indeed, for the problem of detecting recurrent selective sweeps, no
such test based on the genealogy of the sample can exist because, with positive
probability, none of the selective sweeps affects the genealogy of the n sampled
lineages before we get back to the most recent common ancestor. We formulate this
observation precisely in the following proposition, which uses the coupling in the
proof of Lemma 5.2.

Proposition 5.3. Let ðPnðtÞ; tX0Þ be the L-coalescent or X-coalescent defined in the

proof of Proposition 5.1, and assume that

X1
b¼2

ab

b2
o1, (5.9)

which is slightly weaker than (4.5). Let ðUnðtÞ; tX0Þ be Kingman’s coalescent, coupled

with ðPnðtÞ; tX0Þ as in the proof of Lemma 5.2. Then there exists a constant C40 such

that for all n, we have PðUnðtÞ ¼ PnðtÞ for all tÞXC.

Proof. Let Tb ¼ infft : jUnðtÞj ¼ bg. Conditional on PnðTbÞ ¼ UnðTbÞ, the probabil-
ity that PnðtÞaUnðtÞ for some t 2 ½Tb;Tb�1� is ab=lb. It follows that

PðUnðtÞ ¼ PnðtÞ for all tÞ ¼
Yn

b¼2

1�
ab

lb

� �
.

Note that ab=lbp2ab=½bðb � 1Þ� for all b. By (5.9), there exists a positive integer N

such that 6ab=½bðb � 1Þ�p1 for all bXN, and if 0pxp1 then 1� x=3Xe�x. Putting
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these results together, we get

PðUnðtÞ ¼ PnðtÞ for all tÞX
YN�1

b¼2

1�
ab

lb

� �Y1
b¼N

exp �
6ab

bðb � 1Þ

� �

¼
YN�1

b¼2

1�
ab

lb

� �
exp �

X1
b¼N

6ab

bðb � 1Þ

 !
XC,

where the last inequality uses (5.9) again. &
6. Proofs of convergence theorems

In this section, we prove Theorem 2.2 and Proposition 3.2. The proofs use
Propositions 2.1 and 3.1 in combination with the Poisson process construction of
coalescents with multiple or simultaneous multiple collisions.

Recall the model presented in Section 2.1 of how the population behaves following
a single beneficial mutation. As in Section 2.1, assume for now that a beneficial
mutation occurs at time 0. Let X ðtÞ be the number of chromosomes with the
favorable B allele at time t, and let t ¼ infft : X ðtÞ 2 f0; 2Ngg. Let 0 ¼

x0ox1ox2o � � � be the times of the proposed replacements, which occur at times
of a rate 2N Poisson process. Let 0 ¼ x00ox01ox02o � � � be the subset of these times at
which the number of individuals with the favorable allele changes. As observed in
Schweinsberg and Durrett [30], if 1pkp2N � 1, then PðX ðx0iþ1Þ ¼ k þ 1jX ðx0iÞ ¼
kÞ ¼ 1=ð2� sÞ and PðX ðx0iþ1Þ ¼ k � 1jX ðx0iÞ ¼ kÞ ¼ ð1� sÞ=ð2� sÞ. Thus, the num-
ber of chromosomes with the B allele behaves like an asymmetric random walk until
it reaches 0 or 2N. For integers i, j, and k such that 0pipkpjp2N and ioj, define

pði; j; kÞ ¼ PðinffsXt : X ðsÞ ¼ jgo inffsXt : X ðsÞ ¼ igjX ðtÞ ¼ kÞ,

which is the probability that if at some time there are k chromosomes with B, the
number of B’s will reach j before i. Using the fact that ð1� sÞx

0
n is a martingale and

applying the Optional Sampling Theorem, we get (see also [18] or [30, Lemma 3.1])

pði; j; kÞ ¼
1� ð1� sÞk�i

1� ð1� sÞj�i
.

Therefore, the probability that the beneficial mutation leads to a selective sweep is
pð0; 2N; 1Þ ¼ s=ð1� ð1� sÞ2N

Þ.
Lemma 6.1 below shows that the length of time that the beneficial allele is present

in the population is only OðlogNÞ. Since we speed up time by a factor of N to define
the ancestral process, it will follow that for large populations, on the time scale of the
ancestral process the lineages that coalesce as a result of a selective sweep coalesce
almost at the same time. It is well-known (see [8]) that a selective sweep takes time
approximately ð2=sÞ logð2NÞ. However, since a beneficial mutation leads to a
selective sweep with probability approximately s, we get a bound on E½t� that does
not depend on s.
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Lemma 6.1. We have E½t�p4ðlogN þ 1Þ.

Proof. For 1pkp2N � 1, let Sk ¼ #fiX0 : X ðx0iÞ ¼ kg and Tk ¼ #fiX0 : X ðxiÞ ¼ kg,
where #S denotes the cardinality of a set S. Let qk ¼ PðX ðx0jÞak for all j4ijX ðx0iÞ ¼ kÞ

be the probability that the asymmetric random walk never returns to k. Note that
E½SkjSkX1� ¼ 1=qk. Also, PðX ðxiÞ ¼ k for some kÞ ¼ pð0; k; 1Þ ¼ s=ð1� ð1� sÞkÞ.
Therefore,

E½Sk� ¼ PðSkX1ÞE½SkjSkX1� ¼
s

qkð1� ð1� sÞkÞ
. (6.1)

We have, for 1pkp2N � 1,

qk ¼
1� s

2� s

� �
½1� pð0; k; k � 1Þ� þ

1

2� s

� �
pðk; 2N; k þ 1Þ

¼
1� s

2� s

� �
1�

1� ð1� sÞk�1

1� ð1� sÞk

" #
þ

1

2� s

� �
1� ð1� sÞ

1� ð1� sÞ2N�k

¼
1� s

2� s

� �
sð1� sÞk�1

1� ð1� sÞk
þ

1

2� s

� �
s

1� ð1� sÞ2N�k

X
s

2� s

ð1� sÞk

1� ð1� sÞk
þ 1

 !
¼

s

ð2� sÞð1� ð1� sÞkÞ
.

It follows from this result and (6.1) that E½Sk�p2� s for all k. Schweinsberg and
Durrett [30] calculated that PðX ðxiþ1ÞaX ðxiÞjX ðxiÞ ¼ kÞ ¼ kð2N � kÞð2� sÞ=ð2NÞ

2.
It follows that

E½Tk� ¼ E½Sk�
ð2NÞ

2

kð2N � kÞð2� sÞ

� �
p

4N2

kð2N � kÞ
.

Since E½xiþ1 � xi� ¼ 1=2N for all i, we have

E½t� ¼
1

2N

X2N�1

k¼1

E½Tk�p
X2N�1

k¼1

2N

kð2N � kÞ
p2

XN

k¼1

2

k
p4ðlogN þ 1Þ,

as claimed. &

We now use this result to prove part 2 of Proposition 2.1, which shows that
beneficial mutations do not cause lineages to coalesce when the beneficial gene dies
out.

Proof of part 2 of Proposition 2.1. Suppose X ðtÞ ¼ 0 and Yak0. Then it cannot be
true that for all t 2 ½0; t�, the n individuals sampled at time t all have distinct
ancestors with the b-chromosome at time t. Therefore, there is an integer i with xipt
such that one of the following is true:
(1)
 The ancestor at time xi of one of the individuals sampled at time t has the b allele,
but the ancestor of the same individual at time xi�1 has the B allele because of
recombination.
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(2)
 There are two individuals in the sample at time t that have distinct ancestors with
the b allele at time xi, but both of them have the same ancestor at time xi�1.
We now calculate the probability of these events conditional on X ðxiÞ ¼ k, where
1pkpN1=2. We assume NX2. For a randomly chosen b chromosome at time xi to
have a B chromosome as its ancestor at time xi�1, the chosen b chromosome must be
the new one born at time xi (which has probability at most 1=ð2N � kÞ because
2N � k chromosomes have the b allele at time xi), there must be recombination at
this time (which happens with probability r), and the ancestor at the site of interest
must be a B chromosome (which happens with probability at most ðk þ 1Þ=2N

because X ðxi�1Þpk þ 1). Therefore, the probability that all three events occur is at
most rðk þ 1Þ=½ð2N � kÞð2NÞ�pr=N3=2. Also, at most one pair of b chromosomes at
time xi can have the same ancestor at time xi�1, so the probability that two randomly
chosen b chromosomes coalesce at this time is at most 2N�k

2

 ��1
¼ 2=½ð2N � kÞ

ð2N � k � 1Þ�p2=N2.
By Lemma 6.1, if M is the integer such that xM ¼ t, then E½M�pð2NÞ

½4ðlogN þ 1Þ� ¼ 8NðlogN þ 1Þ. Since there are n individuals and n
2

 �
pairs in the

sample, combining these bounds gives

PðX ðtÞ ¼ 0;X ðtÞpN1=2 for all t; and Yak0Þ

p8NðlogN þ 1Þ
nr

N3=2
þ

nðn � 1Þ

N2

� �
. ð6:2Þ

Note that for 1pkp2N � 1, we have

PðX ðtÞ ¼ 0 and X ðtÞ ¼ k for some tÞ

pPðX ðtÞ ¼ 0jX ðtÞ ¼ k for some tÞ

¼ 1� pð0; 2N; kÞ ¼ 1�
1� ð1� sÞk

1� ð1� sÞ2N
pð1� sÞk.

Therefore,

PðX ðtÞ ¼ 0 and X ðtÞ4N1=2 for some tÞpð1� sÞN
1=2

. (6.3)

Combining (6.2) and (6.3), we get

PðX t ¼ 0 and Yak0Þpð1� sÞN
1=2

þ 8NðlogN þ 1Þ
nr

N3=2
þ

nðn � 1Þ

N2

� �
.

Part 2 of Proposition 2.1 follows because rpC0 logð2NÞ and s is fixed. &

We now consider our model of recurrent selective sweeps and work towards the
proof of Theorem 2.2. We will first define a coalescent with multiple collisions. We
will then show that this process can be coupled with the ancestral process
ðCNðtÞ; tX0Þ such that, given a finite number of times 0ou1o � � �oum, the processes
agree at these times with high probability.

Recall that KN is a Poisson point process on R� ½�L;L� � ½0; 1� with intensity
l� mN . We can define another Poisson point process K�

N on ½0;1Þ � ½�L;L� � ½0; 1�
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which consists of all the points ð�t=N;x; sÞ such that ðt;x; sÞ is a point of KN and
tp0. By the Mapping Theorem for Poisson processes (see Section 2.3 of [18]), K�

N is
a Poisson process with intensity measure l� NmN . The points in K�

N can be ordered
by their first coordinate, so we can write the points as ðti;xi; siÞ for positive integers i,
where 0ot1ot2o � � � a.s. Also, define t0 ¼ 0.

We now define a Pn-valued coalescent process PN ¼ ðPN ðtÞ; tX0Þ. Let PNð0Þ be
the partition k0 of f1; . . . ; ng into singletons. Given PNðtiÞ for some iX0, we define
PNðtÞ for tiotptiþ1 in two steps. First, we let the process obey the law of Kingman’s
coalescent over the interval ðti; tiþ1Þ, meaning that each possible transition that
involves the merging of two blocks happens at rate one. Second, let piþ1 be a random
partition of f1; . . . ; ng, independent of ðPNðtÞ; 0ptotiþ1Þ, such that for an event Aiþ1

of probability siþ1, we have piþ1 ¼ k0 on Ac
iþ1 and the conditional distribution of

piþ1 given Aiþ1 is Qp;n, where p ¼ e�rN ðxiþ1Þ logð2NÞ=siþ1 . We then define PN ðtiþ1Þ to be

the coagulation of PN ðtiþ1�Þ by piþ1.
The lemma below states that the coalescent processPN that we have just defined is

a coalescent with multiple collisions.

Lemma 6.2. Let ZN be the measure on ð0; 1� such that

ZNð½y; 1�Þ ¼

Z L

�L

Z 1

0

s1fe�rN ðxÞ logð2NÞ=s
XygNmNðdx � dsÞ

for all y 2 ð0; 1�. Let L0;N be the measure on ð0; 1� such that L0;N ðdxÞ ¼ x2ZN ðdxÞ, and

let LN ¼ d0 þ L0;N . Then the process ðPN ðtÞ; tX0Þ is the Pn-valued LN -coalescent.

Proof. Let K 0
N be the point process on ½0;1Þ �Pn consisting of the points ðti;piÞ. By

the Marking Theorem for Poisson processes (see Section 5.2 of [18]), K 0
N is also a

Poisson point process. Given ðti; xi; siÞ, the partition pi has distribution Qp;n, where
p ¼ e�rN ðxiÞ logð2NÞ=si , conditional on an event of probability si and otherwise is k0.
Therefore, the intensity measure of K 0

N is given by l� H, where, for pak0,

HðpÞ ¼
Z L

�L

Z 1

0

sQe�rN ðxÞ logð2NÞ=s;nðpÞNmN ðdx � dsÞ

¼

Z 1

0

Qp;nðpÞZN ðdpÞ ¼

Z 1

0

Qp;nðpÞp
�2L0;NðdpÞ.

By comparing this with (3.3) and recalling that PN follows the law of Kingman’s
coalescent over the intervals ðti�1; tiÞ, we conclude that PN is the LN-coalescent. &

The next lemma states that it is unlikely for there to be a beneficial allele in the
population at any fixed time. Recall that TN ¼ ft : ðt; x; sÞ is a point in KN for
some x and sg.

Lemma 6.3. There exists a constant C, not depending on N, such that for any fixed

y 2 R, we have Pðy 2 ½t; tðtÞ� for some t 2 TNÞpðC logNÞ=N.

Proof. The points of TN form a Poisson process on R of rate gN , where
gN ¼ mNð½�L;L� � ½0; 1�Þ. Recall from Lemma 6.1 that if t denotes the amount of
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time for which a beneficial allele is present in between 1 and 2N � 1 members of the
population, then E½t�p4ðlogN þ 1Þ. Therefore,

Pðy 2 ½t; tðtÞ� for some t 2 TN Þ

p
Z y

�1

PðtXy � xÞgN dx

¼ gN

Z 1

0

PðtXxÞdx ¼ gNE½t�p4gNðlogN þ 1Þ.

Since the measures NmN converge weakly to m, the sequence ðNgN Þ
1
N¼1 converges to

mð½�L;L� � ½0; 1�Þ and therefore is bounded. The lemma follows. &

We now show how to couple the processes CN and PN so that they agree at a
given finite set of times with high probability. We first consider how the ancestral
process CN behaves around the times t1; t2; . . . . For positive integers i, let
ti ¼ �tð�NtiÞ=N. We have �Nti 2 TN . However, recall from Section 2.2 that not
all points in TN are in T0

N because some potential mutations are discarded to avoid
overlapping selective sweeps. When �Nti 2 T0

N , there is a beneficial allele in the
population during the time interval ½�Nti; tð�NtiÞÞ, and this affects the process CN

over the interval ½ti; ti�.
For each i such that �Nti 2 T0

N , we can define a random partition yi 2 Pn by
choosing n individuals from the population at time tð�NtiÞ and declaring two
integers j and k to be in the same block of yi if and only if the jth and kth individuals
chosen got their allele at the neutral site of interest from the same ancestor at time
�Nti. If ti40 and the partition CNðtiÞ contains bi blocks, we can choose the n

individuals at time tð�NtiÞ by first picking the bi individuals that are ancestors of the
n individuals that were sampled at time zero, and then choosing the remaining n � bi

at random. This will ensure that, for i such that �Nti 2 T0
N and ti40, the random

partition CNðtiÞ is the coagulation of CN ðtiÞ by yi.
Moreover, the conditional distribution of yi given ðti;xi; siÞ and given that �Nti 2

T0
N is the same as the distribution of the random partition Y defined in Section 2.1,

when the selective advantage is si and the recombination probability is rN ðxiÞ. Recall
that when a beneficial mutation occurs in the population with selective advantage si,
it spreads to the entire population with probability si=ð1� ð1� siÞ

2N
Þ. Therefore, by

Proposition 2.1, the distribution of Y is approximately that of a random partition
that has distribution Qp;n, where p ¼ e�rN ðxiÞ logð2NÞ=si , on an event of probability
si=ð1� ð1� siÞ

2N
Þ and is k0 on the complementary event. However, this is the same

as the conditional distribution of pi given ðti; xi; siÞ, except we have si=ð1� ð1� siÞ
2N
Þ

instead of si. It thus follows from Proposition 2.1 that we can couple the partitions yi

and pi such that for any d40,

Pðyiapi and � Nti 2 T0
N jðti;xi; siÞÞp

Cd

logN
þ 1fsiodg, (6.4)

where Cd is a constant that depends on d. Note that we only get the Oð1=ðlogNÞÞ

bound when siXd because of the assumption in Proposition 2.1 that s is fixed.
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Finally, we consider the processes during the intervals ðti; tiþ1Þ. The process PN

behaves like Kingman’s coalescent during these intervals. Let

I�
N ¼

[1
i¼1

½ti; ti�.

The processCN behaves like Kingman’s coalescent during the intervals in ð0;1ÞnI�
N

because the population follows the Moran model during the corresponding intervals.
Therefore, if PNðtiÞ ¼ CNðtiÞ, we can couple the processes so that PNðtÞ ¼ CN ðtÞ for
all t 2 ½ti;fiÞ, where fi ¼ infft4ti : t 2 I�

Ng.

Proposition 6.4. Suppose the processes PN and CN are coupled in the manner

described above. Let 0ou1o � � �oum be fixed times. Let �40. For sufficiently large N,
we have

PðPNðuiÞaCNðuiÞ for some i 2 f1; . . . ;mgÞo�. (6.5)

Proof. Let K ¼ supfk : tkpumg. Suppose the following conditions hold:
(1)
 For i ¼ 1; . . . ;m, we have uieI�
N .
(2)
 For all positive integers i, we have ti40.

(3)
 For i ¼ 1; . . . ;K , we have �Nti 2 T0

N .

(4)
 For i ¼ 1; . . . ;K , we have PNðtiÞ ¼ PN ðti�Þ.

(5)
 For i ¼ 1; . . . ;K , we have yi ¼ pi.
Conditions 2 and 3 imply that

0 ¼ t0ot1ot1ot2ot2o � � �otKotKpum.

Condition 1 with i ¼ m implies further that tj4um for all j4K , so ðtK ; um� � RnI�
N .

We know that PNðt0Þ ¼ CN ðt0Þ ¼ k0. Suppose, for some i 2 f0; . . . ;K � 1g, that
PNðtiÞ ¼ CN ðtiÞ. Then the coupling gives PN ðtÞ ¼ CNðtÞ for all t 2 ½ti; tiþ1Þ.
Condition 4 gives PNðtiþ1Þ ¼ PN ðtiþ1�Þ. Conditions 2 and 3 imply that CN ðtiþ1Þ

is the coagulation of CN ðtiþ1Þ by yiþ1. Since PNðtiþ1Þ is the coagulation of PNðtiþ1�Þ

by piþ1, condition 5 ensures that PN ðtiþ1Þ ¼ CNðtiþ1Þ. Thus, PNðtiÞ ¼ CNðtiÞ

for i ¼ 0; 1; . . . ;K , and the coupling combined with the fact that PN ðtK Þ ¼ CN ðtK Þ

gives PN ðtÞ ¼ CNðtÞ for all t 2 ðtK ; um�. Thus, we have PNðtÞ ¼ CN ðtÞ for all
t 2 ½0; um�nI

�
N . Therefore, by condition 1, PN ðuiÞ ¼ CNðuiÞ for i ¼ 1; . . . ;m. It thus

remains only to show that conditions 1–5 occur with high probability. For the rest of
the proof, we allow the constant C to change from line to line.

If ui 2 I�
N , then there exists t 2 TN such that �Nui 2 ½t; tðtÞ�. Therefore, by

Lemma 6.3,

Pðui 2 I�
N for some i 2 f1; . . . ;mgÞp

C logN

N
.

Likewise, if tio0 for some i, then �Ntip0ptð�NtiÞ and �Nti 2 TN . It follows that
Pðtio0 for some iÞpCðlogNÞ=N by Lemma 6.3.
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To deal with conditions 3, 4, and 5, let lj ¼ jum=N for j ¼ 0; 1; . . . ;N, and define
the intervals I1; . . . ; IN by I j ¼ ½lj�1; lj�. Note that the number of the points ti in an
interval I j is Poisson with mean umgN . Therefore, the probability that some point ti

falls in I j is at most umgNpC=N. The probability that two or more points fall in I j is
at most u2

mg
2
NpC=N2. If there is a point ti 2 I j with �NtieT0

N , then either there are
two points in I j or there is one point in I j and lj 2 I�

N . The event that there is at least
one point in I j is independent of the event that lj 2 I�

N , so using Lemma 6.3 again,
the probability that both occur is at most CðlogNÞ=N2.

When the number of blocks in the coalescent is at most n, the total transition rate
of the process PN is bounded by n

2

 �
þ NgN . The probability that there is any point ti

in I j is at most C=N, so by Lemma 6.1,

PðPNðtiÞaPNðti�Þ for some ti 2 I jÞp
C

N

n

2

� �
þ NgN

� �
E½ti � ti�p

C logN

N2
.

Finally, we may choose d small enough that PðsipdÞo�, and then (6.4) gives

Pðyiapijti 2 I jÞo�þ
Cd

logN
,

where Cd is a constant that depends on d. Therefore, Pðyiapi for some ti 2 I jÞp
�=N þ Cd=ðN logNÞ. Since there are only N intervals I j, we can add these bounds to
show that the probability that conditions 1 through 5 all hold is at least 1� � for
sufficiently large N, which implies the statement of the proposition. &

Proof of Theorem 2.2. Let 0ou1o . . .oum be fixed times. Let �40. Define LN as in
Lemma 6.2, and let PN be a Pn-valued LN -coalescent. In view of Proposition 6.4, it
suffices to show that for all p1; . . . ;pm 2 Pn, we have

jPðPN ðuiÞ ¼ pi for all i 2 f1; . . . ;mgÞ � PðPðuiÞ ¼ pi for all i 2 f1; . . . ;mgÞjo�

for sufficiently large N. Therefore (see [24]), it suffices to show that the measures LN

converge weakly to L. Thus, we need to show (see [5, Theorem 2.1]) that for any

bounded uniformly continuous function h on ½0; 1�, we have
R 1
0 hðxÞLN ðdxÞ !R 1

0 hðxÞLðdxÞ as N ! 1. By the definitions of LN and L, it suffices to show thatR 1
0 hðxÞZN ðdxÞ !

R 1
0 hðxÞZðdxÞ as N ! 1 for any bounded uniformly continuous

function h on ð0; 1�. By the definitions of the measures ZN and Z, this is equivalent to
showing that

lim
N!1

Z L

�L

Z 1

0

shðe�rN ðxÞ logð2NÞ=sÞNmNðdx � dsÞ ¼

Z L

�L

Z 1

0

shðe�rðxÞ=sÞmðdx � dsÞ

(6.6)

for any bounded uniformly continuous function h on ð0; 1�. However, it is easy to
deduce (6.6) from the boundedness and uniform continuity of h, the uniform
convergence of ðlog 2NÞrN to r, the continuity of r, and the weak convergence of the
measures NmN to m. &
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Proof of Proposition 3.2. Proposition 3.2 can be proved by repeating the proof of
Proposition 6.4 with minor changes. To prove the first part of the proposition, we
construct the coalescent process PN as before. Because NmN ¼ m and logð2NÞrN ¼ r

for all N, we have LN ¼ L for all N. It follows from Lemma 6.2 that PN is a
L-coalescent for all N. Thus, it suffices to show (6.5), but with C=ðlogNÞ on the
right-hand side instead of �. Because we are assuming that m is concentrated on
½�L;L� � ½�; 1� for some �40, we can choose d ¼ � and drop the indicator from the
right-hand side of (6.4) to get a bound of C�=ðlogNÞ. We then obtain C=ðlogNÞ on
the right-hand side of (6.5) by following the same steps as before.

To prove the second part of Proposition 3.2, we modify the definition of PN .
Conditional on Ai, we give pi the distribution QRðrN ðxiÞ=si ;b2NsicÞ;n. We set pi ¼ k0 on
Ac

i . The intensity measure of K 0
N is then given by l� J, where, for all pak0, we have

JðpÞ ¼
Z L

�L

Z 1

0

sQRðrN ðxÞ=s;b2NscÞ;nðpÞNmNðdx � dsÞ

¼

Z
D

Qdx ;nðpÞGN ðdxÞ ¼

Z
D

Qdx ;nðpÞ
X1
j¼1

x2
j

 !�1

XN ;0ðdxÞ.

By comparing this with (3.2), we see that the process PN is a XN-coalescent. It
follows from Proposition 3.1 that we can replace Cd=ðlogNÞ on the right-hand side
of (6.4) by Cd=ðlogNÞ

2. This gives the second part of the proposition. &
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