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Summary

Background: Soil surrounding selenium (Se) hyperaccumula-
tor plants was shown earlier to be enriched in Se, impairing
the growth of Se-sensitive plant species. Because Se levels
in neighbors of hyperaccumulators were higher and Se has
been shown to protect plants from herbivory, we investigate
here the potential facilitating effect of Se hyperaccumulators
on Se-tolerant neighboring species in the field.
Results: We measured growth and herbivory of Artemisia
ludoviciana and Symphyotrichum ericoides as a function of
their Se concentration and proximity to hyperaccumulators
Astragalus bisulcatus and Stanleya pinnata. When growing
next to hyperaccumulators, A. ludoviciana and S. ericoides
contained 10- to 20-fold higher Se levels (800–2,000 mg kg21

DW) than when growing next to nonaccumulators. The roots
of both species were predominantly (70%–90%) directed
toward hyperaccumulator neighbors, not toward other neigh-
bors. Moreover, neighbors of hyperaccumulators were 2-fold
bigger, showed 2-fold less herbivory damage, and harbored
3- to 4-fold fewer arthropods. When used in laboratory choice
and nonchoice grasshopper herbivory experiments, Se-rich
neighbors of hyperaccumulators experienced less herbivory
and caused higher grasshopper Se accumulation (10-fold)
and mortality (4-fold).
Conclusions: Enhanced soil Se levels around hyperaccumula-
tors can facilitate growth of Se-tolerant plant species through
reduced herbivory and enhanced growth. This study is the
first to show facilitation via enrichment with a nonessential
element. It is interesting that Se enrichment of hyperaccumu-
lator neighbors may affect competition in two ways, by
reducing growth of Se-sensitive neighbors while facilitating
Se-tolerant neighbors. Via these competitive and facilitating
effects, Se hyperaccumulators may affect plant community
composition and, consequently, higher trophic levels.

Introduction

The element selenium (Se) is a trace element for many animals
as a component of selenoproteins, which are redox-active and
have a variety of essential functions [1]. Although Se has not
been shown to be essential for higher plants, it is a beneficial
nutrient for many species [2]. Most plants take up selenate
inadvertently because of its similarity to sulfate and readily
metabolize it via the sulfur (S) assimilation pathway [3]. At
higher levels, Se becomes toxic as a result of its chemical simi-
larity to S. Nonspecific replacement of cysteine by selenocys-
teine (SeCys) in proteins disrupts protein function, leading to
toxicity and death [4].
*Correspondence: epsmits@lamar.colostate.edu
Although Se is present at low levels in most soils, it is
particularly abundant in seleniferous soils such as Cretaceous
shale, which typically contains 1–10 mg Se kg21 and may
reach 100 mg Se kg21 [5]. Some plants native to such selenif-
erous soils hyperaccumulate Se to levels >1,000 mg kg21 dry
weight (DW) and can even reach levels up to 15,000 mg kg21

DW (1.5%) [6]. Although most plants cannot distinguish
between Se and S, hyperaccumulators preferentially take up
Se over S and store Se in all plant parts. Most of the Se in
hyperaccumulators is stored in the form of methyl-SeCys.
This amino acid is not incorporated into protein and can
therefore be safely accumulated, explaining the extreme Se
tolerance of hyperaccumulators [7]. Nonhyperaccumulator
plants store more toxic forms of Se such as inorganic
selenate [8–10].
The functional significance of Se hyperaccumulation has

been a topic of recent study. Selenium accumulation has
been shown to protect plants from a wide variety of herbi-
vores, including vertebrates and invertebrates with different
feeding modes [11–16]. This protection was based on
both deterrence and toxicity. Selenium-based deterrence
might be due to the highly odoriferous forms of volatile
Se that are emitted by Se-rich plants [3]; additionally, it is
possible that Se-rich plant material has an unattractive taste.
Besides Se, other hyperaccumulated elements (As, Cd, Ni,
Zn) have been shown to protect plants from herbivory [17].
In addition to protecting plants from herbivores, Se accumula-
tion has been shown to reduce infection by two pathogenic
fungi [10].
More recently, evidence was found that Se hyperaccumula-

tors phytoenrich their surrounding soil with Se and that this
may serve as a form of elemental allelopathy against Se-sensi-
tive neighboring plants [18]. Soil collected around Se hyperac-
cumulators Astragalus bisulcatus and Stanleya pinnata was
toxic to the Se-sensitive species Arabidopsis thaliana, and
resulted in enhanced Se accumulation as compared to soil
collected around nonhyperaccumulators in the same selenif-
erous area. The Se concentration in hyperaccumulator soil
appeared to be high enough to be responsible for the
observed toxicity, as judged from agar experiments with
similar Se concentrations. In the field, neighboring plants of
hyperaccumulators also showed enhanced Se levels [18].
Although the degree of ground cover was slightly lower around
hyperaccumulator species in the field [18], there was no
apparent toxicity in neighboring plants of hyperaccumulators,
in contrast to the laboratory experiments using A. thaliana.
This observation prompted us to further study two neighboring
species that contained particularly elevated Se levels without
ill effects: Artemisia ludoviciana and Symphyotrichum
ericoides. Because enhanced plant Se accumulation has
been shown to provide ecological benefits, particularly protec-
tion from herbivores, we hypothesized that the enhanced Se
levels in Se-tolerant neighbors of hyperaccumulators may be
facilitative for these species.
In facilitation, benefactors (also called nurse plants) can

benefit neighboring plants (beneficiaries) in several ways.
Direct facilitative effects may involve giving protection from
sun, wind, extreme temperatures, or herbivores, better access
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Figure 1. Size Comparison of A. ludoviciana and

S. ericoides Growing around Hyperaccumulator

Species A. bisulcatus and S. pinnata or Less

Than Four Meters from Hyperaccumulator Vege-

tation in Seleniferous Habitat in Fort Collins, Col-

orado

(A) and (B) show shoot biomass, (C) and (D) show

stem length, and (E) and (F) show number of

leaves. Values shown represent means 6 stan-

dard error of the mean (SEM) (n = 16); different

lowercase letters above bars indicate signifi-

cantly different means (p < 0.05).
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to nutrients, or protection from toxins. Facilitated nutrient
access may be achieved via nutrient pumping, N2 fixation, or
excretion of metal chelators. Indirect facilitative effects may
involve a negative effect of the benefactor on competitors or
herbivores of the beneficiary [19, 20]. Facilitation is especially
important during the most sensitive seedling stage of the
beneficiary. It is most prevalent in areas where the beneficiary
is at the edge of its geographical range, and more generally in
harsh environments with respect to water supply, tempera-
ture, exposure, soil quality, and herbivory pressure. Under
such adverse conditions, competition is thought to become
a less important and facilitation a more important plant-plant
interaction [21]. The benefactor plant may experience the
relationship with its beneficiary as neutral (commensalism) or
may experience competition, particularly when the beneficiary
increases in size.

So far there is little information on the possible effects
of plant elemental accumulation on plant-plant interactions,
particularly with respect to facilitation. In cocropping
experiments on metal-polluted soil, in the context of phytore-
mediation, metal accumulating species were found to facili-
tate the growth of less metal-tolerant neighbors by removing
the toxic metal. This was found for Salix caprea, which
improved the growth of Carex flava [22], and for the Zn/Cd
hyperaccumulator Sedum alfredii,
which improved the growth of Zea
mays [23]. In this study, we investi-
gated the facilitative effects of two Se
hyperaccumulators, A. bisulcatus and
S. pinnata, on the neighboring species
A. ludoviciana and S. ericoides, all
growing in their natural seleniferous
habitat. We measured the neighbors’
Se concentration and size, as well
as their susceptibility to herbivory,
as a function of their proximity to
hyperaccumulators.

Results

Selenium Hyperaccumulators
A. bisulcatus and S. pinnata

Positively Affect Growth and Se
Accumulation

in Neighbors
In their natural seleniferous habitat, the
species A. ludoviciana and S. ericoides
were 2- to 3-fold taller and had
more leaves when growing next to the
hyperaccumulators A. bisulcatus and
S. pinnata than when growing next to nonhyperaccumulators
(Figure 1). There was also a pronounced difference in leaf Se
concentration in A. ludoviciana and S. ericoides plants
depending on their proximity to hyperaccumulators: leaf Se
levels were 10- to 20-fold higher when they were growing
next to hyperaccumulators as compared to when they were
growing away from them (Figures 2A and 2B). As a result, over-
all Se accumulation per plant (concentration 3 biomass) was
20- to 40-fold higher for A. ludoviciana and S. ericoides
growing next to hyperaccumulators. Because Se hyperaccu-
mulators are known to contain not only higher Se levels but
also higher S levels than other vegetation on seleniferous
soils [6], we also compared the S levels of the A. ludoviciana
and S. ericoides plants under study. Leaf S levels in
A. ludoviciana were significantly higher (by 40%–50%) when
growing next to hyperaccumulators (Figure 2C); in
S. ericoides the S level was also somewhat elevated (25%)
when growing next to A. bisulcatus but not next to S. pinnata
(Figure 2D). The soil Se levels around A. bisulcatus and
S. pinnata were 7- to 13-fold higher compared to those in
soil collected around nonhyperaccumulators (Figure 2E).
The soil S levels were 3- to 5-fold higher around the hyperac-
cumulators than around nonaccumulators (Figure 2F), but
this difference was only significant for A. bisulcatus.



Figure 2. Selenium and Sulfur Concentration in

Leaves and Soil near Hyperaccumulators and

Nonhyperaccumulators

(A–D) Selenium (Se) and sulfur (S) concentration

in leaves of A. ludoviciana and S. ericoides

collected from around hyperaccumulators

(A. bisulcatus andS. pinnata) or from around non-

hyperaccumulator vegetation in the same selenif-

erous habitat.

(E and F) Soil Se and S concentration adjacent to

the hyperaccumulators and nonhyperaccumula-

tors. Values shown represent means 6 SEM

(n = 16); different lowercase letters above bars

indicate significantly different means (p < 0.05).
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A. ludoviciana and S. ericoides Roots Grow toward
Hyperaccumulator Neighbors

The finding that A. ludoviciana and S. ericoides appear to
benefit from their elevated Se levels when growing next to
hyperaccumulators in terms of above-ground biomass led us
to investigate below-ground root-root interactions. The
taproots of both A. ludoviciana and S. ericoides were directed
predominantly (70%–90%) toward their hyperaccumulator
neighbor when growing next to A. bisulcatus (Figures 3A
and 3B) or S. pinnata (Figures 3C and 3D; see also Table S1
available online). In contrast, roots of both species did
not grow in any particular horizontal direction when the
plants were situated next to the nonaccumulator legume
Medicago sativa (Figures 3E and 3F; Table S1). Although
the angle of root growth was horizontal in almost all cases
when the plants were growing next to a hyperaccumulator, it
was vertical in about a third of the plants growing next to
M. sativa.

High-Se Neighbors of Hyperaccumulators Are Protected
from Herbivory

Because Se accumulation has been found to protect other
plant species from herbivory, the number of herbivores and
degree of herbivore damage were
surveyed on the high- and low-Se
A. ludoviciana and S. ericoides plants
growing next to or far away from hyper-
accumulators. The number of arthro-
pods per plant was 3- to 4-fold lower
on plants growing next to hyper-
accumulators than on plants growing
away from hyperaccumulators (Figures
4A and 4B). Similarly, the number of
damaged leaves per plant was w2-fold
lower for plants growing next to hyper-
accumulators (Figures 4C and 4D).
S. ericoides plants growing next to

hyperaccumulators had two distinct
leaf types, prompting us to further inves-
tigate herbivory and Se concentration in
the small versus big leaves. Even though
the plants had many more small leaves
than big leaves (w17-fold, Figure S1A),
herbivory damagewas 3-foldmore prev-
alent on big than small leaves (Fig-
ure S1B). Overall, w75% of the big
leaves showed herbivory, versus only
2.5% of the small leaves (Figure S1C).
Interestingly, the Se concentration was 10- to 25-fold higher
in the small leaves than in the big leaves (Figure S1D).
To compare herbivory on A. ludoviciana and S. ericoides as a

function of their proximity to hyperaccumulators under more
controlled conditions, we collected plants from both species
next to A. bisulcatus or away from hyperaccumulators, trans-
ferred to pots, and taken to the laboratory. Grasshoppers were
also collected from the same field site. Before being offered to
grasshoppers in choice and nonchoice experiments, the plants
were characterized in terms of height, number of leaves, and Se
concentration.Similar toourearlier survey,plantsofbothspecies
were taller and had more leaves and a higher Se concentration
(16- to 22-fold) when growing next to the hyperaccumulator
than when growing next to nonhyperaccumulators (Figure S2).
In the choice experiment, the grasshoppers preferentially

targeted the low-Se plants collected next to nonhyperaccumu-
lators rather than high-Se plants of the same species collected
next to hyperaccumulators (Figures 5A–5C). Symphyotrichum
ericoides showed significantly less stem height loss and less
leaf loss for the high-Se plants. For A. ludoviciana, this prefer-
ence was only significant for leaf loss but not for stem height
loss, but we noticed that its stems were in several cases
clipped by the grasshoppers, but the clippings were left



Figure 3. Root Direction of Neighboring Plants

Relative to Hyperaccumulators and Nonaccumu-

lators

A. ludoviciana in relation to A. bisulcatus (A),

S. ericoides in relation to A. bisulcatus (B),

A. ludoviciana in relation to S. pinnata (C),

S. ericoides in relation to S. pinnata (D),

A. ludoviciana in relation to M. sativa (E), and

S. ericoides in relation to M. sativa (F). Values

shown represent means 6 SEM (n = 4 for A–D

and n = 3 for E and F).
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uneaten. Despite the apparent avoidance of high-Se plants by
the grasshoppers, grasshopper mortality over the course of
the experiment was substantial: only 5%–20% survived
(Figures 5D and 5E). Grasshopper Se accumulation in the
animals that had fed on A. ludoviciana and S. ericoides for
6 days contained 10- and 20-fold higher Se levels, respec-
tively, than grasshoppers from the field (Figure 5F). The grass-
hoppers that fed on S. ericoides reached higher tissue Se
levels, showed lower survival, and died more rapidly than
those that fed on A. ludoviciana (Figures 5D–5F).

In the nonchoice experiment, the high-Se A. ludoviciana and
S. ericoidesplants originating fromaround hyperaccumulators
lost less stem height and fewer leaves than their low-Se
counterparts collected next to nonhyperaccumulators (Figures
6A–6C; Figure 7). The animals that had fed on high-Se
plants showed 20% survival after 6 days, whereas the animals
that had fed on low-Se plants showed 50%–80% survival
over the same time period (Figures 6D and 6E). Furthermore,
the tissue Se concentrations in grasshoppers that had fed on
plants collected next to hyperaccumulators were 15-fold
(A. ludoviciana) and40-fold (S. ericoides) higher than in animals
collected in the field (Figure 6F). Animals that fed on plants
collected from around hyperaccumulators also contained on
average 2- to 10-fold higher Se levels than animals that fed
on plants from the same species
collected from around nonhyperaccu-
mulators; these levels were not signifi-
cantly higher, though (Figure 6F).

Discussion

In this study, we present evidence that
Se hyperaccumulators can act as
benefactor plants (also known as nurse
plants), facilitating the growth of Se-
tolerant neighboring plants. When
growing next to hyperaccumulators
A. bisulcatus and S. pinnata, as com-
pared to nonhyperaccumulator neigh-
bors, A. ludoviciana and S. ericoides
were bigger and showed reduced
herbivory damage and arthropod load.
These neighbors of hyperaccumu-
lators were also better protected from
grasshopper herbivory in laboratory
experiments, owing to both deterrence
and toxicity. The herbivory protection
was likely due to Se enrichment:
A. ludoviciana and S. ericoides con-
tained 10- to 20-fold elevated Se levels
(800–2,000 mg kg21 DW) when growing
next to a hyperaccumulator neighbor. These are similar to hy-
peraccumulator levels and high enough to protect plants from
a wide variety of herbivores [11, 12, 14–16, 24]. Indeed, for
S. ericoides, the herbivory experienced by the high-Se neigh-
bors of hyperaccumulators was almost exclusively on those
leaves that had the lowest Se levels.
The Se enrichment of A. ludoviciana and S. ericoidesmay in

part be explained by the finding that soil Se levels were 7- to
13-fold higher around hyperaccumulators. The beneficiary
plants showed preferential root growth toward their hyperac-
cumulator neighbors, which was not observed toward nonhy-
peraccumulatorM. sativa. Thus, it appears that when growing
next to a Se hyperaccumulator, A. ludoviciana and S. ericoides
actively tap into this source of Se, reaching hyperaccumulator
Se levels themselves that they can tolerate and from which
they derive ecological benefit. For further studies, it will be
interesting to investigate the Se tolerance mechanisms of
A. ludoviciana and S. ericoides, e.g., whether they store Se
mainly as methyl-SeCys like their hyperaccumulator neigh-
bors. It will also be interesting to study the mechanisms
responsible for their apparent preferential root growth toward
high-Se areas.
In addition to the demonstrated ecological benefit, it is

feasible that A. ludoviciana and S. ericoides enjoyed



Figure 4. Relation of Arthropods and Damaged

Leaves per Plant to Growing Distance from Hy-

peraccumulators and Nonhyperaccumulators

(A) and (B) show the number of arthropods per

plant on A. ludoviciana and S. ericoides, respec-

tively; (C) and (D) show the number of leaves

damaged per plant of A. ludoviciana and

S. ericoides, respectively, when growing close

to hyperaccumulator species (A. bisulcatus and

S. pinnata) or away from hyperaccumulators

(nonHA). Values shown represent means 6 SEM

(n = 16); different lowercase letters above bars

indicate significantly different means (p < 0.05).
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a physiological benefit from their enhanced Se levels, because
they were so much taller (2-fold) next to hyperaccumulators.
Selenium is a beneficial nutrient for many plants, particularly
for hyperaccumulators, perhaps via protection from oxidative
stresses [2, 25]. The hyperaccumulators may also provide
other benefits like shelter from wind or extreme temperatures
or better access to other elements besides Se. In this context,
it is interesting to note that S levels were 3- to 5-fold elevated
in hyperaccumulator soil and up to 1.5-fold elevated in the
beneficiaries; S levels were shown earlier to be higher in Se hy-
peraccumulators than in nonhyperaccumulators on the same
site [18]. There may also be an indirect facilitating effect
on A. ludoviciana and S. ericoides if hyperaccumulators use
Se as a form of elemental allelopathy to reduce competition
from Se-sensitive neighbors, as indicated by results from
our earlier work [18]. In addition, intraspecific competition
within A. ludoviciana and S. ericoides may play a role: we
observed that the density of A. ludoviciana and S. ericoides
was lower around hyperaccumulators than away from hyper-
accumulators (data not shown). Perhaps there is genetic vari-
ation with respect to Se tolerance within A. ludoviciana and
S. ericoides. If so, the more sensitive individuals may be
selected against around hyperaccumulators, leaving the
tolerant individuals with less competition, resulting in better
growth.

The A. bisulcatus and S. pinnata nurse plants did not show
any obvious positive or negative effects when growing next
to their beneficiaries. A. bisulcatus and S. pinnata are substan-
tially bigger than A. ludoviciana and S. ericoides, so the rela-
tionship of the hyperaccumulators to their beneficiaries is
likely neutral, unless the beneficiaries tap so much Se from
the hyperaccumulators that it would compromise the physio-
logical and ecological benefits the hyperaccumulators derive
from the Se.

The Se levels in the beneficiary plants were increased
10- to 20-fold, whereas the levels in the soil were only 7- to
13-fold elevated. As mentioned, roots
of A. ludoviciana and S. ericoides grew
preferentially toward their hyperaccu-
mulator neighbors, which may have
enabled them to maximize their access
to Se. The preferential root growth of
A. ludoviciana and S. ericoides toward
Se hyperaccumulators may indicate
that they have positive chemitropism
toward Se. Plant roots are well known
to respond positively or negatively to
soil pockets with elevated levels of nutri-
ents or toxins, as well as to the presence
of roots from neighboring plants of the same or different
species [17, 26, 27]. In several earlier reports, hyperaccumula-
tor roots were shown to preferentially proliferate in soil con-
taining the hyperaccumulated element; this was found for
the Zn hyperaccumulator Thlaspi caerulescens [28, 29], the
Cd/Zn hyperaccumulator Sedum alfredii [30], and the Se
hyperaccumulator S. pinnata [31]. Because the soil Se levels
around hyperaccumulators were found to be elevated
compared to soil around nonaccumulators in the same area,
it is possible that the neighboring A. ludoviciana and
S. ericoides responded positively to this soil Se gradient.
However, it is also possible that the hyperaccumulator plants
provide some other positive stimulus that affects their neigh-
bors’ root growth, e.g., higher levels of the nutrient S. The
stimulus does not appear to be nitrogen, because the related
and similarly sized nonaccumulator legume M. sativa did not
influence the direction of root growth in A. ludoviciana and
S. ericoides.
An additional explanation for the finding that the Se levels in

the companion plants were increased by 10- to 20-fold and
those in the soil only 7- to 13-fold may be that the soil Se
around hyperaccumulators is particularly bioavailable. It is
interesting to note in this respect that the Se/S ratio in
S. ericoides and A. ludoviciana was elevated when they were
growing next to hyperaccumulators (0.5 next to A. bisulcatus
and 1.2 next to S. pinnata, as compared to 0.07 when growing
next to a nonhyperaccumulator). The soil Se/S ratio was not
that different: 0.04 next to A. bisulcatus, 0.13 next to
S. pinnata, and 0.03 next to nonhyperaccumulators. The
hyperaccumulators may affect bioavailability as well as the
form of Se in their surrounding soil. For instance, because hy-
peraccumulators accumulate mainly methyl-SeCys [24], litter
deposition may over time change the predominant form of
Se in soil surrounding hyperaccumulators from inorganic Se
(e.g., selenate) to more organic Se such as methyl-SeCys,
which may be more readily taken up by neighbors [9].



Figure 5. Choice Experiment Comparing

Herbivory, Survival, and Selenium Accumulation

of Grasshoppers Given the Choice to Feed on

A. ludoviciana or S. ericoides Plants Collected

Either Next to Hyperaccumulator A. bisulcatus

or Next to Nonhyperaccumulators

(A) shows absolute plant height loss, (B) shows

relative plant height loss, (C) shows number of

leaves lost, (D) shows grasshopper survival on

A. ludoviciana, (E) shows grasshopper survival

on S. ericoides, and (F) shows grasshopper Se

concentration in animals from the field at day

0 and in animals collected from A. ludoviciana

or S. ericoides after 6 days of cocultivation.

Values shown represent means 6 SEM (n = 9

for A–C; n = 3 for D and E; n = 6–8 for F). Different

lowercase letters above bars indicate signifi-

cantly different means (p < 0.05).
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Nonprotein amino acids such as methyl-SeCys have been re-
ported to commonly occur in soils, and their importance in
ecological and physiological processes is becoming increas-
ingly clear, e.g., via antiherbivory, antimicrobial, and allelo-
chemical activity, or protection from stress [32]. It is also
feasible that the bioavailability of Se around hyperaccumula-
tors is affected via the excretion of chelators [33]. In future
studies, it will be interesting to analyze the composition and
activity of hyperaccumulator exudates, particularly with
respect to the presence of Se chelators and selenocom-
pounds. Yet another possible explanation for the finding that
S. ericoides and A. ludoviciana beneficiaries were particularly
enriched in Se relative to their soil may be that these neigh-
boring plants are connected directly with their hyperaccumu-
lator neighbors via mycorrhizae and derive selenocompounds
via this access. It is known that mycorrhizal fungi are often not
host-specific, and one fungal individual can interconnect
neighboring plants of different species, distributing resources
and facilitating plant growth [34].

Facilitation is thought to be especially important in extreme,
harsh environments [35]. The seleniferous site studied here fits
that description well. Not only is the soil seleniferous shale
rock with low soil depth, but the climate
is very dry (average annual precipitation
374 mm per year), with frequent high
winds, cold winters (average 210�C
minimum temperature in January), and
hot summers (average 30�C maximum
temperature in July). In that sense, the
results from this study fit the pattern
observed for facilitation. The novelty of
the study presented here is that it is
the first to show how phytoenrichment
with a nonessential element can facili-
tate growth in neighboring plants in an
ecologically relevant setting. Earlier
studies with metal hyperaccumulators
have only been carried out in phytore-
mediation settings, which are not
very ecologically relevant. Moreover, in
those studies, neighbors of hyperaccu-
mulators did show facilitated growth in
several cases, but that was due to lower
levels of the toxic metal, rather than
higher levels as shown here for Se.
Another very interesting aspect of our current study is that
the sameprocess, enrichment by hyperaccumulators of neigh-
boring plants with Se, can at the same time have a competitive
effect on one class of neighbors (Se-sensitive plants) and
a facilitating effect on another class of neighbors (Se-tolerant
plants).
The finding that hyperaccumulators have a negative effect

on Se-sensitive ecological partners but offer a niche that
may benefit Se-tolerant ecological partners is a recurring
theme in our studies of the ecology of Se hyperaccumulators.
Whereas Se-sensitive plants may suffer toxicity when growing
on the high-Se soil next to hyperaccumulators, Se-tolerant
plants benefit from the associated elevated Se levels because
it protects them from herbivores. Earlier, we found that
whereas Se-sensitive herbivores are deterred by hyperaccu-
mulators and suffer toxicity when forced to feed on them, a
Se-tolerant diamondback moth thrives on hyperaccumulator
S. pinnata [24]. Additional leaf and seed herbivores have been
found to occupy this and other hyperaccumulator species
(C.F.Q. and E.A.H.P.-S., unpublished data). Similarly, whereas
Se-sensitive fungal pathogens were less successful in colo-
nizing high-Se than low-Se plants, Se-tolerant fungi were



Figure 6. Nonchoice Experiment Comparing

Herbivory, Survival, and Se Accumulation of

Grasshoppers Fed A. ludoviciana or S. ericoides

Plants Collected Next to Hyperaccumulator

A. bisulcatus or Next to Nonhyperaccumulators

(A) shows absolute plant height loss, (B) shows

relative plant height loss, (C) shows number of

leaves lost, (D) shows grasshopper survival on

A. ludoviciana, (E) shows grasshopper survival

on S. ericoides, and (F) shows grasshopper Se

concentration in animals from the field at day

0 and in animals collected after 6 days of coculti-

vation with A. ludoviciana or S. ericoides. Values

shown represent means 6 SEM (n = 6 for A–C;

n = 1 for D and E; n = 6–8 for F). Different lower

case letters above bars indicate significantly

different means (p < 0.05).
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observed to thrive in hyperaccumulator rhizosphere and litter
[36, 37]. Moreover, there are indications that native bumblebee
pollinators of hyperaccumulators in seleniferous areas are Se
tolerant [38]. Taken together, Se appears to be very important
for the ecological interactions of Se hyperaccumulator
species, and hyperaccumulators may have a profound effect
on the overall ecology of seleniferous habitats. The enhanced
soil Se levels around hyperaccumulators may have a negative
effect on Se-sensitive plant species while facilitiating Se-
tolerant ones. Via these mechanisms, hyperaccumulators
may affect plant species composition and, consequently,
higher trophic levels. If this is true, hyperaccumulators may
be ecosystem engineers, modifying their local (seleniferous)
habitat, influencing community distribution, and altering
species abundance [39, 40]. This will be an intriguing question
to address in future studies.

Conclusions

This study is the first to show a facilitating effect by means of
enrichment with a nonessential element. Selenium hyperaccu-
mulators enrich their neighbors with Se, and when these
neighboring plants are Se-tolerant, they enjoy the ecological
benefits associated with elevated Se,
i.e., reduced herbivory. Some Se-
tolerant neighbors appear to actively
forage for Se, judged from preferential
root growth toward the hyperaccumula-
tor. Earlier, Se-sensitive plants were
shown to be negatively impacted by
their elevated Se when growing on soil
collected around hyperaccumulators.
Thus, the Se deposited by hyperaccu-
mulators likely has both competitive
and facilitating effects, which may
together affect species composition in
seleniferous areas. This study provides
the framework for future studies investi-
gating the facilitative effects of hyperac-
cumulating plants on their neighbors. In
future studies, it will be interesting to
investigate whether the observed facili-
tation involves only ecological or also
physiological benefits. Furthermore, it
will be interesting to investigate whether
the hyperaccumulators affect Se speci-
ation in their neighbors and to what
extent the soil phytoenrichment with Se is due to litter decom-
position and/or root exudation. Also, species composition and
abundance may be surveyed in more detail close to and away
from hyperaccumulators in the field, to test the effect of the
hyperaccumulators.

Experimental Procedures

Study Site

The field site for this study was Pine Ridge Natural Area in Fort Collins, CO

(40�32.70N, 105�07.87W). The soil and vegetation properties of this selenif-

erous area were described in detail in a previous study [18]. For this study,

we made use of naturally occurring plant species on the site: the two Se hy-

peraccumulating species A. bisulcatus (two-grooved milkvetch, Fabaceae)

and S. pinnata (prince’s plume, Brassicaceae), as well as two species often

found in the vicinity of these hyperaccumulators: Artemisia ludoviciana

(white sage; Asteraceae) and Symphyotrichum ericoides (white heath aster;

Asteraceae). Furthermore, in one study,Medicago sativa (alfalfa; Fabaceae)

was used as a control species.

Effect of Proximity to Selenium Hyperaccumulators on Neighboring

Plant Size and Elemental Concentration

Artemisia ludoviciana and S. ericoides plants were collected from three

locations within the same area: (1) in close proximity (<1 m) to the



Figure 7. Representative Plants Used in the Laboratory Grasshopper

Herbivory Experiments

(A) and (B) show A. ludoviciana, and (C) and (D) show S. ericoides plants

used in the laboratory grasshopper herbivory experiments. The plants

were collected in the field next to hyperaccumulator A. bisulcatus (HA) or

nonhyperaccumulator (nonHA) neighbors. Before exposure to grasshopper

herbivory (A and C) and after 6 days of exposure to grasshopper herbivory

in the nonchoice experiment (B and D) (data shown in Figure 6). The inset in

(B) shows a representative grasshopper at the end of the experiment.
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hyperaccumulator A. bisulcatus (2) in close proximity to hyperaccumulator

S. pinnata, and (3) next to nonhyperaccumulator species and >4 m from any

hyperaccumulator. The sampling was as follows: four plants from each hy-

peraccumulator species (A. bisulcatus or S. pinnata) were selected. The hy-

peraccumulators selected were at least 8 m from other hyperaccumulators

of the same species that were sampled. These plants were selected

because they were the largest of their species at the field site, they had

the highest concentration of Se, and they had populations of both

A. ludoviciana and S. ericoides growing in close proximity (<1 m). Around

each hyperaccumulator plant, four A. ludoviciana and four S. ericoides

plants were collected. For comparison, the same number of

A. ludoviciana and S. ericoides plants were collected from locations at least

4 m away from any hyperaccumulator plant. The A. ludoviciana and

S. ericoides were analyzed for total biomass (dry weight of root plus shoot),

stem height, and number of leaves. The shoot Se and S concentration was

also determined, as described below. In addition, soil was collected from

between the A. ludoviciana or S. ericoides plants and their neighbors

(A. bisulcatus, S. pinnata, or nonhyperaccumulators). The soil samples

were collected from the top 5 cm, after removal of any litter. The soil was

sieved, acid-digested, and analyzed for Se and S as described earlier [18].

Determination of Root Directional Growth

Four plants from each of the hyperaccumulator species (A. bisulcatus or

S. pinnata) were selected, and around each hyperaccumulator plant, the

direction of root growth was determined for ten A. ludoviciana and ten

S. ericoides plants. The root direction was classified as toward the hyperac-

cumulator when the root was bent horizontally and grew in the direction of

the hyperaccumulator neighbor (i.e., in the quarter section of the radius that

was closest to the hyperaccumulator). Root direction was classified as

neutral when the root grew vertically or when it grew bent horizontally in

a direction that was neither toward nor away from the hyperaccumulator

neighbor (i.e., in the two quarter sections of the radius that were at interme-

diate distance from the hyperaccumulator neighbor). Finally, root growth

was classified as away from the hyperaccumulator when the root grew

bent horizontally, in a direction pointing away from the hyperaccumulator

(i.e., in the quarter section of the radius that was furthest from the hyperac-

cumulator). The same experimental procedure was followed for the control

speciesM. sativa, except that only four A. ludoviciana and four S. ericoides
plants were analyzed around each of the selectedM. sativa individuals, and

only three M. sativa plants were chosen. The reason for this lower number

was that there were fewer A. ludoviciana and S. ericoides plants around

M. sativa.

Field Arthropod and Herbivory Survey

The same A. ludoviciana and S. ericoides individuals, whose collection is

described above under the heading ‘‘Effect of Proximity to Se Hyperaccu-

mulators on Neighboring Plant Size and Elemental Concentration,’’ were

surveyed for the number of arthropods they harbored in the field at the

time of collection, as well as for their number of leaves with signs of

herbivory. The arthropod collection was carried out as described earlier

[41]. In short, this was done by shaking the plant vigorously inside a bucket

and using an aspirator to collect the resulting animals. Leaves were classi-

fied as showing herbivory when part of the leaf or leaf margin wasmissing or

when there was a hole in the leaf; necrotic spots were not counted as

herbivory. Because S. ericoides showed two different types of leaves (small

and large), herbivory was scored separately for both leaf types, and the Se

levels in both leaf types were measured.

Laboratory Herbivory Experiments

Entire A. ludoviciana and S. ericoides plants were dug out in the field and

placed in 10 cm diameter pots in their own field soil. For each species,

two categories of plants were collected: (1) in close proximity to

A. bisulcatus and (2) next to a nonhyperaccumulator and >4 m away from

any hyperaccumulator. There were not enough A. ludoviciana and

S. ericoides plants left in the field next to S. pinnata to look at the effect of

that hyperaccumulator as well. The plants were taken to the lab, and in

preparation for controlled herbivory experiments, the stem height of each

individual plant was measured and the number of leaves counted; in addi-

tion, a leaf sample was collected for Se analysis. Grasshoppers were

collected in bulk from the same field site, using a sweep net. Earlier [14],

a similar sweep on this site yielded the following genera: Amphitornus,

Arphia, Aulocara, Cordillacris, Dissosteira, Hesperotettix, Melanoplus,

Mermiria, Spharagemon, Trachyrhachys, and Trimerotropis. This mixture

of Orthoptera species collected from a Se hyperaccumulator habitat was

used to simulate Orthoptera herbivory experienced by these plants under

natural conditions.

Choice Feeding Experiment

For each of the two species A. ludoviciana and S. ericoides, three aquaria

were prepared, each containing three (high-Se) plants collected next to

A. bisulcatus and three (low-Se) plants collected next to nonhyperaccumu-

lator neighbors. Each of these plants had been analyzed for height, number

of leaves, and Se concentration as described above. Eight grasshoppers

were added to each aquarium, making sure that for each aquarium, animals

of similar size were used, and the aquaria were covered. Over the subse-

quent 6 days, the plants were watered every 2 days, and grasshopper

survival was counted daily. At the end of the 6-day herbivory trial, the re-

maining stem height and number of leaves of each plant were measured,

and plant height and leaf loss were calculated from the difference between

the initial and final numbers. Furthermore, the live and dead grasshoppers

were collected and analyzed for Se as described below.

Nonchoice Feeding Experiment

For each of the two species A. ludoviciana and S. ericoides, two aquaria

were prepared, each containing six plants: one aquarium contained (high-

Se) plants collected next to A. bisulcatus, and the other aquarium (low-Se)

plants collected next to nonhyperaccumulator neighbors. Ten grasshop-

pers were added to each aquarium, and herbivory and grasshopper survival

were monitored over 6 days as described above.

Elemental Analysis

Leaves, soil, and animals collected as described above were acid-digested

and analyzed for Se and S as described earlier [6]. In short, the samples

were dried at 50�C for 48 hr, weighed, and digested in nitric acid as

described [42]. Inductively coupled plasma atomic emission spectroscopy

(ICP-AES) was used as described by [43] to determine each digest’s

elemental composition.

Statistical Analysis

The software programs JMP-IN (version 3.2.6) and SAS (both from the SAS

Institute, Cary, NC) were used for statistical data analysis. Table S1 shows

the results of all statistical analyses. A Student’s t test was used to compare

differences between two means. Analysis of variance (ANOVA) followed by

a post hoc Tukey-Kramer test was used when comparing multiple means.
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ABrown-Forsythe test for unequal variances and a normal quantile plot was

determined to ensure that the data conformed to the assumptions of our

statistical analyses. In cases where distribution was not normal, a data

transformation was performed. Specifically, an arcsine transformation

was performed for the S. ericoides data in Figure 5B and a log transforma-

tion for the A. ludoviciana S levels in Figure 2C. In cases where transforma-

tions still did not yield normal distribution, different nonparametric tests

were performed (Wilcoxon [Kruskal-Wallis], Median, Van der Waerden). All

nonparametric tests showed the same results; the Van der Waerden results

are shown in Table S1. For comparing direction of root growth (Figure 3),

a chi-square test of association, a Z-test, and Fisher’s exact test were

used. The first null hypothesis tested (in the test of association) was that

root growth of the two neighboring species (A. ludoviciana and

S. ericoides) was not different in direction between the three species

A. bisulcatus, S. pinnata, and M. sativa. The second null hypothesis tested

(for the Z-test) was that the proportion of roots growing toward the central

plant was not different between hyperaccumulator and M. sativa versus

a one-sided alternative that the proportion of roots growing toward the hy-

peraccumulator was higher than the proportion growing toward M. sativa.

To alleviate the problem that in some cases the expected frequency was

less than 5, we performed the Fisher’s exact test. For the grasshopper Se

comparisons (Figure 5; Figure 6), the live and dead animals did not show

significantly different Se levels and therefore the data were pooled. For

grasshopper survival percentages, the data are the percentage of total

grasshoppers that survived during the experiment; therefore no statistical

analysis could be carried out on those data (Figures 6D and 6E).

Supplemental Information

Supplemental Information includes two figures and one table and can be

found with this article online at doi:10.1016/j.cub.2011.07.033.
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