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Abstract

We study the group of extensions in the category of Drinfeld modules and Anderson’s t-

modules, and we show in certain cases that this group can itself be given the structure of a t-

module. Our main result is a Drinfeld module analogue of the Weil–Barsotti formula for

abelian varieties. Extensions of general t-modules are also considered, in particular extensions

of tensor powers of the Carlitz module. We motivate these results from various directions and

compare to the situation of elliptic curves.
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1. Introduction and statement of results

In this paper, we investigate extensions of Drinfeld modules using the well-known
analogy between abelian varieties and Drinfeld modules. We prove analogues for
Drinfeld modules of the classical Weil–Barsotti formula and the Cartier–Nishi
biduality theorem for abelian varieties.

Let A be an abelian variety over a field k; we denote the dual abelian variety by
A3: The Weil–Barsotti formula states that for any k-algebra R; there is a natural,

functorial isomorphism Ext1RðA;GmÞDA3ðRÞ where the first group is calculated in

the category of group schemes over Spec R [15]. In other words, the functor
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R/Ext1RðA;GmÞ (on k-algebras) is represented by the dual abelian variety A3: The

biduality theorem of Cartier–Nishi states that there is a canonical isomorphism

Ext1RðA3;GmÞDAðRÞ; this can also be restated: there is a canonical isomorphism of

abelian varieties ðA3Þ3DA: Theorem 1.1 provides a Drinfeld module analogue of
these results.

There is also an important relationship between the de Rham cohomology (in

characteristic zero) of A and the universal additive (or vectorial) extension Ay of A

[14]. A de Rham theory for Drinfeld modules based on additive extensions has
already been developed by Anderson, Deligne, Gekeler, and Yu [11]. We pursue
generalizations for t-modules.

We remark that extensions by Gm and Ga have been used by Deligne [9, Section
10] to define Cartier duality and the de Rham theory for 1-motives.

Notation: Let K be a perfect field of characteristic p40; and let Fq½t� be the

polynomial ring in one variable over the finite field Fq where q ¼ pm: Fix an Fq-linear

homomorphism i:Fq½t�-K with y :¼ iðtÞ: Throughout, all Drinfeld modules and t-

modules are defined with respect to the map i; and in particular all Drinfeld modules
are Fq½t�-modules.

The ring Kftg is the ring of twisted polynomials in K such that for
xAK; tx ¼ xqt: A d-dimensional t-module over K is at first an Fq-linear ring

homomorphism

F : Fq½t�-MatdðKftgÞ;

such that, as a polynomial in t with coefficients in MatdðKÞ;

FðtÞ ¼ ðyId þ NÞt0 þ M1t1 þ?;

where Id is the identity matrix and N is nilpotent. In general, a t-module over K is an

algebraic group E defined over K ; which is isomorphic over K to Gd
a ; together with a

choice of Fq-linear endomorphism t:E-E such that dðt 	 yÞnLieðEÞ ¼ 0 for all n

sufficiently large. By choosing an isomorphism EDGd
a ; one can specify a

homomorphism F : Fq½t�-MatdðKftgÞ as above. To denote this choice of

coordinates, we write E ¼ ðGd
a ;FÞ:

Let C denote the Carlitz module, C : Fq½t�-Kftg; defined by CðtÞ ¼ yþ t:
We take Ext1ð
; 
Þ to be the bifunctor Ext1 from the additive category of t-modules

to the category of abelian groups. In Section 2 we see that, for two t-modules E and
F ; those extensions which induce trivial t-module extensions of their respective

tangent spaces comprise a canonical subgroup Ext10ðE;FÞDExt1ðE;FÞ: For a t-

module E; we let E3 :¼ Ext10ðE;CÞ:
Our analogue of the classical Weil–Barsotti formula and the Cartier–Nishi

biduality theorem is the following

Theorem 1.1. Let E be a Drinfeld module of rank rX2:
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(a) The group Ext1ðE;CÞ is naturally a t-module of dimension r and sits in an exact

sequence of t-modules

0-E3-Ext1ðE;CÞ-Ga-0:

Furthermore, E3 is the Cartier–Taguchi dual t-module associated to E [21], and

in particular, E3 is isomorphic to the ðr 	 1Þth exterior power
Vr	1

E of E.
(b) The group Ext1ðE3;CÞ is also naturally a t-module of dimension r and sits in an

exact sequence

0-E-Ext1ðE3;CÞ-Gr	1
a -0:

Moreover, we have a biduality: ðE3Þ3DE:
(c) Any morphism b : E-F of Drinfeld modules (of rank X2) induces a morphism of

dual t-modules b3 : F3-E3:

The proof of Theorem 1.1 also shows that the t-module structure on Ext1ðE;CÞ is
compatible with base change of the field K ; see Section 5.

Parts (a) and (b) of Theorem 1.1 for Drinfeld modules of rank 2 have been proven
by Woo [22]. Taguchi [21] has constructed a Weil pairing (compatible with the
Galois action) on the torsion points of E and E3: Taguchi remarks in [21] that his
definition of the Cartier dual E3 of a Drinfeld module E does generalize to some
(but not all) t-modules.

Theorem 1.1 requires us to work outside the category of Drinfeld modules, and

one may ask for general t-modules E and F over K whether Ext1ðE;FÞ has the

structure of a t-module. In this vein, we have the following result. Let C#n denote
the nth tensor power of the Carlitz module [2].

Theorem 1.2. If n4m; then Ext1ðC#m;C#nÞ has the structure of a t-module, and

there is an exact sequence of t-modules

0-C#ðn	mÞ-Ext1ðC#m;C#nÞ-L-0;

where L is an m-dimensional iterated extension of Ga: Moreover,

Ext10ðC#m;C#nÞDC#ðn	mÞ:

Since the (tractable) period *pn	m of C#ðn	mÞ is a power of the period *p of the
Carlitz module (see Goss [12, Chapter 3]), one should compare Theorem 1.2 with the
isomorphism

Ext1MHSðZðmÞ;ZðnÞÞDC=ð2piÞn	m
Z; n4m;

from the theory of mixed Hodge structures [8].
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The question of whether an analogue of the Weil–Barsotti formula holds for
general t-modules is also interesting. Experimental evidence suggests that the general
situation is subtle and that such formulas are not always valid for pure t-modules,

e.g. in the form of Theorem 1.1, a Weil–Barsotti formula does not hold for C#m

because Ext1ðC#m;C#nÞ is not well behaved for npm: See Section 4 for more
details.

As pointed out by the referee, it would be worth investigating the extent to which
Theorems 1.1 and 1.2 are true for Drinfeld modules over rings more general than
Fq½t�: This raises some technical issues, which we discuss in Section 5.

The outline of this paper is as follows. In Section 2, we present definitions and
fundamental results on extensions of t-modules. We prove Theorems 1.1 and 1.2 in
Sections 3 and 4. In Section 5, we consider extensions of t-modules from an analytic

viewpoint, so as to motivate the expectation that Ext1ðE;FÞ can be represented by a
t-module for certain t-modules E and F : We consider the situation of elliptic curves
in Section 6 and compare our results to an unpublished theorem of S. Lichtenbaum
about extensions of elliptic curves over C: We conclude in Section 7 with some
remarks about extensions of t-motives.

2. Extensions of t-modules and biderivations

In this section, we establish definitions and results about extensions of t-modules.
For general definitions of t-modules, we follow the terminology in [12, Chapter 5]. So
as not to lead to confusion, we adhere to the following convention: a ‘‘t-module’’
refers to the object of the same name defined in Section 1, whereas an ‘‘Fq½t�-module’’

is simply a module over the ring Fq½t�:
We point out that the results in this section remain valid in the case that K is not

perfect, though we do not make use of this fact later on.
Let E and F be t-modules over K : An extension of E by F is a t-module X fitting

into an exact sequence of t-modules

0-F-X-E-0: ð1Þ

Then Ext1ðE;FÞ is defined to be the group (under Baer sum) of t-module extensions
of E by F up to Yoneda equivalence.

The main tool which enables us to compute this group is that of biderivations. The
following definitions run parallel to those of Brownawell and the first author [6] and
Gekeler [11], where extensions of t-modules by Ga were investigated.

Let F : Fq½t�-MatdðKÞftg and C : Fq½t�-MateðKÞftg be choices of coordinates

for E and F ; respectively, where MatdðKÞftg is the ring of twisted polynomials with
matrix coefficients. A ðF;CÞ-biderivation is an Fq-linear map

d : Fq½t�-Mate�dðKÞftg;

M.A. Papanikolas, N. Ramachandran / Journal of Number Theory 98 (2003) 407–431410



which satisfies

dðabÞ ¼ CðaÞdðbÞ þ dðaÞFðbÞ 8a; bAFq½t�: ð2Þ

The Fq-vector space of all ðF;CÞ-biderivations is denoted DerðF;CÞ: It is

straightforward to check that a biderivation d is uniquely determined by the single
value dðtÞ; and so if VAMate�dðKÞftg; we define dVADerðF;CÞ to be that
biderivation such that dV ðtÞ ¼ V : In this way, we have an isomorphism of Fq-vector

spaces

V/dV : Mate�dðKÞftg-B DerðF;CÞ: ð3Þ

A biderivation d is called inner if for some UAMate�dðKftgÞ we have

dðaÞ ¼ dðUÞðaÞ :¼ UFðaÞ 	CðaÞU 8aAFq½t�: ð4Þ

The subspace of DerðF;CÞ of inner biderivations is denoted DerinðF;CÞ:
Every ðF;CÞ-biderivation d gives rise to an extension X ¼ ðGdþe

a ; U Þ of E by F by

defining

UðaÞ :¼
FðaÞ 0

dðaÞ CðaÞ

 !
8aAFq½t�:

Again it is straightforward, using (2), to check that U is well defined. Moreover,
every extension of E by F defines a unique biderivation.

We note that if dðUÞ is an inner biderivation then in fact X is split. In this case the

matrix Y :¼ Id 0
U Ie

� �
provides the splitting, where Id ; Ie are identity matrices:

Y	1UðaÞY ¼
FðaÞ 0

0 CðaÞ

 !
8aAFq½t�:

Furthermore, it follows from the above discussion that every split extension arises in
this way.

Suppose we are given two extensions of E by F which are Yoneda equivalent. It
follows easily from the definition of Yoneda equivalence that the corresponding
biderivations differ by an inner biderivation. It is straightforward to check that the

(Baer) sum on Ext1ðE;FÞ corresponds to usual addition on the level of biderivations.
Now the endomorphisms of E and F induce (identical) Fq½t�-module structures on

Ext1ðE;FÞ: That is, if X represents a class in Ext1ðE;FÞ and bAFq½t�; we can define

two t-modules X *b and b*X ; which ultimately represent the same class in

Ext1ðE;FÞ: Explicitly, suppose d is the ðF;CÞ-biderivation corresponding to X and
p : X-E is the natural map in (1). Let

X *b :¼ kerððe; xÞ/FðbÞðeÞ 	 pðxÞ:E"X-EÞ:
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Then X *b is itself a t-module extension of E by F ; and the operation of Fq½t� on it is

given by

ðU*bÞðaÞ ¼
FðaÞ 0

dðaÞFðbÞ CðaÞ

 !
8aAFq½t�:

On the other hand, we can similarly use endomorphisms of F to define an extension
b*X whose t-module structure is given by

ðb*U ÞðaÞ ¼
FðaÞ 0

CðbÞdðaÞ CðaÞ

 !
8aAFq½t�:

To see that X *b and b*X are equivalent extensions, we note that
e:Fq½t�-Mate�dðKÞftg defined by

eðaÞ :¼ dðaÞFðbÞ 	CðbÞdðaÞ 8aAFq½t�

is in fact the inner biderivation dðUÞ; with U ¼ dðtÞ in (4). That is,

b : dð
Þ/dð
ÞFðbÞ and b : dð
Þ/CðbÞdð
Þ ð5Þ

define Fq½t�-module structures on DerðF;CÞ which are the same modulo DerinðF;CÞ:
We record the results from the preceding paragraphs in the following lemma.

Lemma 2.1. Let E ¼ ðGd
a ;FÞ and F ¼ ðGe

a;CÞ be t-modules. Then

Ext1ðE;FÞDDerðF;CÞ=DerinðF;CÞ

as Fq½t�-modules.

For UAMatd1�d2
ðKÞftg; we let dUAMatd1�d2

ðKÞ be the constant term of U as a
polynomial in t; and we define the following subspaces of DerðF;CÞ:

Der0ðF;CÞ :¼ fdADerðF;CÞ: ddðtÞ ¼ 0g;

DersiðF;CÞ :¼ fdðUÞADerinðF;CÞ: dU ¼ 0g:

The utility of Der0ðF;CÞ is derived from the following lemma, whose immediate
corollary follows from Lemma 2.1. Note that Der0 represents a different object here
than in [6,11]. Biderivations in DersiðF;CÞ are called strictly inner, and clearly
DersiðF;CÞDDer0ðF;CÞ: We will study DersiðF;CÞ in more detail in Section 5.

The map dF:Fq½t�-MatdðKÞ defines a non-abelian t-module whose underlying

space is the tangent space LieðEÞDKd : Furthermore, the map

d/dd: DerðF;CÞ-DerðdF; dCÞ

is Fq-linear, and it is Fq½t�-linear modulo inner biderivations.
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Lemma 2.2. Let E ¼ ðGd
a ;FÞ and F ¼ ðGe

a;CÞ be t-modules. The following is an exact

sequence of Fq½t�-modules:

0-
Der0ðF;CÞ

Der0ðF;CÞ-DerinðF;CÞ-
DerðF;CÞ
DerinðF;CÞ-

DerðdF; dCÞ
DerinðdF; dCÞ: ð6Þ

If yAK is transcendental over Fq; then the final map in this sequence is surjective.

We define Ext10ðE;FÞ to be the Fq½t�-submodule of Ext1ðE;FÞ corresponding to

Der0ðF;CÞ=ðDer0ðF;CÞ-DerinðF;CÞÞ:

Corollary 2.3. The sequence in Lemma 2.2 corresponds to an exact sequence of Fq½t�-
modules,

0-Ext10ðE;FÞ-Ext1ðE;FÞ-Ext1ðLieðEÞ;LieðFÞÞ;

where the final map is surjective if yAK is transcendental over Fq:

Proof of Lemma 2.2. Injectivity on the left of (6) is clear. To show exactness in the
center, first any dADer0ðF;CÞ maps to 0 in DerðdF; dCÞ: On the other hand,
suppose dADerðF;CÞ and ddADerðdF; dCÞ is inner, say ddðtÞ ¼ UdFðtÞ 	 dCðtÞU
with UAMate�dðKÞftg: Then d	 dðUÞ

F;CADer0ðF;CÞ represents the same class as d in

DerðF;CÞ=DerinðF;CÞ:
In the case that yAK is transcendental over Fq; we show surjectivity on the right.

We suppose dFðtÞ ¼ Idyþ M and dCðtÞ ¼ Ieyþ N; where M and N are nilpotent.
Without loss of generality, we can assume M and N are both upper triangular. The
spaces of biderivations DerðdF; dCÞ and DerinðdF; dCÞ are both naturally K-linear,
and the map defining elements of DerinðdF; dCÞ;

U/dðUÞ
dF;dCðtÞ: Mate�dðKÞftg-Mate�dðKÞftg ð7Þ

is K-linear and respects the grading by degrees in t: Now

dðUÞ
dF;dCðtÞ ¼ Uy	 yU þ UM 	 NU : ð8Þ

If Uij is the matrix in Mate�dðKÞ with a 1 in the ijth entry and zeros elsewhere, then

fUm1tr;Um	1;1tr;yg ¼ fUijtrgj¼1;y;d
i¼m;y;e is an ordered K-basis for Mate�dðKÞtr: Using

this basis, it follows from (8) and the fact that M and N are both upper triangular

that the map in (7), restricted to Mate�dðKÞtr; is lower triangular with yqr 	 y along

the diagonal. Since yqr 	 y is non-zero by our assumption on y;

U/dðUÞ
dF;dCðtÞ: Mate�dðKÞftgt-B Mate�dðKÞftgt

is an isomorphism of K-vector spaces. Therefore, for every dADerðdF; dCÞ; if
ddðtÞ ¼ 0; then d is inner, and so the right-hand side of (6) is surjective. &
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3. A Weil–Barsotti formula

In this section, we prove Theorem 1.1. Let E ¼ ðGa;FÞ be a Drinfeld module of
rank rX2; where FðtÞ ¼ yþ a1tþ?þ artr: For an extension X of E by C; we let
dXADerðF;CÞ be its associated biderivation.

Proof of Theorem 1.1. (a) An extension X of E by C splits if and only if
dXADerinðF;CÞ; i.e. if there exists uAKftg such that dX ðtÞ ¼ uFðtÞ 	 ðyþ tÞu: If

u ¼ ctm; then we obtain an inner biderivation dðuÞ such that

dðuÞðtÞ ¼ uFðtÞ 	 ðyþ tÞu

¼ cyqm

tm þ ca
qm

1 tmþ1 þ?þ caqm

r tmþr 	 yctm 	 cqtmþ1: ð9Þ

If n :¼ degtðdX ðtÞÞ is greater than r 	 1; we can repeatedly subtract (9) from dX ðtÞ;
with m ¼ n 	 r; n 	 r 	 1;y; 0; to reduce the t-degree of dX ðtÞ; eventually this
degree will be or: Namely, any extension X is equivalent to an extension X 0 with
degtðdX 0 ðtÞÞpr 	 1; which we call the reduced representative of X :

According to (9), the non-zero inner biderivations of least degree have degree r; so
two extensions Z and Y satisfying degtðdZðtÞÞpr 	 1; degtðdY ðtÞÞpr 	 1; and
dZðtÞadY ðtÞ; are inequivalent. Therefore the map

X/dX 0 ðtÞ: Ext1ðE;CÞ-B V :¼ fb0 þ b1tþ?þ br	1tr	1: biAKg; ð10Þ

where X 0 is the reduced representative of X ; induces an isomorphism of Fq½t�-
modules.

We now turn to the t-module structure on Ext1ðE;CÞ: Recall from (5) that

multiplication-by-t on Ext1ðE;CÞ is defined by t*a ¼ ðyþ tÞa ¼ aFðtÞ: Here, we
think of a as being an element of V : In order to see the action explicitly, it is enough

to consider a ¼ biti:

t*ðb0Þ ¼ ðyþ tÞb0 ¼ yb0 þ b
q
0t;

t*ðb1tÞ ¼ ðyþ tÞb1t ¼ yb1tþ b
q
1t

2;

^ ^

t*ðbr	1tr	1Þ ¼ ðyþ tÞbr	1tr	1 ¼ ybr	1tr	1 þ b
q
r	1t

r:

ð11Þ

Using (9) with m ¼ 0; c ¼ b
q
r	1=ar; we can rewrite the last identity of (11) as

t*ðbr	1tr	1Þ ¼ b
q2

r	1

a
q
r

	 b
q
r	1a1

ar

 !
t	 b

q
r	1

ar

ða2t2 þ?þ ar	2tr	2Þ

þ ybr	1 	
b

q
r	1ar	1

ar

� �
tr	1:
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Thus in terms of the elements ei ¼ ti ði ¼ 0;y; r 	 1) of V ; the t-module structure

on Ext1ðE;CÞ can be expressed by the map P:Fq½t�-MatrðKÞftg; defined by

PðtÞ :¼

y 0 ? ? 0 0

t y 0 ^ 	a1

ar

tþ 1

a
q
r
t2

0 t y 0 ^ 	a2

ar

t

^ 0 t y 0 ^

^ 0 t y 	ar	2

ar

t

0 ? ? 0 t y	 ar	1

ar

t:

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

Comparing with Taguchi [21, Section 5], it is clear that the t-module Ext1ðE;CÞ is an

extension of Ga by the t-module denoted there Ě: By Corollary 2.3 and the

characterization of V in (10), it is clear Ext1ðE;CÞ is an extension of Ga by E3: Thus
E3 is the same as Taguchi’s t-module. Moreover, Taguchi shows [21, Theorem 5.1]

that E3 is a pure t-module isomorphic to
Vr	1

E: &

We turn to part (b), and for simplicity we assume that ar ¼ 1; the general case
follows similarly. The t-module structure on E3 is then defined by

CðtÞ :¼

y 0 ? 0 	a1tþ t2

t y 0 ^ 	a2t

0 t y 0 ^

^ 0 t y 	ar	2t

0 ? 0 t y	 ar	1t:

0
BBBBBB@

1
CCCCCCA
:

Consider the biderivation dX : Fq½t�-Mat1�ðr	1ÞðKÞftg of any extension X of E3

by C: The inner biderivations are of the form dðUÞðtÞ ¼ UCðtÞ 	 ðyþ tÞU for U ¼
ðuiÞAMat1�ðr	1ÞðKÞftg: Explicitly, v ¼ ðviÞAMat1�ðr	1ÞðKÞftg defines an inner

biderivation, dðUÞ ¼ dv; if it has the form

vi ¼ uiy	 yui þ uiþ1t	 tui ð1pipr 	 2Þ;

vr	1 ¼ ur	1y	 yur	1 þ u1t2 	 tur	1 	
Xr	1

j¼1

ujajt:

An inner biderivation dv is said to be basic if ui ¼ 0 for all ias and us ¼ ctm with
cAK ; we write v ¼ vðs; c;mÞ ¼ ðv1;y; vr	1Þ: Explicitly written, these are

vð1; c;mÞ ¼ ðcyqm

tm 	 cytm 	 cqtmþ1; 0;y; 0; ctmþ2 	 ca
qm

1 tmþ1Þ;
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vð2; c;mÞ ¼ ðctmþ1; cyqm

tm 	 cytm 	 cqtmþ1; 0;y; 0;	ca
qm

2 tmþ1Þ;

vðz; c;mÞ ¼ ð0;y; ctmþ1; cyqm

tm 	 cytm 	 cqtmþ1; 0;y; 0;	caqm

z tmþ1Þ;

vðr 	 1; c;mÞ ¼ ð0;y; 0; ctmþ1; cyqm

tm 	 cytm 	 cqtmþ1 	 ca
qm

r	1t
mþ1Þ; ð12Þ

where for 2pzpr 	 2 the possible non-zero coordinates of vðz; c;mÞ are vz	1; vz;
and vr	1: Every inner biderivation arises from an additive combination of basic dv:

Consider GDMat1�ðr	1ÞðKÞftg consisting of elements u :¼ ðuiÞ with t-degrees of

u1;y; ur	2 zero and the t-degree of ur	1 less than or equal one. In other words,
u1;y; ur	2AK and ur	1 ¼ c þ dt with c; dAK : Elements of G give rise via (3) to
biderivations which we will call reduced.

Lemma 3.1. The map u/du:G-DerðC;CÞ induces an isomorphism

GD
DerðC;CÞ
DerinðC;CÞDExt1ðE3;CÞ

of Fq-vector spaces.

Proof. We need only to prove the first isomorphism by Lemma 2.1. Let X be an
extension. We want to subtract appropriate v’s in (12) from dX ðtÞ ¼ u ¼
ðu1; u2;y; ur	1Þ so that the resulting biderivation is reduced. In this process, we
need to keep track of the t-degrees of the uj’s. We define the t-degree of u to be the

vector du :¼ ðd1ðuÞ;y; dr	1ðuÞÞ with djðuÞ ¼ t-degree of uj: Given two vectors d and

d 0 with integer coefficients, we shall say dpd 0 if dipd 0
i for all i: So our claim is that u

can be reduced to a biderivation ũ such that dũpð0;y; 0; 1Þ:
Let n be the maximum of the integers djðuÞ; one has djðuÞpn for all j: We can

modify u by vð2; c; d1 	 1Þ for an appropriate cAK to obtain u0 such that
d1ðu0Þod1ðuÞ and dgðu0Þpn for gX2: Subtracting an appropriate vð3; c; d2ðu0ÞÞ; we

obtain u00 such that d2ðu00Þod2ðu0Þ and dgðu00Þpn for gX3: Repeating this for z ¼
4;y; r 	 2 using appropriate vðz; c;mÞ; we obtain a wAMat1�ðr	1ÞðKÞftg whose

degree vector is less than or equal to ðn 	 1; n 	 1;y; n 	 1; nÞ:
If np1; we are done. If not (nX2), we can subtract an appropriate vð1; c; n 	 2Þ to

obtain a vector w whose degree vector is less than or equal to ðn 	 1; n 	 1;y; n 	
1; n 	 1Þ: We repeat the procedure in the two paragraphs above until we arrive at a
vector w whose degree vector is less than or equal to ð0;y; 0; 1Þ: &

We can now determine the t-module structure on Ext1ðE3;CÞ: By the previous
lemma, it suffices to see this structure on G: Consider the elements
eiAGDMat1�ðr	1ÞðKÞftg; 1pipr; defined as follows. For 1pipr 	 1; we take ei

to be the vector with 1 in the ith coordinate and zeros elsewhere. We take er to be the
vector with t in the last coordinate and zeros elsewhere. The structure of a
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Fq½t�-module on G is completely described by the action of t on elements of the form

bei; bAK ; since additive combinations of such elements give all of G:
Consider t*ðbeiÞ ¼ ðyþ tÞbei ¼ yei þ bqtei: The last is no longer an element of G;

and we need its equivalent vector in G: Using the reduction procedure of Lemma 3.1,
it is easily computed that

ðyþ tÞðbeiÞ ¼ yben þ
Xr	i	1

f¼0

bqr	i	f

ar	f

 !
er; 1pipr 	 1;

ðyþ tÞðber	1Þ ¼ yber	1 þ bqer;

ðyþ tÞðber	2Þ ¼ yber	2 þ ðbq2 þ bqar	1Þer;

ðyþ tÞðberÞ ¼ yþ
Xr

f¼1

bqf

af

 !
er:

Thus there is a t-module structure X:Fq½t�-MatrðKÞftg on Ext1ðE3;CÞ; which is

completely described by

XðtÞ :¼

y 0 ? ? 0

0 y & 0

^ & & & ^

0 & y 0

a1 a2 ? ar	1 ar

0
BBBBBB@

1
CCCCCCA
:

Here ar ¼ yþ a1tþ a2t2 þ?þ ar	1tr	1 þ tr; and the others are given by an ¼Pr	n	1
f¼0 tr	n	f ar	f ; for 1pnpr 	 1: Moreover, Ext1ðE3;CÞ is an extension of Gr	1

a

by E: By Lemma 3.1, ðE3Þ3 is one-dimensional, which completes the proof. &

Proof of Theorem 1.1. (c) If F ¼ ðGa;CÞ is a Drinfeld module, then a morphism

b : E-F is represented by b ¼ u0 þ?þ udtdAKftg such that bFðaÞ ¼ CðaÞb for
all aAFq½t�: Then b induces an Fq½t�-module homomorphism

b3: Ext1ðF ;CÞ-Ext1ðE;CÞ; and on the level of biderivations,

ðb3ðdÞÞðaÞ ¼ dðaÞb 8aAFq½t�:

Also b3 takes Ext10ðF ;CÞ ¼ F3 into Ext10ðE;CÞ ¼ E3: Since Drinfeld modules of

different ranks have no non-zero morphisms between them, we can assume that the
rank of E is the same as the rank of F :

We continue with the considerations of the proof of part (a). As in (11), we need to

measure the effect of b3 on biderivations in DerðC;CÞ represented by a ¼ biti
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in (10). We see that for 0pipr 	 1;

b3ðdbitiÞðtÞ ¼ bitib ¼ biu
qi

0 t
i þ?þ biu

qi

d t
iþd :

Using (9) we can subtract suitable inner biderivations in DerinðF;CÞ and find that in

Ext1ðE;CÞ;

b3ðdbitiÞðtÞ ¼ ci;0ðbiÞt0 þ?þ ci;r	1ðbiÞtr	1;

where each ci;jðxÞ is an Fq-linear polynomial in K ½x� whose coefficients depend only

on b: Thus b3: Ext1ðF ;CÞ-Ext1ðE;CÞ is represented by a matrix in Matr�rðKftgÞ;
and b3 restricts to a t-module morphism b3: F3-E3: &

4. Extensions of tensor powers of the Carlitz module

In this section, we prove Theorem 1.2. Recall that the nth tensor power of the

Carlitz module is the n-dimensional pure t-module C#n : Fq½t�-MatnðKÞftg defined

by

C#nðtÞ :¼
y 1 0

^ & 1

t ? y

0
B@

1
CA:

That is, C#nðtÞ ¼ yIn þ Nn þ Ent; where

Nn :¼
0 1 0

^ & 1

0 ? 0

0
B@

1
CA and En :¼

0 ? 0

^ ^

1 ? 0

0
B@

1
CA:

See [2] for more details.
Fix mon: The following lemma determines representatives for elements of

DerðC#m;C#nÞ=DerinðC#m;C#nÞ: For VAMatn�mðKftgÞ; recall the definition of
dV from (3).

Lemma 4.1. Let

G :¼
* 0 ? 0

^ ^ ^

* 0 ? 0

0
B@

1
CAAMatn�mðKÞ

8><
>:

9>=
>;:

Then V/dV :G -
B

DerðC#m;C#nÞ=DerinðC#m;C#nÞ is an isomorphism of Fq-vector

spaces.
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Proof. Let Qij be the n � m matrix with a 1 in the ijth entry and zeros elsewhere. For

cAK and kX0; by taking cQijtk for U in dðUÞðtÞ; we define

d½c�ijk :¼ dðcQijtkÞðtÞ ¼ ðcQijtkÞC#mðtÞ 	 C#nðtÞðcQijtkÞ

¼ cðyqk 	 yÞQijtk þ cðQijNm 	 NnQijÞtk

þ ðcQijEm 	 cqEnQijÞtkþ1: ð13Þ

Since every UAMatn�mðKftgÞ is an Fq-linear combination of matrices of the form

cQijtk; biderivations arising from (13) generate DerinðC#m;C#nÞ as an Fq-vector

space.
Suppose that V ¼ ðvijÞAMatn�mðKftgÞ is arbitrary and that degtðvijÞpr for some

rX1: We will show that by subtracting matrices in (13) from V in various ways we
can replace V by a matrix V 0 which has each entry of t-degree pr 	 1 and also dV 0

equivalent to dV modulo DerinðC#m;C#nÞ:
We bootstrap our way through the entries of V in the following way. Let

Dij :¼ fd½c�ijk: kX0; cAKg:

Define a function F from the set of subsets of I :¼ fði; jÞ: 1pipn; 1pjpmg to itself.
We set FðSÞ to be those entries of V whose degrees in t can be decreased by
subtracting an element of

P
ði;jÞAS Dij ; without increasing the degrees of the other

entries. Our claim then is that FðIÞ ¼ I : The following containments can be easily
checked:

Fðf2pipn; j ¼ mgÞ+f2pipn; j ¼ 1g;

Fðf2pipn; j ¼ mg,fi 	 jX2gÞ+fi 	 jX1g;

Fðfj ¼ mg,fi 	 jX2gÞ+fi 	 jX1g,fð1; 1Þ; ð1;mÞg;

Fðfj ¼ mg,fi 	 jX1gÞ+fi 	 jX0g,fð1;mÞg;

Fðfj ¼ mg,fi 	 jX	 cgÞ+fi 	 jX	 c	 1g,fð1;mÞg; ð14Þ

where the last containment holds for all c ¼ 0;y;m 	 1:
Therefore, we can assume that every entry of V is a constant from K : Now that the

t-degree of each entry of V is 0; one checks the containments in (14) still hold with
the exception that all sets on the right-hand side must have fj ¼ 1g removed. That is,
we can adjust V so that it can be replaced by a matrix in G; but elements of G can be
reduced no further. &
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Proof of Theorem 1.2. Let G be given as in Lemma 4.1 so that by Lemma 2.1

GDExt1ðC#m;C#nÞ:

Recalling the definition of Qij from the proof above, let

e1 :¼ Q11;y; en :¼ Qn1

be basis vectors for G over K : Combining Lemmas 2.1 and 4.1, G has a natural Fq½t�-
module structure which we now make explicit. For cAK ;

t*ðce1Þ ¼ C#nðtÞðce1Þ ¼ yce1 þ cqten ð15Þ

and

t*ðceiÞ ¼ C#nðtÞðceiÞ ¼ ycei þ cei	1; 2pipn: ð16Þ

We note that as defined in (13),

Xm	1

i¼0

d½c
q�

n	i;m	i;0 ¼ cqQn1t	 cqQn	m;1 ¼ cqten 	 cqen	m;

and since this sum defines an inner ðC#m;C#nÞ-biderivation, we subtract it from
(15) and find that

t*ðce1Þ ¼ yce1 þ cqen	m:

Therefore, combining this with (16), we see that the Fq½t�-module structure on G can

be expressed as a t-module by the map P:Fq½t�-MatnðKÞftg defined by

Thus there is an exact sequence of t-modules,

0-C#ðn	mÞ-G-L-0;

where L is an m-dimensional iterated extension of Ga; and one checks that moreover

C#ðn	mÞ ¼ Ext10ðC#m;C#nÞ: &

Remark 4.2. The Fq½t�-module structure on Ext1ðC#m;C#nÞ when npm provides a

different picture. We consider the following examples.
Using similar methods as in the proof of Theorem 1.2 it is possible to show that

Ext1ðC#2;CÞDK2 as Fq-vector spaces and that the Fq½t�-module structure on
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Ext1ðC#2;CÞ is given by

t*
a

b

 !
¼

y 0

1 yþ t	1

 !
a

b

 !
; a; bAK:

Thus Ext1ðC#2;CÞ is an extension of Ga by the adjoint of the Carlitz module (see
Goss [12, Section 3.6]), but not a t-module.

As for an example with n ¼ m; the first case to consider is Ext1ðC;CÞ; which itself

is quite subtle. For an inner biderivation dðuÞADerinðC;CÞ arising from u ¼
ctkAKftg;

dðuÞðtÞ ¼ ctkCðtÞ 	 CðtÞctk ¼ cðyqk 	 yÞtk þ ðc 	 cqÞtkþ1:

Unless K is algebraically closed as well as perfect, it is not possible to systematically
decrease the degree in t of dðtÞ for an arbitrary dADerðC;CÞ (one needs to be able to
solve equations of the form c 	 cq ¼ a for aAK). If K is algebraically closed, the

situation improves, and it is possible to show that then Ext1ðC;CÞDK and that in

fact Ext1ðC;CÞDGa as Fq½t�-modules.

5. Periods of t-modules and extensions

Here, we would like to motivate the expectation that Ext1ðE;FÞ; for certain t-
modules E and F ; can be given the structure of a t-module. Overall, we have made

the following observations. If E ¼ ðGd
a ;FÞ is a pure t-module of rank r; then the

weight of E is defined to be

wtðEÞ :¼ d=r:

What Theorems 1.1 and 1.2 have in common is that, for certain pure t-modules E

and F ; the Fq½t�-module Ext1ðE;FÞ has the structure of a t-module provided

wtðEÞowtðFÞ and that the submodule Ext10ðE;FÞ is itself pure and uniformizable.

Also in the situations of Theorems 1.1 and 1.2, Ext10ðE;FÞ behaves well under

base-extension. That is, if L+K is a perfect field, then

Ext10=KðE;FÞDExt10=LðE;FÞðKÞ; where here Ext10=KðE;FÞ is the usual Ext10ðE;FÞ
over K and Ext10=LðE;FÞðKÞ is the set of K-valued points on Ext10=LðE;FÞ:

These results, along with other experimental evidence, suggest that in general

Ext10ðE;FÞ is pure, uniformizable, and functorial in K; for arbitrary pure

uniformizable t-modules E and F with wtðEÞowtðFÞ: However, the examples in
Remark 4.2 show that the situation when wtðEÞXwtðFÞ is somewhat different.

In this section, we investigate the structure of Ext1ðE;FÞ from an analytic point of
view so as to support the veracity of the claims above. Our main tool will be
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generalizations of quasi-periodic functions defined in [6,11] for extensions by Ga:
Moreover, we study an analogue of the de Rham map of Gekeler [11]. For more
details on the general analytic theory of t-modules see [12, Chapter 5].

Let K be the completion of the algebraic closure of the Laurent series field
Fqðð1=yÞÞ; where y is an independent variable. Let i:Fq½t�-K be defined by t/y:

Let E ¼ ðGd
a ;FÞ and F ¼ ðGe

a;CÞ be uniformizable t-modules over K: We take

ExpE : LieðEÞðKÞ-EðKÞ to be the exponential map of E: Because E is uniformiz-
able, there is an exact sequence of Fq½t�-modules

0-LF-Kd -
ExpF

Kd-0;

where Fq½t� operates by dF on the central Kd and by F on the right one. Also, LF is

the period lattice of F and is a discrete Fq½t�-submodule of Kd : Similarly, we define

ExpC and LC for F :

Lemma 5.1. For each dADer0ðF;CÞ there is a unique Fq-linear entire function

Fd:K
d-Ke such that for zAKd ;

FdðzÞ � 0 ðmod deg qÞ;

FdðdFðaÞzÞ ¼ CðaÞFdðzÞ þ dðaÞExpFðzÞ 8aAFq½t�:

Proof. The proof here is essentially the same as the that of the existence of the
exponential function, and in particular we can easily adapt the proof of Proposition
2.1.4 in [1] to this situation. &

Lemma 5.2. Suppose dðUÞADer0ðF;CÞ-DerinðF;CÞ: Then

FdðzÞ ¼ UExpFðzÞ 	 ExpCðdU 
 zÞ:

Proof. This follows directly from Lemma 5.1, using the fact that dðUÞADer0ðF;CÞ if
and only if dU dFðaÞ ¼ dCðaÞ dU for all aAFq½t�: &

If X ¼ ðGdþe
a ; U Þ is an extension of E by F defined by a biderivation

dADer0ðF;CÞ; then Lemma 5.1 and the uniqueness of the exponential function
imply that

ExpU
z

u

 !
¼

ExpFðzÞ
ExpCðuÞ þ FdðzÞ

 !
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is the exponential function for X : Also, since E and F are both uniformizable, so is
X : Moreover, the period lattice of X is

LU ¼
l

Z

 !
: lALF;ExpCðZÞ þ FdðlÞ ¼ 0

( )
:

For each ðl; ZÞALU; it follows that ðl; Zþ dCðaÞmÞALU for all aAFq½t� and mALC:

Proposition 5.3. The following map is a homomorphism of Fq½t�-modules:

DR :¼ DRðF;CÞ : Der0ðF;CÞ=DersiðF;CÞ-HomFq½t�ðLF;CðKÞÞ;

d/ðl/FdðlÞÞ:

Proof. The map DR0:d/ðl/FdðlÞÞ on Der0ðF;CÞ-HomFq½t�ðLF;CðKÞÞ is clearly

well defined and Fq-linear by Lemma 5.1. If dðUÞADersiðF;CÞ; then by definition

dU ¼ 0; and so by Lemma 5.2, DR0ðdðUÞÞ ¼ 0: Therefore DR is well defined.
Furthermore, from (5) and Lemma 5.1, it follows that

Fa* dðzÞ ¼ FCðaÞdð
ÞðzÞ ¼ CðaÞFdðzÞ 8aAFq½t�;

and so DRða*dÞðlÞ ¼ CðaÞðDRðdÞðlÞÞ; for all aAFq½t�: &

Remark 5.4. In the case of extensions of Drinfeld modules by Ga; the map DR
specializes to the de Rham homomorphism of Gekeler [11]. Gekeler shows in this
case that the de Rham map is in fact an isomorphism. In general, determining the
kernel and cokernel of DR is a delicate matter and will require further study.
However, Theorems 1.1 and 1.2 can be used to imply that the de Rham maps in their
respective situations are indeed isomorphisms. A straightforward modification of the
proof of [11, Theorem 3.1] yields the following partial result.

Proposition 5.5. Suppose E ¼ ðGa;FÞ and F ¼ ðGa;CÞ are Drinfeld modules of ranks

r and s, respectively. If r4s; then DRðF;CÞ is injective.

Remark 5.6. If A is the ring of functions on a smooth curve X=Fq which are regular

away from a fixed point N; then one can also consider Drinfeld A-modules (see [12,

Chapter 4]) and their groups of extensions. In [11], Gekeler considers Ext1ðE;GaÞ;
where E is a Drinfeld A-module of rank r and shows that

Ext10ðE;GaÞDGr	1
a ð17Þ

as A-modules. To prove this, Gekeler uses the de Rham isomorphism to show that
these two spaces match up exactly. In the special case that A ¼ Fq½t�; the
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isomorphism in (17) can be generalized and proven without the de Rham
isomorphism (see [6, Section 3]). This is possible essentially because all t-modules
and biderivations of t-modules are determined by values of homomorphisms on t

alone.
For Drinfeld A-modules E and F over a general ring A; one can define

biderivations and inner biderivations just as in Section 2. However, the identifica-
tions in (3) and thus in Lemma 2.1 are more complicated, and this difficulty makes

the A-module structure of Ext1ðE;FÞ hard to characterize.
Although one would want to find generalizations of Theorems 1.1 and 1.2 in the

setting of Drinfeld A-modules, it is not immediately clear what the precise form these
analogues would take. Since there are in general several choices of non-isomorphic
rank 1 Drinfeld A-modules to consider, the exact structure of extensions by these
modules is a direction for future investigations.

For the remainder of this section, we will consider the implications of the
assumption that DR is an isomorphism. In this way, we attempt to motivate the idea

that Ext10ðE;FÞ can be given the structure of a t-module.

Suppose Kd is an Fq½t�-module defined by an Fq-linear representation

f:Fq½t�-MatdðKÞ such that fðtÞ ¼ yId þ N with N nilpotent. If L is any finitely

generated discrete Fq½t�-submodule of Kd of rank r; then following the language of

Anderson [1, Section 4.4], we call Kd=L a t-torus of dimension d and rank r:
Through its exponential function, every uniformizable t-module is isomorphic to a t-
torus.

Let l1;y; lr be an Fq½t�-basis for LF: Choosing this basis fixes isomorphisms

HomFq½t�ðLF;CðKÞÞDCðKÞrDðKeÞr=ðLCÞr: ð18Þ

We let

W :¼ WðF;CÞ :¼ ðUl1;y;UlrÞAMate�rðKÞ:
UAMate�dðKÞ;

UdFðtÞ ¼ dCðtÞU

( )
: ð19Þ

Suppose dðUÞADer0ðF;CÞ-DerinðF;CÞ for UAMate�dðKÞ: By Lemma 5.2 and (18),

DRðdðUÞÞ ¼ ðExpCðUl1Þ;y;ExpCðUlrÞÞAMate�rðKÞ;

and so DRðDer0ðF;CÞ-DerinðF;CÞÞ ¼ Exp"r
C ðWÞ: Thus by Corollary 2.3,

DRðF;CÞ induces a homomorphism of Fq½t�-modules,

DRðF;CÞ : Ext10ðE;FÞ-Mate�rðKÞ=ðW þ Lr
CÞ; ð20Þ

which is an isomorphism if the original DRðF;CÞ is one. Depending on E and F ; the

right-hand side may or may not be isomorphic (rigid analytically) to a t-torus. We
consider the following situations.
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Example 5.7. Suppose E ¼ ðGa;FÞ and F ¼ ðGa;CÞ are Drinfeld modules of rank 2
and s; respectively. Let l1; l2 and m1;y; ms be generators for their period lattices over
Fq½t�: The exact sequence

0-W-K2 -
f
K-0;

where f ðx; yÞ ¼ l1y 	 l2x; provides a choice of coordinates on the right-hand side of

(20), and f ðLC"LCÞ is the Fq½t�-submodule generated by flimjg
j¼1;y;s
i¼1;2 :

If s ¼ 1; then Proposition 5.5 implies that Ext10ðE;FÞ+K=ðFq½t�l1m1 þ Fq½t�l2m1Þ;
and Theorem 1.1 (and also [22, Proposition 7]) confirms that this is in fact an
isomorphism of t-tori. If sX2; then it is easy to construct examples where
f ðLC"LCÞ is not discrete in K; and so in such cases the right-hand side of (20) is not
a t-torus (cf. Theorem 6.1). When we compare weights, these observations are
consistent with the discussion at the beginning of the section, i.e. wtðEÞXwtðFÞ
precisely when sX2:

Proposition 5.8. Suppose E ¼ ðF;GaÞ and F ¼ ðC;GaÞ are Drinfeld modules of rank r

and s, respectively, with r4s: If DRðF;CÞ is an isomorphism, then Ext10ðE;FÞ is

isomorphic as an Fq½t�-module to a t-torus of dimension r 	 1 and rank rs.

Proof. Let l1;y; lr and m1;y; ms be Fq½t�-bases for LF and LC; respectively.

Because E and F are both one-dimensional, DerinðF;CÞDDer0ðF;CÞ: As in (19),

W ¼ WðF;CÞ ¼ fðUl1;y;UlrÞAMat1�rðKÞ: UAKg:

We claim that W-ðLCÞr ¼ f0g: Suppose wAW-ðLCÞr: Then

w ¼ ðUl1;y;UlrÞ ¼ ðn1;y; nrÞ; niALC:

Because r4s; there is a non-trivial Fq½t�-linear dependency
P

dCðaiÞni ¼ 0; and thus

U 

P

dFðaiÞli ¼ 0: Since l1;y; lr are linearly independent over Fq½t�; it follows

that U ¼ 0:
By the following argument, the image of Lr

C is discrete in Mat1�rðKÞ=W : We

proceed by induction on r; for which the base case (r ¼ 2) is trivial. Furthermore, it
suffices to continue with r ¼ s þ 1; which we will now assume; the cases where
r4s þ 1 follow as straightforward consequences. The K-linear map

f : Mat1�rðKÞ - Mat1�ðr	1ÞðKÞ;
ðx1;y; xrÞ / ðl2x1 	 l1x2;y; lrxr	1 	 lr	1xrÞ
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has kernel W : We need to show that V :¼ Fqðð1=yÞÞ 
 f ðLCÞDMat1�ðr	1ÞðKÞ is an rs-

dimensional vector space over Fqðð1=yÞÞ: The typical element of V has the form

n ¼ ðm1;y;msÞA

l2 ? 0

	l1 & ^

^ & lr

0 ? 	lr	1

0
BBB@

1
CCCA; ð21Þ

where A ¼ ðaijÞAMats�rðFqðð1=yÞÞÞ: Let B denote the r � ðr 	 1Þ matrix in the above

formula. By our assumption that s ¼ r 	 1; the matrix AB is square, and its
determinant is

detðABÞ ¼ l2?lr	1

Xr

j¼1

ð	1Þr	jljdetðAjÞ;

where Aj is the s � s minor of A with the jth column removed. If n ¼ 0; then this

implies that detðABÞ ¼ 0; and since l1;y; lr are Fqðð1=yÞÞ-linearly independent,

detðAjÞ ¼ 0 for each j: Thus the rank of the matrix A is less than s; and we can

rewrite the last row of A as an Fqðð1=yÞÞ-linear combination of the other rows, say

asj ¼
Ps	1

i¼1 biaij with biAFqðð1=yÞÞ: The formulation in (21) can be rewritten as

n ¼ ðm1 þ b1ms;y; ms	1 þ bs	1msÞÃB;

where Ã is the ðs 	 1Þ � r matrix obtained by removing the last row of A: Again
n ¼ 0; but then our induction hypothesis with r replaced by r 	 1 allows us to

conclude that Ã ¼ 0: &

Remark 5.9. Letting E and F be Drinfeld modules of rank r and s; with r4s;

Proposition 5.8 shows that Ext10ðE;FÞ is isomorphic to a t-torus as long as DRðF;CÞ is

an isomorphism. Since in this case wtðEÞowtðFÞ; our discussion at the beginning of
this section leads us to speculate that DRðF;CÞ is an isomorphism and that the t-torus

isomorphic to Ext10ðE;FÞ is in fact a pure uniformizable t-module. In addition, using

the techniques of Theorem 1.1, it is possible to show that Ext10ðE;FÞ is isomorphic to

a t-module of dimension r 	 1; though we omit the details.

6. Elliptic curves

Let E1 and E2 be elliptic curves over C: Let G :¼ Ext1CðE1;E2Þ be the extension

group in the category of complex abelian varieties. By the Poincaré reducibility
theorem, this is a torsion group. The set of complex points EðCÞ of an elliptic curve
E over C can be viewed as a complex torus written Ean; so one may also consider
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A :¼ Ext1ðEan
1 ;Ean

2 Þ; the extension group in the category of complex tori. There is a

natural homomorphism G-A; the image is the torsion subgroup of A (see [4,
Remark 6.2, p. 23]).

We present next a theorem of Lichtenbaum (1960s, unpublished); however, our
proof is different in that it is based on periods. By comparison to Example 5.7 and
Proposition 5.8, the theorem below indicates that the situation for elliptic curves
runs quite parallel to our own. Specifically, in light of in Example 5.7, it suggests that

Ext1ðE;FÞ will rarely be representable as a t-module for non-isogenous Drinfeld

modules E and F of rank 2. Moreover, it suggests that Ext1ðE;FÞ; for general t-
modules E and F ; will not always have the structure of a t-module.

Theorem 6.1 (Lichtenbaum). Let E1 and E2 be elliptic curves over C; and let G :¼
Ext1CðE1;E2Þ and A :¼ Ext1ðEan

1 ;Ean
2 Þ:

(a) If E ¼ E1 ¼ E2 has complex multiplication, then A is naturally isomorphic to

EðCÞ as abelian groups. Under this isomorphism, the group G is identified with the

torsion points of EðCÞ:
(b) If E1 and E2 are isogenous and admit complex multiplication, then A is isogenous

to E1ðCÞ and E2ðCÞ:
(c) If at least one of E1 and E2 does not admit complex multiplication, then the

natural topology on G is non-Hausdorff. Therefore, G is not the set of complex

points of a complex algebraic variety with the classical topology.

Proof. Given Ei ði ¼ 1; 2Þ as the quotient of C by lattices Zþ Zti; where each ti may
be taken to be have positive imaginary part, we see from [4, Proposition 5.7, p. 21]
that A is naturally the quotient of C by the subgroup L generated by 1; t1; t2 and
t1t2:

Let us suppose that an elliptic curve X has complex multiplication; let us think of
XðCÞ as a quotient of C by Zþ Zt: By the theory of complex multiplication [19], we

have the following: (i) t lies in an imaginary quadratic field; (ii) t2 ¼ atþ b for some
integers a and b; and (iii) if X 0 (with X 0ðCÞ ¼ C=ðZþ Zt0Þ) is an elliptic curve
isogenous to X ; then t0 and t lie in the same imaginary quadratic field and X 0 also
has complex multiplication with the same CM-field.

If X ðCÞ ¼ E ¼ E1 ¼ E2; then we have t ¼ t1 ¼ t2: By (i) and (ii), we get that L is
the lattice Zþ Zt: Thus we obtain that A is naturally identified with EðCÞ: The last
statement in (a) follows from [4, Remark 6.2, p. 23].

If E1 and E2 are isogenous curves with complex multiplication, then t1 and t2 lie in
the same imaginary quadratic field F ; in this case, L is isomorphic to a fractional
ideal of an order of K : This proves (b).

For (c), suppose at least one of E1 and E2 does not admit complex multiplication.
By the fundamental theorem of complex multiplication, t1 and t2 are not both
contained in one imaginary quadratic field. In other words, in this case L is a
subgroup of Z-rank greater than two, and so it is not a discrete subgroup of C: &
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Remark 6.2 (Schoen). (a) If A and B are abelian varieties defined over %Q; then the

natural map Ext1%QðA;BÞ-Ext1CðA;BÞ is an isomorphism.

(b) Any abelian surface corresponding to an element of Ext1CðE1;E2Þ is isogenous

to the product E1 � E2: Any complex abelian variety, which is isogenous to a
product of CM-elliptic curves, is itself a product of CM-elliptic curves [18].

7. Extensions of t-motives

In this section, we explore extensions from the standpoint of t-motives and
examine avenues for further study. Given two t-modules E;F over K ; we can
consider the associated Anderson t-motives MðEÞ and MðFÞ [1]. Since the functor
M which sends a t-module to its associated t-motive is contravariant, we obtain a
map

Mn: Ext1ðE;FÞ-Ext1ððMðFÞ;MðEÞÞ;

because M gives an anti-equivalence of categories of t-modules and t-motives

[1, Theorem 1], Mn is an isomorphism. If one is interested in computing just the
group of extensions of t-modules, then it is relatively easy to compute extensions in
the category of t-motives. We formulate this precisely in the next lemma.

The evident functor f from the category T of t-motives to the category C of left
K ½t; t�-modules is fully faithful [1, Section 1.2]. Here K ½t; t� is the non-commutative
ring generated by t and t with the relations, tt ¼ tt; xt ¼ tx; tx ¼ xqt; for all xAK :

Lemma 7.1. For any t-motives A and B over K, the natural map

f n: Ext1TðA;BÞ-Ext1Cð f ðAÞ; f ðBÞÞ

is an isomorphism.

Proof. The fact that f is fully faithful implies that f n is injective in the following way.

Suppose the images of a and b under f n coincide. Pick representatives of a and b;
i.e. extensions X1 and X2 of A by B which satisfy f ðX1ÞDf ðX2Þ: We obtain a
commutative diagram

where g is an isomorphism of K ½t; t�-modules. Since f is fully faithful, g is an

isomorphism of t-motives. More precisely, g is induced by an isomorphism X1 -
B

X2

of t-motives.
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It remains to show the surjectivity of f n: For this, we have to show the following:
given any extension X of f ðAÞ by f ðBÞ in C; the left K½t; t�-module X is a t-motive,
i.e. (i) it is free and finitely generated as a K ½t�-module and (ii) the associated primes
of X 0 :¼ X=tX ; viewed as a module over the commutative ring R :¼ K ½t�; consist
only of the principal ideal I :¼ ðt 	 yÞ: Geometrically, we want the coherent sheaf

associated to X 0 on A1 to be supported only at the point t ¼ y:
Condition (i) is clearly satisfied by X by general properties of modules over the

ring K½t� [12, Proposition 5.4.9]. For (ii), consider an extension Q of P by N where P

and N are finitely generated R-modules. Every associated prime of Q is an associated
prime of either P or N: Also, if H is a quotient module of N; then every associated
prime of H is an associated prime of N (this is easy to see via the geometric
interpretation).

Now, by assumption, the associated primes of the R-modules A0 :¼ f ðAÞ=tf ðAÞ
and B0 :¼ f ðBÞ=tf ðBÞ consist of just the ideal I : The R-module X 0 is an extension of
A0 by B00 (¼ a quotient module of B0). So we may apply the comments in the previous
paragraph to the extension X 0 to deduce that X 0 satisfies (ii). &

Remark 7.2. Lemma 7.1 shows that extensions may be computed via resolutions of
t-motives by free K ½t; t�-modules. Furthermore, it implies the injectivity of the map

f n: Ext2TðA;BÞ-Ext2Cðf ðAÞ; f ðBÞÞ:

For M and N as in Remark 7.4 (and K ¼ Fq), this gives Ext2TðM;NÞ ¼ 0:

Remark 7.3 (Analogy with D-modules). A. Rosenberg points out that K ½t; t� and,
more generally, skew polynomial algebras are analogous to Weyl algebras in D-
module theory (the first Weyl algebra is C½x; @� with the relation @x 	 x@ ¼ 1) in that
they are all special cases of hyperbolic algebras [17, Chapter II]. Since Ext’s of certain
(but not all) D-modules possess a nontrivial structure of a D-module, one may
expect the same to be true for t-modules.

The analogy with D-modules is best viewed within the context of opers (see [3,
Section 7.3.14]; a Drinfeld module is an example of a Frobenius oper) and non-
commutative algebraic geometry (see [5, Remark 5.3.5, Section 6], [7, Section 0.6],
[17,20]). The analogy between Drinfeld modules and non-commutative tori is
explained in [13].

Remark 7.4. Geometrically interpreting the definition of a t-motive [1, Section 1.2], a
t-motive M is a special sheaf FM over a non-commutative surface S [17] given by the

product of the non-commutative affine line A1
nc by the commutative affine line A1:

We think of S as fibered over A1 (viewed horizontally) with (vertical) fibers A1
nc: The

sheaf FM is the ideal sheaf of a curve XMDS for which the following hold.

(a) XM is finite over the two axes, via the projections to the components; in other
words, XM is transversal to the horizontal and vertical fibers.
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(b) The intersection of XM with the horizontal axis (which corresponds to t ¼ 0) is

a nilpotent subscheme of A1 supported at the point t ¼ y; (a) assures us that the

intersection is a proper subscheme of A1:

If M and N are distinct t-motives, then the group Ext1TðM;NÞ can be interpreted

via the ‘‘intersection scheme’’ of the curves XM and XN in S: We can view the

subgroup Ext10ðM;NÞ (cf. Corollary 2.3) of Ext1TðM;NÞ as the non-trivial part of the

intersection locus corresponding to points distinct from t ¼ y; t ¼ 0; as in (b).
The geometric situation is especially clear in the case K ¼ Fq: S is the usual

commutative affine plane A2; if gðt; tÞ and hðt; tÞ (assumed to have no common

factors) are defining equations for the curves XM and XN ; then Ext1TðM;NÞ is

isomorphic to the quotient module Fq½t; t�=ðg; hÞ of the commutative ring Fq½t; t�:

Remark 7.5. The results and ideas in this paper are used in an ongoing project with
Thakur, whose aim is to relate extension groups of t-modules to values of zeta
functions in the spirit of [2,10,16].
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