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Abstract

We study the group of extensions in the category of Drinfeld modules and Anderson’s -
modules, and we show in certain cases that this group can itself be given the structure of a ¢-
module. Our main result is a Drinfeld module analogue of the Weil-Barsotti formula for
abelian varieties. Extensions of general 7-modules are also considered, in particular extensions
of tensor powers of the Carlitz module. We motivate these results from various directions and
compare to the situation of elliptic curves.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction and statement of results

In this paper, we investigate extensions of Drinfeld modules using the well-known
analogy between abelian varieties and Drinfeld modules. We prove analogues for
Drinfeld modules of the classical Weil-Barsotti formula and the Cartier—Nishi
biduality theorem for abelian varieties.

Let 4 be an abelian variety over a field k; we denote the dual abelian variety by
AY. The Weil-Barsotti formula states that for any k-algebra R, there is a natural,
functorial isomorphism Ext(A4,G,,) = 4" (R) where the first group is calculated in
the category of group schemes over Spec R [15]. In other words, the functor
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R»—»Ext}Q(A, Gm) (on k-algebras) is represented by the dual abelian variety 4¥. The
biduality theorem of Cartier—Nishi states that there is a canonical isomorphism
Exth(4Y,G,,) = A(R); this can also be restated: there is a canonical isomorphism of
abelian varieties (4Y)" =~ A. Theorem 1.1 provides a Drinfeld module analogue of
these results.

There is also an important relationship between the de Rham cohomology (in
characteristic zero) of 4 and the universal additive (or vectorial) extension 4 of 4
[14]. A de Rham theory for Drinfeld modules based on additive extensions has
already been developed by Anderson, Deligne, Gekeler, and Yu [11]. We pursue
generalizations for f~-modules.

We remark that extensions by G,, and G, have been used by Deligne [9, Section
10] to define Cartier duality and the de Rham theory for 1-motives.

Notation: Let K be a perfect field of characteristic p>0, and let F,[f] be the
polynomial ring in one variable over the finite field F, where ¢ = p”. Fix an F,-linear
homomorphism 1:F,[t] » K with 0 = 1(¢). Throughout, all Drinfeld modules and -
modules are defined with respect to the map 1, and in particular all Drinfeld modules
are F,[f]-modules.

The ring K{t} is the ring of twisted polynomials in K such that for
xeK, tx =x%. A d-dimensional t-module over K is at first an [F,-linear ring
homomorphism

@ F,[t] > Maty(K{t}),
such that, as a polynomial in t with coefficients in Mat,(K),
o(t) = (0I; + N)t° + My + -,

where I; is the identity matrix and N is nilpotent. In general, a --module over K is an
algebraic group E defined over K, which is isomorphic over K to Gg, together with a
choice of F,-linear endomorphism #:E— E such that d(z — 0)"Lie(E) = 0 for all n
sufficiently large. By choosing an isomorphism FE=x GZ, one can specify a
homomorphism @ : F,[f] >Mat,;(K{r}) as above. To denote this choice of
coordinates, we write E = (G, ®).

Let C denote the Carlitz module, C: F,[f| > K{t}, defined by C(¢) = 0 + .

We take Ext!(-,-) to be the bifunctor Ext' from the additive category of -modules

to the category of abelian groups. In Section 2 we see that, for two -modules £ and
F, those extensions which induce trivial /~-module extensions of their respective
tangent spaces comprise a canonical subgroup Ext}(E,F)<Ext!'(E,F). For a t-
module E, we let EV = Ext}(E, C).

Our analogue of the classical Weil-Barsotti formula and the Cartier—Nishi
biduality theorem is the following

Theorem 1.1. Let E be a Drinfeld module of rank r=2.
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(@) The group Ext'(E, C) is naturally a t-module of dimension r and sits in an exact
sequence of t-modules

0—EY -»Ext'(E,C)>G,—0.

Furthermore, EV is the Cartier—Taguchi dual t-module associated to E [21], and
in particular, E™ is isomorphic to the (r — 1)th exterior power /\r_1 E of E.

(b) The group Ext'(EY, C) is also naturally a t-module of dimension r and sits in an
exact sequence

0—E—-Ext'(EY,C)-»G. ' -0.

Moreover, we have a biduality: (E¥)” ~E.
(c) Any morphism 5 : E— F of Drinfeld modules (of rank >=2) induces a morphism of
dual t-modules B~ : F¥ - E.

The proof of Theorem 1.1 also shows that the -module structure on Ext!(E, C) is
compatible with base change of the field K; see Section 5.

Parts (a) and (b) of Theorem 1.1 for Drinfeld modules of rank 2 have been proven
by Woo [22]. Taguchi [21] has constructed a Weil pairing (compatible with the
Galois action) on the torsion points of £ and EV. Taguchi remarks in [21] that his
definition of the Cartier dual £V of a Drinfeld module E does generalize to some
(but not all) r-modules.

Theorem 1.1 requires us to work outside the category of Drinfeld modules, and
one may ask for general -modules E and F over K whether Ext!'(E, F) has the
structure of a t-module. In this vein, we have the following result. Let C®” denote
the nth tensor power of the Carlitz module [2].

Theorem 1.2. If n>m, then Ext'(C®™ C®") has the structure of a t-module, and
there is an exact sequence of t-modules

0—C®0= L Ext' (C®™, C®") - L0,

where L is an m-dimensional iterated extension of G, — Moreover,
Exty(C®™, CO®")= COt=m),

Since the (tractable) period #" of C®("— is a power of the period # of the
Carlitz module (see Goss [12, Chapter 3]), one should compare Theorem 1.2 with the
isomorphism

Extyys(Z(m), Z(n))=C/(2ni)" "7, n>m,

from the theory of mixed Hodge structures [8].
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The question of whether an analogue of the Weil-Barsotti formula holds for
general r-modules is also interesting. Experimental evidence suggests that the general
situation is subtle and that such formulas are not always valid for pure -modules,
e.g. in the form of Theorem 1.1, a Weil-Barsotti formula does not hold for C®™
because Ext!(C®” C®") is not well behaved for n<m. See Section 4 for more
details.

As pointed out by the referee, it would be worth investigating the extent to which
Theorems 1.1 and 1.2 are true for Drinfeld modules over rings more general than
F,[z]. This raises some technical issues, which we discuss in Section 5.

The outline of this paper is as follows. In Section 2, we present definitions and
fundamental results on extensions of ~-modules. We prove Theorems 1.1 and 1.2 in
Sections 3 and 4. In Section 5, we consider extensions of #-modules from an analytic
viewpoint, so as to motivate the expectation that Ext!(E, F) can be represented by a
t-module for certain -modules E and F. We consider the situation of elliptic curves
in Section 6 and compare our results to an unpublished theorem of S. Lichtenbaum
about extensions of elliptic curves over C. We conclude in Section 7 with some
remarks about extensions of z-motives.

2. Extensions of -modules and biderivations

In this section, we establish definitions and results about extensions of -modules.
For general definitions of z-modules, we follow the terminology in [12, Chapter 5]. So
as not to lead to confusion, we adhere to the following convention: a ““‘z-module”
refers to the object of the same name defined in Section 1, whereas an ““[F,[¢|]-module”
is simply a module over the ring F,[z].

We point out that the results in this section remain valid in the case that K is not
perfect, though we do not make use of this fact later on.

Let £ and F be t-modules over K. An extension of E by F is a t-module X fitting
into an exact sequence of #-modules

0->F->X—->E-O. (1)

Then Ext!(E, F) is defined to be the group (under Baer sum) of -module extensions
of E by F up to Yoneda equivalence.

The main tool which enables us to compute this group is that of biderivations. The
following definitions run parallel to those of Brownawell and the first author [6] and
Gekeler [11], where extensions of ~-modules by G, were investigated.

Let @:F,[f] > Maty(K){t} and ¥:[F,[]>Mat.(K){r} be choices of coordinates
for E and F, respectively, where Mat,(K){t} is the ring of twisted polynomials with
matrix coefficients. A (@, ¥)-biderivation is an F,-linear map

6 :F4[] > Matexa(K){1},
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which satisfies
o(ab) = ¥(a)o(b) + o(a)P(b) Va,beF,[1]. (2)

The [F,-vector space of all (@, ¥)-biderivations is denoted Der(®,¥). It is
straightforward to check that a biderivation § is uniquely determined by the single
value d(¢), and so if VeMat,y(K){r}, we define dyeDer(®,¥) to be that
biderivation such that dy(¢) = V. In this way, we have an isomorphism of F,-vector
spaces

Vi—dy: Mat,,q(K){t} > Der(®, V). (3)

A biderivation ¢ is called inner if for some U eMat,.s(K{t}) we have
3(a) = 0 (a) = Ud(a) — ¥(a)U VaeF,[1]. (4)

The subspace of Der(®, V) of inner biderivations is denoted Der;,(®, ¥).
Every (@, ¥)-biderivation o gives rise to an extension X = (GZ“, Y) of E by F by

defining
[ ®(a) O
Na) = (5((1) T(a)) Vael,[t].

Again it is straightforward, using (2), to check that Y is well defined. Moreover,
every extension of E by F defines a unique biderivation.

We note that if 5Y) is an inner biderivation then in fact X is split. In this case the

matrix @ = <Id 0 ) provides the splitting, where I;, I, are identity matrices:

U1,
@‘W(a)@z(((f(a) ?F’(a)) VaeF, .

Furthermore, it follows from the above discussion that every split extension arises in
this way.

Suppose we are given two extensions of £ by F which are Yoneda equivalent. It
follows easily from the definition of Yoneda equivalence that the corresponding
biderivations differ by an inner biderivation. It is straightforward to check that the
(Baer) sum on Ext!(E, F) corresponds to usual addition on the level of biderivations.

Now the endomorphisms of E and F induce (identical) F,[7]-module structures on
Ext!(E, F). That is, if X represents a class in Ext'(E, F) and beF,[t], we can define
two f-modules X b and b*xX, which ultimately represent the same class in
Ext!'(E, F). Explicitly, suppose ¢ is the (®, ¥)-biderivation corresponding to X and
n: X — E is the natural map in (1). Let

X b = ker((e,x)—®(b)(e) —n(x):E®@X-E).
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Then X #b is itself a +-module extension of E by F, and the operation of F,[¢] on it is

given by
[ ®(a) 0
(Yxb)(a) = (5(a)q’>(b) ‘P(a)) Vael,[1].

On the other hand, we can similarly use endomorphisms of F to define an extension
bx X whose t-module structure is given by

®(a) 0
(bxY)(a) = ( w(h)5(a) 'I’(a)> Vael,[1.

To see that X*b and bxX are equivalent extensions, we note that
&:F,[t] > Mat,, 4(K){t} defined by

e(a) = o(a)@(b) — Y(b)o(a) Yael,t|

is in fact the inner biderivation 6'Y), with U = (¢) in (4). That is,
b:o(-)o(-)@(b) and b: () P(b)o() (5)

define F,[7]-module structures on Der(®, ¥) which are the same modulo Der;,(®, ).
We record the results from the preceding paragraphs in the following lemma.

Lemma 2.1. Let E = (GY,®) and F = (G¢,¥) be t-modules. Then
Ext!(E, F) = Der(®, ¥)/Deri,(®, V)
as Fy[t]-modules.

For UeMatg 4 (K){t}, we let dU e Maty «q,(K) be the constant term of U as a
polynomial in 7, and we define the following subspaces of Der(®, ¥):

Dery(®, V) = {0€Der(®, V): do(t) = 0},

Derg(®, V) = {6'Y) e Deriy (®, ¥): dU = 0}.

The utility of Dery(®, V) is derived from the following lemma, whose immediate
corollary follows from Lemma 2.1. Note that Der, represents a different object here
than in [6,11]. Biderivations in Der(®, V) are called strictly inner, and clearly
Derg (@, V) =Dery(®, V). We will study Dergi(®, ¥) in more detail in Section 5.

The map d@:F,[t| >Maty(K) defines a non-abelian -module whose underlying
space is the tangent space Lie(E)=~K?. Furthermore, the map

0+—dds: Der(P,V)—Der(dd,d¥V)

is F-linear, and it is [, [7]-linear modulo inner biderivations.
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Lemma 2.2. Let E = (G, ®) and F = (G, V) be t-modules. The following is an exact
sequence of F,[t]-modules:

. Dery(®, ¥) Der(¢, %)  Der(dd,d¥) ©
Dero(®, ¥) nDeri, (@, %) Dery,(®,¥) Dery,(d®,d¥)

If 0eK is transcendental over [F,, then the final map in this sequence is surjective.

We define Ext{(E,F) to be the F,[f]-submodule of Ext'(E, F) corresponding to
Dery(®, )/ (Dery(®, V) N Deriy (P, V).

Corollary 2.3. The sequence in Lemma 2.2 corresponds to an exact sequence of F,[t]-
modules,

0— Ext)(E, F) - Ext' (E, F) - Ext' (Lie(E), Lie(F)),
where the final map is surjective if 0€ K is transcendental over [.

Proof of Lemma 2.2. Injectivity on the left of (6) is clear. To show exactness in the
center, first any 6eDero(®, V) maps to 0 in Der(d®,d¥). On the other hand,
suppose 0 € Der(®, ¥) and ddeDer(d®,d'P) is inner, say do(t) = Ud®(t) —d¥P (1)U
with UeMat,y;(K){t}. Then 6 — 551,{3, € Der (@, ) represents the same class as J in
Der(®, ¥)/Deri, (@, P).

In the case that §eK is transcendental over F,, we show surjectivity on the right.
We suppose d®(t) = I;0 + M and d¥(¢) = 1,0 + N, where M and N are nilpotent.
Without loss of generality, we can assume M and N are both upper triangular. The
spaces of biderivations Der(d®, d¥) and Der;,(d®,d'V) are both naturally K-linear,
and the map defining elements of Der;, (d®,d¥V),

U 0{glp (1): Matera(K) {2} = Matexg (K) {7} (7)
is K-linear and respects the grading by degrees in 7. Now
3yl (t) = U0 — 0U + UM — NU. (8)

If Uy is the matrix in Mat,,4(K) with a 1 in the ijth entry and zeros elsewhere, then
{Um?, Up—i a7, ...} = {UyT" /,:z,l?;v'_"‘.'i is an ordered K-basis for Mat,.4(K)t". Using
this basis, it follows from (8) and the fact that M and N are both upper triangular
that the map in (7), restricted to Mat,,4(K)7’, is lower triangular with 07 — 0 along

the diagonal. Since 8¢ — 0 is non-zero by our assumption on 6,
Ut 0l (1) Matexq(K){t}t > Matexq(K){t}t

is an isomorphism of K-vector spaces. Therefore, for every deDer(d®,d¥), if
dd(t) = 0, then ¢ is inner, and so the right-hand side of (6) is surjective. [
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3. A Weil-Barsotti formula

In this section, we prove Theorem 1.1. Let £ = (G,, @) be a Drinfeld module of
rank r>2, where (1) = 0+ a;t+ - + ¢,7". For an extension X of E by C, we let
oy € Der(@, C) be its associated biderivation.

Proof of Theorem 1.1. (a) An extension X of E by C splits if and only if
dx € Deri (@, €), i.e. if there exists ue K{t} such that dx(¢) = u®@(tr) — (0 + t)u. If

u = ¢t™, then we obtain an inner biderivation 3™ such that

(1) =ud (1) — (0 + t)u

n

Jm n Jn
=07 7" + cal "+ -+ cal T — Oer — 1 9)

If n = deg,(dx(7)) is greater than r — 1, we can repeatedly subtract (9) from oy (z),
with m=n—r, n—r—1,...,0, to reduce the t-degree of Jx(¢); eventually this
degree will be <r. Namely, any extension X is equivalent to an extension X’ with
deg (0x/(t))<r — 1, which we call the reduced representative of X.

According to (9), the non-zero inner biderivations of least degree have degree r, so
two extensions Z and Y satisfying deg (dz(7))<r—1, deg (dy(?))<r—1, and
0z(#)#dy(1), are inequivalent. Therefore the map

X0y () Ext'(E,C) 5V = {by + b1t + - + b,_17": b;jeK}, (10)

where X’ is the reduced representative of X, induces an isomorphism of [F,[¢]-
modules.

We now turn to the z-module structure on Ext!(E,C). Recall from (5) that
multiplication-by-# on Ext!(E, C) is defined by r#o = (0 + t)a = ad(t). Here, we
think of o as being an element of V. In order to see the action explicitly, it is enough
to consider o = b;7':

l*(b()) = (H-I-‘L')bo = 0b, +bg‘[,
tx(bit) = (0+1)bit = 0by7 + bi7?,

tx (b7 = (04 1)byt ! = 0b, 7 + BT

Using (9) with m =0, ¢ =b! | /a,, we can rewrite the last identity of (11) as

. b, b b .
tx (b7 = (,_‘11__,1611)_[ — L Yapt?? 4+ - a0t ?)

ay .
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Thus in terms of the elements ¢; = ' (i =0, ...,r — 1) of V, the -module structure
on Ext'(E, C) can be expressed by the map IT:F,[f] - Mat,(K){}, defined by

0 0 .o .. 0 0
1
T 0 0 4 + —qrz
a df
0 = 0 0 4,
(1) = ar
0 = 6 0
0 = 0 dr=2
ar
0 0 v -
ar

Comparing with Taguchi [21, Section 5], it is clear that the -module Ext'(E, C) is an
extension of G, by the r-module denoted there E. By Corollary 2.3 and the
characterization of ¥ in (10), it is clear Ext' (E, C) is an extension of G, by EV. Thus
EY is the same as Taguchi’s t-module. Moreover, Taguchi shows [21, Theorem 5.1]

that £V is a pure t-module isomorphic to /\,,1 E O

We turn to part (b), and for simplicity we assume that a, = 1; the general case
follows similarly. The -module structure on £V is then defined by

0 0 0 —ait+17°

T 0 0 —artT
Yi)=10 = 6 0

0 0t 0 —aost

0O -~ 0 t 0-—a_t.

Consider the biderivation oy : Fy[t] = Mat;(_1)(K){t} of any extension X of EY
by C. The inner biderivations are of the form 6Y)(1) = U¥(r) — (0 + 1)U for U =
(u;)eMaty(—1)(K){t}. Explicitly, v = (v;)eMat.,_(K){t} defines an inner
biderivation, §“) = §,, if it has the form

v; = w0 — OQu; + ui T — TU; (1 <i<r-— 2),

r—1
Vo] = Up_10 — Ou,_q + UITZ — TUp—1 — § u;a;t.
J=1

An inner biderivation §, is said to be basic if u; = 0 for all i#s and u, = ¢t with
ceK; we write v = v(s,c,m) = (vy, ..., v, ). Explicitly written, these are

v(1,e,m) = (07" " — 07" — A7)0, ..., 0, eT" T — cal T,
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v(2,¢,m) = (et 07" " — 07" — 10, ..., 0, —cag ),
v(z,e;m) = (0, ..., et 07 " — 07" — 170, ..., 0, —cal T,
o(r —1,e,m) = (0, ...,0, ¢t 0" 7" — 07" — 1™ — cal "), (12)

where for 2<z<r — 2 the possible non-zero coordinates of v(z,c,m) are v,_y, v,
and v,_. Every inner biderivation arises from an additive combination of basic J,.

Consider G=Mat,,(,_)(K){t} consisting of elements u = (u;) with t-degrees of
uy, ...,u,_» zero and the t-degree of u,_; less than or equal one. In other words,
uy, ...,u 2K and u,_; = ¢+ dt with ¢,deK. Elements of G give rise via (3) to
biderivations which we will call reduced.

Lemma 3.1. The map ur9,:G— Der(¥, C) induces an isomorphism

Der(?, C) 1
~— " ~~Ext (E
Derjy (¥, C) XU(EY, €)

of Fy-vector spaces.

Proof. We need only to prove the first isomorphism by Lemma 2.1. Let X be an
extension. We want to subtract appropriate v’s in (12) from ox(f) =u=
(u1,u, ...,uy—1) so that the resulting biderivation is reduced. In this process, we
need to keep track of the t-degrees of the u;’s. We define the t-degree of u to be the
vector d, = (d(u), ...,d,—(u)) with d;(u) = t-degree of u;. Given two vectors d and
d’ with integer coefficients, we shall say d <d' if d;<d! for all i. So our claim is that u
can be reduced to a biderivation i such that ;< (0, ...,0,1).

Let n be the maximum of the integers d;(u); one has d;(u) <n for all j. We can
modify u by v(2,¢,d; — 1) for an appropriate ce K to obtain # such that
di(W')<d,(u) and d,(u')<n for g=2. Subtracting an appropriate v(3,¢,d>(t')), we
obtain u” such that d»(u")<d>(u') and d,(u")<n for g=>3. Repeating this for z =

4,...,r —2 using appropriate v(z,c,m), we obtain a weMat;,_;)(K){t} whose
degree vector is less than or equal to (n—1,n—1,...,n— 1,n).

If n< 1, we are done. If not (n>>2), we can subtract an appropriate v(1, ¢,n — 2) to
obtain a vector w whose degree vector is less than or equal to (n— L,n—1,....,n—
I,n— 1). We repeat the procedure in the two paragraphs above until we arrive at a
vector w whose degree vector is less than or equal to (0,...,0,1). O

We can now determine the -module structure on Ext!'(EY, C). By the previous
lemma, it suffices to see this structure on G. Consider the elements
e;e GEMat, (1) (K){t}, 1<i<r, defined as follows. For 1<i<r— 1, we take ¢;
to be the vector Wlth 1 in the ith coordinate and zeros elsewhere. We take e, to be the
vector with 7 in the last coordinate and zeros elsewhere. The structure of a
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F,[f]-module on G is completely described by the action of 7 on elements of the form
be;, be K, since additive combinations of such elements give all of G.

Consider tx (be;) = (0 + t)be; = Oe; + bite;. The last is no longer an element of G,
and we need its equivalent vector in G. Using the reduction procedure of Lemma 3.1,
it is easily computed that

r—i—1

Z bqri/a,.f) e, 1<i<r—1,

(0 + 7)(be) = Obe, + <
=0

(04 1)(be,—1) = Obe,_; + ble,,

(0 + 1) (be,_) = Obe,_5 + (b7 + bla,_1)er,

(0 +1)(be,) = (0 + b af> er.
=

Thus there is a -module structure Z:F,[f]—»Mat,(K){t} on Ext'(EY,C), which is
completely described by

0 0 0
0 o0 0
E@)=1: " T
0 90
o 0 e Oy O

Here o, = 0+ ajt +axt®> + --- +a,_;7""' + 7', and the others are given by o, =
Z};’éﬁl "/, ;, for 1<n<r— 1. Moreover, Ext'(EY, C) is an extension of G/, !
by E. By Lemma 3.1, (EV)" is one-dimensional, which completes the proof. [

Proof of Theorem 1.1. (¢) If F = (G,, ) is a Drinfeld module, then a morphism
B:E—F is represented by f = uy + -+ + ust? e K{t} such that f&(a) = ¥(a)p for
all  ael,f]. Then f induces an  [F,[fl-module = homomorphism
BY: Ext!(F, C)—»Ext'(E, C), and on the level of biderivations,

(B (0))(a) = 0(a)p  Vaek,[i].

Also B takes Exty(F,C) = F" into Ext{(E,C) = E". Since Drinfeld modules of
different ranks have no non-zero morphisms between them, we can assume that the
rank of E is the same as the rank of F.

We continue with the considerations of the proof of part (a). Asin (11), we need to
measure the effect of ¥ on biderivations in Der(¥,C) represented by o = bt
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in (10). We see that for 0<i<r — 1,
. i i d
B (0p0i)(2) = b’ p = buf v + -+ + b 7',

Using (9) we can subtract suitable inner biderivations in Derj,(®, C) and find that in
Ext'(E, C),

ﬁv (517,--;")([) = C,"’o(bi)‘fo + -+ Cir—1 (bi).[rfl’

where each c¢;;(x) is an F,-linear polynomial in K[x] whose coefficients depend only
on f. Thus p": Ext!(F, C) - Ext!(E, C) is represented by a matrix in Mat,,.(K{t}),
and B restricts to a t-module morphism gY: F¥ -EY. O

4. Extensions of tensor powers of the Carlitz module

In this section, we prove Theorem 1.2. Recall that the nth tensor power of the
Carlitz module is the n-dimensional pure -module C®": F,[1] > Mat,(K){r} defined
by

0 1 0
co')=1|[: " 1
T 0
That is, C®"(¢) = 01, + N, + E,t, where
o 1 0 o -~ 0
N,=1: - 1 and E, = | :
0 - 0 1 . 0

See [2] for more details.

Fix m<n. The following lemma determines representatives for elements of
Der(C®™ C®") /Der;,(C®™, C®"). For VeMat,y,(K{t}), recall the definition of
oy from (3).

Lemma 4.1. Let
G = € Matnxm(K)
£ 0 - 0

Then V- 35y:G — Der(C®™, C®") /Der;, (C®™, C®") is an isomorphism of F -vector

spaces.
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Proof. Let Q;; be the n x m matrix with a 1 in the #jth entry and zeros elsewhere. For
ceK and k>0, by taking cQ;t* for U in 3W(1), we define

¢ cQytk — B m _ n B
3 =01 (1) = (cQyT) CO™ (1) — CO"(1)(cQy¥)
— (07 — 0)057* + ¢(QyN,y — N, Q)"
+ (CQijEm — CqEn Qi/‘)’l,'k+l. (13)

Since every UeMat,,,(K{t}) is an F,-linear combination of matrices of the form
cQ,-jrk, biderivations arising from (13) generate Derj,(C®”, C®") as an [F,-vector
space.

Suppose that V' = (vj;) e Mat,,,(K{t}) is arbitrary and that deg,(v;) <r for some
r=1. We will show that by subtracting matrices in (13) from ¥ in various ways we
can replace ¥ by a matrix ¥’ which has each entry of t-degree <r — 1 and also J~
equivalent to 6 modulo Der;,(C®™ C®").

We bootstrap our way through the entries of V' in the following way. Let

D = {55}1 k>0, ceK}.

Define a function F from the set of subsets of 7 := {(i,j): 1<i<n, 1 <j<m} to itself.
We set F(S) to be those entries of V' whose degrees in 7 can be decreased by
subtracting an element of -, , s Dy, without increasing the degrees of the other

entries. Our claim then is that F(I) = I. The following containments can be easily
checked:

F{2<i<n;j =m}) 2{2<i<n;j = 1},
F({2<ismj=mpoli—j=2}) 2{i-j=1},
F({j=m}po{i—j=2}) 2{i—j=1}u{(1,1),(1,m)},
F({j =mpu{i—j=1}) 2{i-j=0}u{(l,m)},

F({j=m}u{i—j=-¢})2{i—j= -/ - 1}u{(1,m)}, (14)

where the last containment holds for all /=0, ...,m — 1.

Therefore, we can assume that every entry of V' is a constant from K. Now that the
7-degree of each entry of V is 0, one checks the containments in (14) still hold with
the exception that all sets on the right-hand side must have {j = 1} removed. That is,
we can adjust V' so that it can be replaced by a matrix in G, but elements of G can be
reduced no further. O
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Proof of Theorem 1.2. Let G be given as in Lemma 4.1 so that by Lemma 2.1
G=Ext'(C®™, C®m).

Recalling the definition of Q; from the proof above, let
er =01, ..., n = On

be basis vectors for G over K. Combining Lemmas 2.1 and 4.1, G has a natural [F,[7]-
module structure which we now make explicit. For ce K,

t+(cer) = C®"(t)(cer) = Oce; + clte, (15)
and
tx(ce;) = C®"(1)(ce;) = Oce; + ce;y, 2<i<n. (16)

We note that as defined in (13),

m—1

[e1] _ —
g 5,,,,",,7,,“() - CanlT - chnfm,l - cqfen - qunfmv
i=

and since this sum defines an inner (C®", C®")-biderivation, we subtract it from
(15) and find that

tx(cey) = Ocey + cleyp.

Therefore, combining this with (16), we see that the F,[f]-module structure on G can
be expressed as a -module by the map II:F,[f] > Mat,(K){t} defined by

0O --- 0
C®(n—m) (t) :

I(t) := 1 --- 0
0 1,0+ Np,

Thus there is an exact sequence of r-modules,
0—-C®" G- L0,

where L is an m-dimensional iterated extension of G,, and one checks that moreover
C®t=m = Exty(C®™, C®"). O

Remark 4.2. The [,[f]-module structure on Ext'(C®" C®") when n<m provides a
different picture. We consider the following examples.

Using similar methods as in the proof of Theorem 1.2 it is possible to show that
Ext'(C®2, C)~K? as [F,-vector spaces and that the F,[f]-module structure on



M.A. Papanikolas, N. Ramachandran | Journal of Number Theory 98 (2003) 407-431 421

Ext! (C®2, C) is given by

a 0 0 a
tx = , a,bek.
b 1 0+17! b

Thus Ext!(C®2, C) is an extension of G, by the adjoint of the Carlitz module (see
Goss [12, Section 3.6]), but not a -module.

As for an example with n = m, the first case to consider is Ext' (C, C), which itself
is quite subtle. For an inner biderivation 0 eDer;,(C,C) arising from u =
ctfe K{1},

k

(1) = et C(1) — C1)ett = (87 — 0)7F + (¢ — 1),

Unless K is algebraically closed as well as perfect, it is not possible to systematically
decrease the degree in © of 6(¢) for an arbitrary 6 € Der(C, C) (one needs to be able to
solve equations of the form ¢ — ¢ = « for e K). If K is algebraically closed, the
situation improves, and it is possible to show that then Ext!(C, C)~K and that in
fact Ext'(C, C) =G, as [F,[f]-modules.

5. Periods of r-modules and extensions

Here, we would like to motivate the expectation that Ext'(E, F), for certain ¢-
modules E and F, can be given the structure of a r~-module. Overall, we have made

the following observations. If E = (G, ®) is a pure t-module of rank r, then the
weight of E is defined to be

wt(E) =d/r.

What Theorems 1.1 and 1.2 have in common is that, for certain pure -modules E
and F, the F,[f]-module Ext'(E,F) has the structure of a t-module provided
wt(E) <wt(F) and that the submodule Ext}(E, F) is itself pure and uniformizable.

Also in the situations of Theorems 1.1 and 1.2, Ext)(E, F) behaves well under
base-extension. That is, if L2K is a perfect field, then
Exty x (E, F) = Exty,; (E, F)(K), where here Exty(E,F) is the usual Exty(E,F)
over K and Ext(l)/L(E, F)(K) is the set of K-valued points on Ext(l]/L(E, F).

These results, along with other experimental evidence, suggest that in general
Exté(E, F) is pure, uniformizable, and functorial in K, for arbitrary pure

uniformizable -modules £ and F with wt(E)<wt(F). However, the examples in
Remark 4.2 show that the situation when wt(E)>wt(F) is somewhat different.

In this section, we investigate the structure of Ext!(E, F) from an analytic point of
view so as to support the veracity of the claims above. Our main tool will be
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generalizations of quasi-periodic functions defined in [6,11] for extensions by G,.
Moreover, we study an analogue of the de Rham map of Gekeler [11]. For more
details on the general analytic theory of -modules see [12, Chapter 5].

Let K be the completion of the algebraic closure of the Laurent series field
F,((1/0)), where 0 is an independent variable. Let 1:F,[7] - K be defined by ¢+— 0.

Let E = (G, ®) and F = (G%, ¥) be uniformizable -modules over K. We take
Expy: Lie(E)(IK) —» E(IK) to be the exponential map of E. Because E is uniformiz-
able, there is an exact sequence of F,[f]-modules

0 Ap— K B K 0,

where [, 7] operates by d® on the central K¢ and by @ on the right one. Also, Ay is

the period lattice of @ and is a discrete F,[f]-submodule of iK?. Similarly, we define
Expy and Ay for F.

Lemma 5.1. For each éeDery(®, V) there is a unique F,-linear entire function
Fs:K9 > K¢ such that for ze K9,

Fs5(z) = 0 (mod deg g),
F5(d®(a)z) = Y(a)Fs(z) + 6(a)Expg(z) Vael,[1].

Proof. The proof here is essentially the same as the that of the existence of the
exponential function, and in particular we can easily adapt the proof of Proposition
2.1.4 in [1] to this situation. [

Lemma 5.2. Suppose 'Y e Dery(®, ¥) A Deriy (@, V). Then

Fs5(z) = UExpg(z) — Expy(dU - z).

Proof. This follows directly from Lemma 5.1, using the fact that (V) € Dery(®, ¥) if
and only if dU d®(a) = d¥(a) dU for all aelF,[7]. O

If X :(GZ“, Y) is an extension of E by F defined by a biderivation
oeDery(®, V), then Lemma 5.1 and the uniqueness of the exponential function

imply that
Expy ) Expg(2)
"\ u Expy(u) + Fs(2)
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is the exponential function for X. Also, since £ and F are both uniformizable, so is
X. Moreover, the period lattice of X is

Ay = {(;) L€ Ap, Expy(n) + Fs(A) = 0}.

For each (4,n) €Ay, it follows that (4,7 + d¥(a)p) e Ay for all aeF,[f] and peAy.

Proposition 5.3. The following map is a homomorphism of F,[t]-modules:

DR = DR(g y) : Dero(®, ¥)/Ders(®, ¥) - Homg, | (Ae, P(K)),
o> (A F5(R)).

Proof. The map DRg:0+ (4t F;(4)) on Dery(®, ¥) —» Homg, 1 (Ag, P(IK)) is clearly
well defined and F,-linear by Lemma 5.1. If 5(U)6Dersi(<15, V), then by definition

dU =0, and so by Lemma 5.2, DRy(6'Y)) = 0. Therefore DR is well defined.
Furthermore, from (5) and Lemma 5.1, it follows that

Fu,5(2) = Fyays)(2) = P(a)Fs(z) Vael,[t],
and so DR(a*9)(1) = ¥(a)(DR(6)(4)), for all aeF,[¢]. O

Remark 5.4. In the case of extensions of Drinfeld modules by G,, the map DR
specializes to the de Rham homomorphism of Gekeler [11]. Gekeler shows in this
case that the de Rham map is in fact an isomorphism. In general, determining the
kernel and cokernel of DR is a delicate matter and will require further study.
However, Theorems 1.1 and 1.2 can be used to imply that the de Rham maps in their
respective situations are indeed isomorphisms. A straightforward modification of the
proof of [11, Theorem 3.1] yields the following partial result.

Proposition 5.5. Suppose E = (G,, ®) and F = (G,, V) are Drinfeld modules of ranks
r and s, respectively. If r>s, then DR g ) is injective.

Remark 5.6. If 4 is the ring of functions on a smooth curve X /F, which are regular
away from a fixed point oo, then one can also consider Drinfeld 4-modules (see [12,

Chapter 4]) and their groups of extensions. In [11], Gekeler considers Ext!'(E, G,),
where E is a Drinfeld 4-module of rank r and shows that

Ext)(E,G,) =G (17)

as A-modules. To prove this, Gekeler uses the de Rham isomorphism to show that
these two spaces match up exactly. In the special case that A4 = [F,[¢], the
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isomorphism in (17) can be generalized and proven without the de Rham
isomorphism (see [6, Section 3]). This is possible essentially because all z-modules
and biderivations of -modules are determined by values of homomorphisms on ¢
alone.

For Drinfeld A-modules E and F over a general ring 4, one can define
biderivations and inner biderivations just as in Section 2. However, the identifica-
tions in (3) and thus in Lemma 2.1 are more complicated, and this difficulty makes
the A-module structure of Ext'(E, F) hard to characterize.

Although one would want to find generalizations of Theorems 1.1 and 1.2 in the
setting of Drinfeld 4-modules, it is not immediately clear what the precise form these
analogues would take. Since there are in general several choices of non-isomorphic
rank 1 Drinfeld A-modules to consider, the exact structure of extensions by these
modules is a direction for future investigations.

For the remainder of this section, we will consider the implications of the
assumption that DR is an isomorphism. In this way, we attempt to motivate the idea
that Ext}(E, F) can be given the structure of a -module.

Suppose K7 is an F,[f]-module defined by an F,-linear representation
¢:F,[f] > Maty(K) such that ¢(¢) = 0I; + N with N nilpotent. If A is any finitely
generated discrete [F,[¢]-submodule of K¢ of rank r, then following the language of
Anderson [1, Section 4.4], we call Kd//l a t-torus of dimension d and rank r.
Through its exponential function, every uniformizable ~-module is isomorphic to a ¢-
torus.

Let Zi, ..., 4, be an F,[t]-basis for A4. Choosing this basis fixes isomorphisms

Homg 1(Ag, P(K)) = P(K)"

l12

() / (Aw)". (18)

We let

W= W (Uiss . Us) eMatp (1): O < Matexa(t), (19)
= = U, ..., UA) e Mat, (K): )
(@%) b Udd(t) = d¥ (1)U

Suppose 5 € Der (@, ¥) nDerj, (@, P) for UeMat,,(IK). By Lemma 5.2 and (18),
DR(8'Y)) = (Expy(Uly), ..., Expy(UJ,)) € Mat,,, (IK),

and so DR(Dery(®, V) nDeri, (P, ¥)) = Expy (W). Thus by Corollary 2.3,
DR 4,y induces a homomorphism of F,[7]-modules,

DR y): Ext{(E, F) - Mate, () /(W + A3), (20)
which is an isomorphism if the original DR ¢ y) is one. Depending on E and F, the

right-hand side may or may not be isomorphic (rigid analytically) to a z-torus. We
consider the following situations.
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Example 5.7. Suppose E = (G,, ®) and F = (G,, ¥) are Drinfeld modules of rank 2
and s, respectively. Let 41, 4> and y;, ..., u, be generators for their period lattices over
F,[t]. The exact sequence

0o WKL Koo,

where f(x,y) = A1y — Z2x, provides a choice of coordinates on the right-hand side of
(20), and f(Ay @ Ay) is the F,[7]-submodule generated by {),,u/}szY

If s = 1, then Proposition 5.5 implies that Ext)(E, F) & K/ (F,[f) A1y + Fylf)dany),
and Theorem 1.1 (and also [22, Proposition 7]) confirms that this is in fact an
isomorphism of f-tori. If s>2, then it is easy to construct examples where
f(Ap @ Ap) is not discrete in K, and so in such cases the right-hand side of (20) is not
a t-torus (cf. Theorem 6.1). When we compare weights, these observations are
consistent with the discussion at the beginning of the section, i.e. wt(E)=wt(F)
precisely when s> 2.

Proposition 5.8. Suppose E = (®,G,) and F = (¥, G,) are Drinfeld modules of rank r
and s, respectively, with r>s. If DRg y) is an isomorphism, then Ext(l)(E, F) is
isomorphic as an F4[t]-module to a t-torus of dimension r — 1 and rank rs.

Proof. Let Zy,...,4 and y,...,u, be Fyf]-bases for A¢ and Ay, respectively.
Because E and F are both one-dimensional, Deri, (@, ¥) < Dery(®, V). As in (19),

W = W(q;_’q/) = {(U/ll, ey Uﬂvr)eMatlxr(K): Ue K}

We claim that W (Ay)" = {0}. Suppose we W (Ay)". Then

w= (Ul ...,UL)= (v, ...,V,), viedy.

Because r >, there is a non-trivial F,[¢]-linear dependency » d¥(a;)v; = 0, and thus
U-> d®(a;)A; =0. Since 4i, ..., A, are linearly independent over F,[7], it follows
that U = 0.

By the following argument, the image of A% is discrete in Mat; . (IK)/W. We
proceed by induction on r, for which the base case (r = 2) is trivial. Furthermore, it
suffices to continue with r = s+ 1, which we will now assume; the cases where
r>s+ 1 follow as straightforward consequences. The K-linear map

f: Matlx,.(K) - Matlx(rfl)(K)v

(xh '~7xr) — (/12)61 — 1X2, --'7}~rxr—l - lr—lxr)
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has kernel . We need to show that V' := F,((1/0)) - f (Ay) =Mat;(,_1)(IK) is an rs-
dimensional vector space over [,((1/0)). The typical element of V" has the form

s e 0
P

V= (fh1s ooy ) A (21)

: Ar ’
0 =

where 4 = (o;7) e Mat,,,(F,((1/0))). Let B denote the r x (r — 1) matrix in the above
formula. By our assumption that s =r— 1, the matrix 4B is square, and its
determinant is

det(AB) = Jo-+dvt y_ (—1)7idet(4)),

J=1

where A4; is the s x s minor of 4 with the jth column removed. If v = 0, then this
implies that det(4B) =0, and since 4, ...,4, are F,((1/0))-linearly independent,
det(A4;) = 0 for each j. Thus the rank of the matrix A4 is less than s, and we can
rewrite the last row of A4 as an F,((1/0))-linear combination of the other rows, say

Oy = Zf;ll Bio;; with f;€F,((1/0)). The formulation in (21) can be rewritten as

V= (ul +[))l:usa ceoy M1 + ﬁsfllus)/IBv

where A is the (s — 1) x r matrix obtained by removing the last row of 4. Again
v =0, but then our induction hypothesis with r replaced by r — 1 allows us to
conclude that 4 =0. O

Remark 5.9. Letting £ and F be Drinfeld modules of rank r and s, with r>s,
Proposition 5.8 shows that Exté(E, F) is isomorphic to a -torus as long as DR g y) is
an isomorphism. Since in this case wt(E) <wt(F), our discussion at the beginning of
this section leads us to speculate that DR g ) is an isomorphism and that the z-torus
isomorphic to Ext}(E, F) is in fact a pure uniformizable #-module. In addition, using
the techniques of Theorem 1.1, it is possible to show that Ext}(E, F) is isomorphic to
a t-module of dimension r — 1, though we omit the details.

6. Elliptic curves

Let E| and E, be elliptic curves over C. Let G .= Ext}C (E, E>) be the extension
group in the category of complex abelian varieties. By the Poincaré reducibility
theorem, this is a torsion group. The set of complex points E(C) of an elliptic curve
E over C can be viewed as a complex torus written E£%"; so one may also consider
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A= Extl(E*f‘“, E3M), the extension group in the category of complex tori. There is a
natural homomorphism G — A; the image is the torsion subgroup of A4 (see [4,
Remark 6.2, p. 23]).

We present next a theorem of Lichtenbaum (1960s, unpublished); however, our
proof is different in that it is based on periods. By comparison to Example 5.7 and
Proposition 5.8, the theorem below indicates that the situation for elliptic curves
runs quite parallel to our own. Specifically, in light of in Example 5.7, it suggests that
Ext! (E, F) will rarely be representable as a f-module for non-isogenous Drinfeld
modules E and F of rank 2. Moreover, it suggests that Ext!(E, F), for general -
modules £ and F, will not always have the structure of a -module.

Theorem 6.1 (Lichtenbaum). Let E| and E; be elliptic curves over C, and let G =
EXt}C(E17E2) and A = Eth(E‘lln7E§111).

(a) If E = E| = E; has complex multiplication, then A is naturally isomorphic to
E(C) as abelian groups. Under this isomorphism, the group G is identified with the
torsion points of E(C).

(b) If E| and E, are isogenous and admit complex multiplication, then A is isogenous
to E|(C) and E»(C).

(c) If at least one of E| and E, does not admit complex multiplication, then the
natural topology on G is non-Hausdorff. Therefore, G is not the set of complex
points of a complex algebraic variety with the classical topology.

Proof. Given E; (i = 1,2) as the quotient of C by lattices Z + Zz;, where each 7; may
be taken to be have positive imaginary part, we see from [4, Proposition 5.7, p. 21]
that A is naturally the quotient of C by the subgroup A generated by 1,1;,7, and
T1T2.

Let us suppose that an elliptic curve X has complex multiplication; let us think of
X (C) as a quotient of C by Z + Zz. By the theory of complex multiplication [19], we
have the following: (i) 7 lies in an imaginary quadratic field; (ii) t> = at + b for some
integers a and b; and (iii) if X’ (with X’(C) = C/(Z + Z7')) is an elliptic curve
isogenous to X, then 7’ and t lie in the same imaginary quadratic field and X" also
has complex multiplication with the same CM-field.

If X(C) = E = E| = E;, then we have T = 1; = 15. By (i) and (ii), we get that A is
the lattice Z + Zz. Thus we obtain that A is naturally identified with E(C). The last
statement in (a) follows from [4, Remark 6.2, p. 23].

If E; and E; are isogenous curves with complex multiplication, then 7, and 7; lic in
the same imaginary quadratic field F; in this case, A is isomorphic to a fractional
ideal of an order of K. This proves (b).

For (c), suppose at least one of E| and E; does not admit complex multiplication.
By the fundamental theorem of complex multiplication, 7; and 7, are not both
contained in one imaginary quadratic field. In other words, in this case 4 is a
subgroup of Z-rank greater than two, and so it is not a discrete subgroup of C. [
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Remark 6.2 (Schoen). (a) If 4 and B are abelian varieties defined over @, then the
natural map Ext(}iD (A, B) > Extl(4, B) is an isomorphism.
(b) Any abelian surface corresponding to an element of Extqlz (E, Ey) is isogenous

to the product E; x E;. Any complex abelian variety, which is isogenous to a
product of CM-elliptic curves, is itself a product of CM-elliptic curves [18].

7. Extensions of 7-motives

In this section, we explore extensions from the standpoint of #-motives and
examine avenues for further study. Given two f-modules E,F over K, we can
consider the associated Anderson t-motives M (E) and M (F) [1]. Since the functor
M which sends a -module to its associated r-motive is contravariant, we obtain a
map

M*: Ext'(E, F)—Ext' (M(F), M(E)),

because M gives an anti-equivalence of categories of f-modules and #-motives
[1, Theorem 1], M* is an isomorphism. If one is interested in computing just the
group of extensions of r~-modules, then it is relatively easy to compute extensions in
the category of t-motives. We formulate this precisely in the next lemma.

The evident functor f from the category J of t-motives to the category € of left
K[t,7]-modules is fully faithful [1, Section 1.2]. Here K|z, 7] is the non-commutative
ring generated by ¢ and t with the relations, tt = tt, xt = tx,1x = xt, for all xeK.

Lemma 7.1. For any t-motives A and B over K, the natural map
f* Exty(4,B)—Exty(f(4).f(B))
is an isomorphism.

Proof. The fact that /' is fully faithful implies that /* is injective in the following way.
Suppose the images of « and 8 under f* coincide. Pick representatives of o and f,
i.e. extensions X; and X> of 4 by B which satisfy f(X;)=f(X2). We obtain a
commutative diagram

0 (B) f(X1) f(4) 0
0 (‘L) fzﬁlf2) f (HA) 0,

where y is an isomorphism of K[t,t]-modules. Since f is fully faithful, y is an
isomorphism of ¢-motives. More precisely, y is induced by an isomorphism X; - X

of t-motives.
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It remains to show the surjectivity of /*. For this, we have to show the following:
given any extension X of f(A4) by f(B) in %, the left K[z, 7]-module X is a -motive,
i.e. (1) it is free and finitely generated as a K[t]-module and (ii) the associated primes
of X' = X /17X, viewed as a module over the commutative ring R = K][t], consist
only of the principal ideal I = (¢ — 0). Geometrically, we want the coherent sheaf
associated to X’ on A! to be supported only at the point 7 = 0.

Condition (i) is clearly satisfied by X by general properties of modules over the
ring K[t] [12, Proposition 5.4.9]. For (ii), consider an extension Q of P by N where P
and N are finitely generated R-modules. Every associated prime of Q is an associated
prime of either P or N. Also, if H is a quotient module of N, then every associated
prime of H is an associated prime of N (this is easy to see via the geometric
interpretation).

Now, by assumption, the associated primes of the R-modules 4" :=f(4)/1f(4)
and B' := f(B)/tf (B) consist of just the ideal I. The R-module X’ is an extension of
A’ by B” (= a quotient module of B'). So we may apply the comments in the previous
paragraph to the extension X’ to deduce that X' satisfies (ii). [

Remark 7.2. Lemma 7.1 shows that extensions may be computed via resolutions of
t-motives by free K[z, 7]-modules. Furthermore, it implies the injectivity of the map

¥ Ext% (4, B) > Ext}(f(A),f(B)).

For M and N as in Remark 7.4 (and K = F,), this gives Ext}-(M,N) = 0.

Remark 7.3 (Analogy with 2-modules). A. Rosenberg points out that K|z, 7] and,
more generally, skew polynomial algebras are analogous to Weyl algebras in 2-
module theory (the first Weyl algebra is C[x, 9] with the relation dx — x0 = 1) in that
they are all special cases of hyperbolic algebras [17, Chapter II]. Since Ext’s of certain
(but not all) Z-modules possess a nontrivial structure of a Z-module, one may
expect the same to be true for -modules.

The analogy with Z2-modules is best viewed within the context of opers (see [3,
Section 7.3.14]; a Drinfeld module is an example of a Frobenius oper) and non-
commutative algebraic geometry (see [5, Remark 5.3.5, Section 6], [7, Section 0.6],
[17,20]). The analogy between Drinfeld modules and non-commutative tori is
explained in [13].

Remark 7.4. Geometrically interpreting the definition of a #-motive [1, Section 1.2], a
t-motive M is a special sheaf # j; over a non-commutative surface S [17] given by the
product of the non-commutative affine line A}‘C by the commutative affine line A'.
We think of S as fibered over A! (viewed horizontally) with (vertical) fibers Arlw. The
sheaf 7, is the ideal sheaf of a curve X, =S for which the following hold.

(a) Xy 1s finite over the two axes, via the projections to the components; in other
words, X, is transversal to the horizontal and vertical fibers.
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(b) The intersection of Xy, with the horizontal axis (which corresponds to 7 = 0) is
a nilpotent subscheme of A! supported at the point 7 = 0; (a) assures us that the
intersection is a proper subscheme of A'.

If M and N are distinct -motives, then the group Extly(M ,N) can be interpreted
via the “intersection scheme’ of the curves X, and Xy in S. We can view the
subgroup Ext(l)(M, N) (cf. Corollary 2.3) of Ext}(M, N) as the non-trivial part of the
intersection locus corresponding to points distinct from ¢ = 0,7 = 0, as in (b).

The geometric situation is especially clear in the case K =[F,: S is the usual

commutative affine plane A”; if g(z,7) and A(z,7) (assumed to have no common
factors) are defining equations for the curves X, and Xy, then Extlj(M ,N) is
isomorphic to the quotient module F,[#,7]/(g, ) of the commutative ring F,[¢, ].

Remark 7.5. The results and ideas in this paper are used in an ongoing project with
Thakur, whose aim is to relate extension groups of z-modules to values of zeta
functions in the spirit of [2,10,16].
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