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A modular software framework design that allows flexible implementation of eye-in-hand

sensing and motion control for agricultural robotics in dense vegetation is reported. Har-

vesting robots in cultivars with dense vegetation require multiple viewpoints and on-line

trajectory adjustments in order to reduce the amount of false negatives and correct for

fruit movement. In contrast to specialised software, the framework proposed aims to

support a wide variety of agricultural use cases, hardware and extensions. A set of Robotic

Operating System (ROS) nodes was created to ensure modularity and separation of con-

cerns, implementing functionalities for application control, robot motion control, image

acquisition, fruit detection, visual servo control and simultaneous localisation and map-

ping (SLAM) for monocular relative depth estimation and scene reconstruction. Coordi-

nation functionality was implemented by the application control node with a finite state

machine. In order to provide visual servo control and simultaneous localisation and

mapping functionalities, off-the-shelf libraries Visual Servoing Platform library (ViSP) and

Large Scale Direct SLAM (LSD-SLAM) were wrapped in ROS nodes. The capabilities of the

framework are demonstrated by an example implementation for use with a sweet-pepper

crop, combined with hardware consisting of a Baxter robot and a colour camera placed on

its end-effector. Qualitative tests were performed under laboratory conditions using an

artificial dense vegetation sweet-pepper crop. Results indicated the framework can be

implemented for sensing and robot motion control in sweet-pepper using visual infor-

mation from the end-effector. Future research to apply the framework to other use-cases

and validate the performance of its components in servo applications under real green-

house conditions is suggested.
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Nomenclature

s* desired image feature vector, �
s current image feature vector, �
Ls interaction matrix that links variation of

features over time and camera velocity, �cLs approximation of interaction matrix, �cLþs pseudo-inverse of approximation of interaction

matrix, �
l proportional coefficient of the exponential

convergence of the error, �
v camera velocity or kinematics screw vector

R red values of image, �
G green values of image, �
B blue values of image, �
X projection of RGB colourspace to novel X-axis,�
Y projection of RGB colourspace to novel Y-axis,�
Z projection of RGB colourspace to novel Z-axis,�
l Lightness dimension of CIELab colourspace, �
a colour-opponent dimension a of CIELab

colourspace, negative values indicate green

while positive values indicate magenta, �
b colour-opponent dimension b of CIELab

colourspace, negative values indicate blue and

positive values indicate yellow, �
x horizontal position of feature in camera frame,

m

y vertical position of feature in camera frame, m

z depth position of feature in camera frame, m

u0 x-coordinate of image centre, pixels

v0 y-coordinate of image centre, pixels

ui horizontal position pixel in image, pixels

vi vertical position pixel in image, pixels

px horizontal pixel size on camera sensor, m

py vertical pixel size on camera sensor, m
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1. Introduction

During the design of robotic applications for harvesting hor-

ticultural products, two key challenges need to be solved. The

first is the detection of a target location of the fruit. The second

is moving the end-effector towards that location with preci-

sion to perform a harvest action. There are several ways to

address each of these challenges. For example, one approach

solves fruit detection by using one or few viewpoints from a

sensingmodule located externally from the robot. However, in

crops with a high vegetation density, using a low number of

viewpoints results in false negatives due to a large amount of

occluding leaves and branches (Hemming, Ruizendaal,

Hofstee, & Van Henten, 2014b). Furthermore, the external

placement of the sensor(s) requires one or multiple frame

transformations. Slight errors therein accumulate, resulting

in inaccurate target coordinates. When a location of the target

fruit is acquired, moving the end-effector there can be solved

by executing a planned motion trajectory without additional

sensing. However, dislocation of the target can occur as the

robot enters and interacts with a dense crop. Both the frame
transformation errors and dislocation of the target can result

in poor end-effector placement at the target (Hemming et al.,

2014a; Henten et al., 2003). An example implementation of

external sensing and planned motion control was tested

during the European 7th Framework Programme project

Clever Robots for Crops (CROPS) (GA no. 246252). During this

project, a proof-of-principle harvesting robot was created for a

dense sweet-pepper crop. A sensing module dislocated from

the robot provided fruit detection from a single viewpoint.

Thereafter a motion trajectory was executed without further

sensing. It was concluded that this approach was one of the

causes of low harvest performance, both in cycle time as well

as in fruit detection rates (Bac, 2015). Another example of a

cucumber harvesting robot uses a similar approach (Van

Henten et al., 2002), where a single viewpoint in the work-

space of the robot provided fruit positions. In both the CROPS

and cucumber robot, additional sensing could be performed to

refine fruit positions with a second set of cameras on the end-

effector. However, in both field tests this feature was not used.

This extra single sensing step before the final motion execu-

tion is also known as look-and-move (Hutchinson, Hager, &

Corke, 1996). When a camera is attached to the end-effector,

it is often named an eye-in-hand sensor (Hutchinson et al.,

1996). For a strawberry harvesting robot, a similar eye-in-

hand look-and-move approachwas used (Hayashi et al., 2010).

A different approach is to solve fruit detection and motion

control using primarily eye-in-hand sensing. External sensors

are not necessarily excluded in this paradigm, though the

application is not dependent on this additional secondary

sensing source. For the fruit detection, the internal location of

the sensor(s) reduces the number of coordinate frame trans-

formations to a single one. Moreover it allows the application

to sense the scene from multiple viewpoints with pose

changes of the end-effector, expected to decrease the number

of false negative detections in a dense crop. For the motion

towards the target, this approach allows for continuous in-

cremental visual feedback and corrections, also known as vi-

sual servo control (Hutchinson et al., 1996; Marchand,

Spindler, & Chaumette, 2005). Examples of robotic harvesters

in horticulture using visual servo control are numerous. For a

sweet-pepper harvesting robot in Japan, a visual servo control

algorithm positioned the end-effector near the fruit using

stereo images (Kitamura & Oka, 2005). Although the camera

was not part of the end-effector, it was placed within its

workspace and aligned with the optical axis. In a strawberry

harvesting robot, a set of external sensors first provided rough

fruit position after which an eye-in-hand system moved to-

wards it using visual servo control (Han et al., 2012). For ap-

plications of an apple harvesting robot (De-An, Jidong, Wei,

Ying, & Yu, 2011) and a citrus harvesting robot (Mehta &

Burks, 2014), eye-in-hand visual servo control systems were

created. Another application for an apple harvesting robot

also applied eye-in-hand sensing, however did not implement

a full visual servo control. Instead look-and-move corrections

were performed multiple times during the fruit approach

(Baeten, Donn, Boedrij, Beckers, & Claesen, 2008).

The aim of our research was to provide a flexible modular

framework for eye-in-hand sensing and motion control in

robotic harvest applications as a standardised approach. In

the aforementioned previous research, the designs of sensing

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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Fig. 1 e Venn diagram of the framework's required

functions, divided over the robot behaviour primitives

sensing, planning and acting.
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and visual servo control algorithms were ad hoc and appli-

cation specific, therefore hard to migrate to other use-cases.

Our approach aims to provide a consistent approach,

designed to cope with a wide variety of applications. The

framework is primarily designed for dense crops in agri- and

horticultural robotics, where a single viewpoint is not suffi-

cient for sensing. Other frameworks for sensing and visual

servo control focus on the design of a single low level function

(Bachiller, Cerrada, & Cerrada, 2003; Jara, Pomares, Candelas,

& Torres, 2014; Mahony, 2011; Marchand et al., 2005; Wu,

Lou, Chen, Hirche, & Kuhnlenz, 2010). Our aim is to provide

a higher level framework architecture that spans the func-

tionality required for a full robot application, as suggested in

previous research (Bachiller, Cerrada, & Cerrada, 2006).

This paper firstly provides the general design of the

framework in Section 2.1 by describing the required func-

tionalities and architecture of the software and its compo-

nents. An example implementation for a sweet-pepper use

case is then described in Section 3, alongwith qualitative tests

under laboratory conditions. The primary aim of these tests

was to i) demonstrate that the framework can execute an eye-

in-hand sensing and visual servo control sequence and to ii)

extend the functionality of sensing with 3D scene recon-

struction. The performance of eye-in-hand sensing and mo-

tion control libraries are not validated. Section 4 describes the

results of our research followed by a discussion in Section 5.
Fig. 2 e ROS nodes architecture of the eye-in-hand sensing

and motion control framework. Links indicate

communication interactions.
2. Materials

2.1. Software

The functions of a robot can be divided into three broad

primitives: sensing, planning and acting (Murphy, 2000). To

organise the robotic behaviour with these primitives, one of

several paradigms can be implemented in a software archi-

tecture. For a visual servo control task, a reactive paradigm is

most applicable because it routes sensor information directly

to actions. However, this omits any planning that an appli-

cation may need. The hybrid deliberative/reactive paradigm

introduces the planning primitive whilst also supporting

reactive behaviour. In this paradigm, a global planner exe-

cutes sub-tasks that can be either planned or reactive, acting

as an intermediate coordinator of sensing information

(Murphy, 2000). For our framework this paradigm was chosen

because both planning and reactive tasks were used.

A software architecture, or framework, that implements the

hybrid deliberative/reactive paradigm should describe a set of

components and their interaction (Dean & Wellman, 1991). For

our framework five required functionalities were differentiated

that fall into the three primitives of sensing, planning and/or

acting: (i) image acquisition, (ii) fruit detection, (iii) application

control, (iv) visual servo control and (v) robot control. The

functions (i), (iii) and (v) fall into a single primitive. However,

functions (ii) and (iv) overlap in the planning primitive because

they also process, analyse and plan with data.

In Fig. 1 an overview of the functions for the framework is

provided, divided over the robotic primitives.

Flexibility of the framework results from the functional

implementation in independent modules. Through such a
design pattern, functionality is replaceable and expandable

with new features without revisions of other modules. This

in contrast to creating a single library that entangles all

functionality, resulting in poor affordance to substitution of

components and a limited separation of concerns (Felix &

Ortin, 2014).

The functions were implemented in the middleware ‘Ro-

botic Operating System’ (ROS) (Quigley et al., 2009). ROS allows

the creation of a modular networks of nodes that perform

dedicated subsets of the computation and organises the

communication between them. Furthermore, a shared stack

of robotic libraries are available to all nodes to facilitate

computations for robotics, such as for timing, coordinate

frame transformations and robot motion simulations. ROS

also provides a set of basic communication policies such as

services, publishers and subscriptions as well as a more

advanced policy where actions can be monitored or pre-

empted during a continuous feedback loop.

In Fig. 2 the suggested interaction architecture between the

ROS nodes of the framework is displayed. Functionalities in

the framework were explicitly separated to facilitate

replacement of nodes and the extension of new functional-

ities. Furthermore, centralised functionalities avoid func-

tional duplication across nodes. An additional function of

simultaneous localisation and mapping (SLAM) was added to

show the extensibility of the framework. The central position

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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of the application control node in the communication allows

for flexible coordination as opposed to distributed control over

several interacting nodes. In the following sections, the

required functionality of each node will described in detail.

2.1.1. Application control
The application control node fullfilled a coordinating role by

communicating with all other nodes and processing their

feedback information. This goal was achieved in this node by

implementing a finite state machine (FSM) based on previous

research (Barth et al., 2014; Hellstrom& Ringdahl, 2013), which

has similarity with other FSM approaches like ROS Com-

mander (Nguyen, Ciocarlie, Hsiao, & Kemp, 2013) and SMACH

(Bohren & Cousins, 2010). The FSM is a modular collection of

states and their respective state transitions. In each state a

certain subtask of the robot application can be executed. The

use of a state machine gave the framework another layer of

flexibility by facilitating the reuse of states, smooth addition of

states and rerouting of transitions without requiring recom-

pilation of the framework. The concern of coordination was

separated in this node from the other nodes.

2.1.2. Image acquisition
The image acquisition node provided the framework with the

functionality of creating a connection to a camera and grab-

bing colour and monochrome images upon request. ROS

required the images to be sent in the ROS image format. The

node requires exposure settings and gains for each channel,

which can be set in the ROS launch file. To obtain the gain

parameters, a colour calibration procedure should be per-

formed by manually adjusting the gain levels until the red,

green and blue values of all pixels are equal given a recorded

image of a grey calibration reference object. Rectification of

the images before sending is required to allow a relation be-

tween image coordinates in pixels and real world coordinates

inmetres accordingly. For this, the camera parameters should

be known.

2.1.3. Fruit detection
The goal of the fruit detection node was to provide infor-

mation about the fruit in a given image. Note that the func-

tion of fruit detection is a broad term, to which at least 3 sub-

functions can be distinguished that are relevant for har-

vesting robots: finding fruit, localising fruit in 3D and deter-

mining ripeness and/or harvestability. Depending on which

sub-functions are required by the application, each sub-

function should provide a service that returns a set of fea-

tures of an image. These features can be descriptive, like

surface areas, or geometrical like the position of the largest

fruit in the image. In this framework, the visual servo control

constrains the image analysis computation time and should

be below 100 ms.

2.1.4. Visual servo control
The functionality provided by this node was to use image

features to control the motion of a robot, using a continuous

correctional feedback loop (Hutchinson et al., 1996) or on-

line trajectory generation (Kr€oger, 2010). Image informa-

tion could be used from one of more cameras, either located

on the gripper or external from the robot. Independent of
the camera configuration, the task required a set of

geometrical visual features s to be extracted from the ac-

quired image(s). In our framework the fruit detection node

provided this functionality. To use the geometrical features

for correcting the motion of the robot, a control law must be

designed that realises the desired feature values s* by

minimising the error (s � s*). For this an interaction matrix

Ls, also known as the image Jacobian, needs to be approxi-

mated that models the relationship between the time vari-

ation of the features and the camera velocity v (Marchand

et al., 2005). Vector v is also known as the kinematics

screw vector, encoding the required variation in pose of the

camera relative to the object. The general case of an eye-in-

hand control law where camera velocities are computed is

defined by:

v ¼ �lcLþs s� s�ð Þ; (1)

where l is the proportional coefficient of the exponential

convergence of the error and cLþs is the pseudo-inverse of the

estimation of the interaction matrix, which is parameterised

by intrinsic camera parameters (focal length, image sensor

format and principal image point) and feature location infor-

mation (m) relative to the camera frame. To add robot motion

control to the framework, the Visual Servoing Platform library

(ViSP) was wrapped in a ROS node (Marchand, 1999; Marchand

et al., 2005), allowing for rapid prototyping of visual servo

control algorithms and specifically developed for high-level

applications. With Visp a set of elementary tasks can be

created by combining visual features. It is designed to be

modular, hardware-independent, extendable and portable,

making this library highly suitable as a key component for our

highly flexible and modular framework. Under the assump-

tion that visual features are defined upon geometrical primi-

tives, such as points or lines, ViSP can approximate the

interaction matrix analytically using a previously proposed

method (Espiau, Chaumette, & Rives, 1992).

In each iteration of the servo control loop, this ROS node

computes the velocity vector v given (i) a set of desired geo-

metric features s*, (ii) a set of current geometric features s and

(iii) the convergence coefficient, ranging from 0 to 1. The ve-

locity vector encodes the required change in pose applied to

the end-effector to converge to the desired feature values.

Note that in some cases convergence and stability problems

may occur (Chaumette, 1998).
2.1.5. Robot control
The robot control node provided the functionality to move the

end-point of a robot to a desired pose, receiving a real-world

Cartesian coordinate and returning a movement status. Vi-

sual servo control requires updating the end-effector goal

pose multiple times per second. This can be achieved by goals

that can be pre-empted or when joint motions of the robot are

directly accessible. In Section 3 the way this was implemented

in the Baxter robot is described.
2.1.6. Simultaneous localisation and mapping
The aim of this node is to provide additional sensing infor-

mation from images by implementing a simultaneous local-

isation and mapping (SLAM) method. Largely used for

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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unknown and unmapped environments, this approach allows

for camera pose estimations and three-dimensional scene

reconstruction (Durrant-Whyte & Bailey, 2006). From this in-

formation, relative depth between objects in the scene can be

derived.

For this purpose, the Large Scale Direct SLAM (LSD-SLAM)

was used (Engel, Schps, & Cremers, 2014). In contrast to other

methods, it runs real-time on modern CPU's and uses a

featureless approach working directly on monocular image

intensities. The library was already wrapped in a ROS Indigo

node, hence no modifications for our framework were

required. However, by default only the visual odometry (esti-

mated camera pose) in combination with relative depth map

keyframes were published in the ROS system. Therefore the

three-dimensional reconstruction was not available outside

the LSD-SLAM node. To add this feature in ROS, a bridge node

was implemented which concatenated multiple depth key-

frames after transformation to the same world frame using

the SLAM's published odometry information.

2.2. Hardware

The hardware used for testing the framework consisted of a

camera attached to the end-effector of a robot. The camera

was connected to the computer through USB and the robot

was connected to the computer through an ethernet

connection.

2.2.1. Robot
The framework was applied and tested on a Baxter robot by

Rethink Robotics (Fitzgerald, 2013), depicted in Fig. 3. The

robot was designed to mimic and replace workers on a pro-

duction line, performing tasks such as sorting or picking and

placing parts. The human sized robot has 2mirrored 7 degrees

of freedom arms, although only one was used in our setup.

The robot was chosen for its native ROS support. Baxter runs a

ROSmaster core to which target joint angles can be published,

executed by an internal controller. Baxter also provides

inverse kinematics (IK) service for calculating joint angles

given a 3 dimensional Cartesian coordinate relative to the

robot frame. Furthermore, Baxter publishes the pose of the

end-effector and all joints. The standard Baxter end-effector

was used.
Fig. 3 e Baxter robot by Rethink Robotics, with 2 mirrored 7

degree of freedom arms.
2.2.2. Camera
A USB CMOS colour Autofocus Camera (DFK 72AUC02-F,

TheImagingSource, Germany) was attached on top of the tool

centre point of the robot, to which the standard end-effector

was also mounted. Images were grabbed by the ROS image

acquisition node with a rolling shutter at a resolution of

640 � 480 pixels. A M12x0.5 mount lens with a focal length of

4.6 mm was attached. Exposure was set to 50 ms, allowing for

a frame rate of 20 images s�1. The autofocus feature was not

available under the Linux operating system and was not used.

2.2.3. Computer
The framework was run on a MacBook Pro, 2.4 GHz Intel Core

i5 with 8 GB of DDR3 memory operating on Ubuntu 12.04

Precise Pangolin.
3. Methods

To validate the design of the eye-in-hand sensing and motion

control framework, we implemented the software function-

alities described in Section 2.1 with the hardware described in

Section 2.2 for the dense sweet-pepper crop use case. For this

purpose, nodes for the robot control, image acquisition, fruit

detection, visual servo control and the application control

were implemented to provide the required functionality. All

nodes were implemented in Cþþ ROS, version Indigo. For the

image acquisition and fruit detection nodes, the industrial

machine vision library MVtec Halcon 11.0 (MVTec Software

GmbH, 2015) was used by a wrapped ROS Indigo node

around the Halcon HDevEngine. Upon initialisation of the ROS

nodes, a set of custom Halcon procedures were loaded into

memory. The functions were not hardcoded in the source, but

specified in the ROS launch file, allowing functions to be

updated or replaced without recompilation of the framework.

Note that open source image processing libraries, e.g. OpenCV

(Culjak, Abram, Pribanic, Dzapo, & Cifrek, 2012), can replace

the commercially licensed Halcon library with minor effort.

The framework was tested with the hardware in combination

with an artificial dense sweet-pepper crop under laboratory

conditions. In the following section, the use case is further

specified, first describing the use-case specific software

implementation of the framework, followed by the experi-

mental setup of the laboratory tests.

3.1. Use case description

Sweet-pepper (Capsicum annum) is a high value crop, which is

currently manually harvested in high wired greenhouse

cultivation systems. Due to their organised, repetitive struc-

ture, as seen on the left in Fig. 4 these systems are suitable for

adding robots. Unlike other crops, the fruit visibility is low in a

single viewpoint due to occlusions by other plant parts

(Hemming et al., 2014b). This can be seen in the right image

of Fig. 4, where on the foreground a ripe sweet pepper is

occluded by the stem and wire and a green pepper is partially

occluded by leaves. Furthermore, the location of a sweet-

pepper can be ambiguous, as a red patch in an image can

either be a wholly visible sweet-pepper in the background or a

highly occluded sweet-pepper in the foreground.

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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Fig. 4 e Example photographs of a sweet-pepper crop in a Dutch high-wire greenhouse cultivation system. In the left image

a front view is shown. Double plant rows are separated by a workspace with a rail system to allow access to the plants. The

right image shows a side view taken from the workspace facing towards the plants.
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Solving the visibility problem in dense crops requires an

approach that uses multiple viewpoints, either before or

during the approach to the target fruit. Moreover, whilst

executing the motion towards the target, corrections to the

path are required because the dense vegetation is easily

moved and the target displaced by a robot entering the crop.

Target reachability is another issue, as individual plants are

spaced between 0.1 and 0.3 m (Bac, 2015). Obstacle avoidance

may therefore be required.
3.2. Experimental setup

An artificial sweet-pepper crop section was created using

plastic imitation fruit and leaves. Although colour and

reflective properties were similar to real fruit for the human

eye, they differ in other material properties such as hyper-

spectral information and firmness. However, the materials

sufficed for our purposes since only RGB analysis was

required. The main nerves of the leaves were fitted with a

metal wire, allowing the leaves to be shaped. The leaves and

the fruit were attached to a vertically placed thin pole of

wood that represented a stem. By shaping the leaves,

different degrees of occlusion could be realised. In Fig. 5 a

360� view at 45� increments of a typical setup is displayed.

The visibility of the fruit depended on the perspective; the

fruit were fully visible in one view and entirely occluded in

another. In many views, leaves or stems partially occluded

the fruit.

The objective of this experimentwas to show that the robot

could find and access the fruit. Therefore, it was sufficient that

the end-effector stopped just in front of the fruit. This was

assured by placing the target fruit just out of reach of the

maximum robot arm stretch at 1.05 m. The test crop was

placed around 10 various locations, within an arc of around

0.5m in front of the robot. The workspace towards the front of

the robot, and therefore the number of test locations, was

limited because the robot's workspace was primarily designed

for pick and place operations in the horizontal plane. At each

location, the occlusion of the test crop was varied and multi-

ple state machine cycles were executed. Qualitative results of

the framework's performance on a dense crop were registered

and these results will be discussed in the next section.
3.3. Use case specific framework implementation

3.3.1. Robot control
Two methods for motion control of the Baxter robot were

implemented. The first is a ROS actionlib service, which

enabled pre-emptable tasks. With this method the status of

longer movement actions could be tracked and aborted, suit-

able for moving to waypoints. The second method is a direct

robot joint angle control, allowing to continuously change the

rotation of each individual joint. This method provides short

motions that can be updated during the movement, suitable

for visual servo control. Both methods call Baxter's inverse

kinematics ROS service. For this service, a desired pose in real

world coordinates can be specified for the end-effector. The

service will return a set of joint angles to move the arm to the

target location, or gives feedback when it is unreachable or

collisions are expected.

3.3.2. Image acquisition
The image acquisition node implemented a connection with

the camera through Halcon. A service was provided to send

colour or monochrome ROS images upon request. Grabbed

Halcon format images were efficiently bridged to the ROS

image format before sending. Furthermore this node also

visualized grabbed images. In order to rectify the image, Hal-

con's default procedures were used for multi-view 3D cali-

bration. For this purpose, a set of 100 images was taken of a

calibration plate in various locations and orientations. Inter-

nal camera parameters were calculated and applied to each

new image to remove lens distortion.

3.3.3. Fruit detection
During the research project CROPS, an end-effector was

developed that did not require the orientation of the fruit nor

an exact position thereof for a successful harvest (Van Tuijl,

Wais, & Yael, 2013) (Hemming, Van Tuijl, Gauchel, & Wais,

2014c). This reduces constraints on the fruit detection,

allowing for more simplistic and fast approaches which are

suited for visual servo control. Other approaches that calcu-

late exact poses or use three-dimensional object matching are

generally more time consuming and therefore less appro-

priate for visual servo control. However, such approaches can

be effectively applied, for example in grasp synthesis using

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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Fig. 5 e Typical views at 45� increments around an artificial sweet-pepper crop used in the experiment. The backdrop is

removed for clarity.
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active vision (Çalli, 2015; Çalli, Wisse, & Jonker, 2011;

Yazicioglu, Çalli, & Unel, 2009).

A previous approach (Song et al., 2014) for sweet-pepper

detection classified image features. A colour based classifi-

cation provided the regions of interest in multiple images

from which maximally stable colour region features

(Forssen, 2007) were extracted. Because the computational

complexity and temporal performance was not reported, it is

unknown if this approach can meet the time constraint in

visual servo control.

To implement a simplistic and fast fruit detection for

sweet-pepper, an advanced blob detection was created. It

started the analysis by converting the image from a RGB to a

CIELab colourspace using the equations (2)e(6). Contrary to

colourspaces that encode a single axis for colour, CIELab has

two axis for colour a,b and one for luminosity l. Because the a

axis encodes a spectrum separating green from violet-red, this

channel provided distinctive contrast between red sweet-

pepper and the green surroundings. Note that for other use

cases or colours of sweet-pepper, a transformation to the HSI

colourspace might be more suitable.
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For segmentation of the sweet-pepper blobs, the a channel

values ranging from 25 to 70 were selected. This segmentation
generally contains noise, which was filtered out by a region

opening operation (equal to dilation of an erosion) using a 5

pixel round element, twice as large as the noise to be filtered

out. From the largest remaining region, the size and image

coordinates of the centre of gravity were calculated and

returned to the application control node as features. In Fig. 6

intermediate results of the image processing pipeline

applied to an example image are displayed.

3.3.4. Visual servo control
To implement visual servo control for this use case, geometric

features needed to be defined. However, high occlusion rates

restrict the approach of deriving an object pose as a reliable

feature. Instead, only parts of the fruit can be seen from a

subset of all viewpoints. The centre of gravity image co-

ordinates of the largest segmented sweet-pepper part was

returned as a feature, as described in Section 3.3.3. This can be

used as a geometrical feature as it defines a point in two

dimensional space. The desired value of this featurewas set in

the centre coordinates of the image.

In this application the control law for image-based visual

servo control and eye-in-hand tasks in Eq. (1) is used. In ViSP

the estimation of the interactionmatrix for a 2D image feature

is given by:

bLs ¼ ��1=z 0 x=z yx �ð1þ x2Þ
0 �1=z y=z 1þ y2 �xy

�
; (7)

where z is either a known or estimated feature depth in the

camera frame. In our application, the estimation of z had a

starting value of 0.40m, as thiswas the starting distance of the

crop scanning as described in Section 3.3.5. This value should

be updated in each visual servo cycle.

The interaction matrix also requires the positions of vi-

sual features expressed in metres rather than image pixel

coordinates. For this the previously obtained camera pa-

rameters (Section 2.1.2) were used for a perspective projec-

tion without distortion model. The parameters were x-

coordinate of image centre u0, y-coordinate of image centre

v0, horizontal sensor pixel size px and vertical sensor pixel

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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Fig. 6 e Intermediate results of the sweet-pepper detection pipeline on an example colour image (i). (ii) The image is

separated in channels for red (r), green (g) and blue (b). (iii) RGB channels are converted to CIELab channels l, a and b. (iv) A

threshold operation on channel a segments the sweet-pepper and some noise. (v) Noise removal by region erosion

operation using an element twice as large as the noise. (vi) A region dilation operation of the same size as the shrinking

operation segments the whole pepper. The size and centre of this region are returned as result features. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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size py. If we define (ui,vi) as the position of a pixel in the

image, then the position of that pixel inmetres in the camera

frame can be obtained by:

x ¼ ui � u0ð Þ�px (8)

y ¼ vi � v0ð Þ�py (9)

The coefficient of the exponential convergence of the error

l in the control law was set to the default value of 0.3.
Fig. 7 e Flowchart of states and their transitions that were imple

node.
3.3.5. Application control
The application control node's FSM was implemented for the

sweet-pepper use case. Six states were created that each

executed a sub-task in the program. The states and their

transitions are displayed in Fig. 7.

The program started in the ColdBoot state where all hard-

and software modules were initialised. When all modules

were initialised, the state machine advanced to the Ready

state that waited for an external trigger to start a harvest

cycle. First, the robot moved to an initial home position,
mented in the finite state machine of the application control

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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defined as 0.40m in front of the plant. When this position was

reached, the state machine started a sensing procedure in the

ScanPlant state. During this procedure the end-effector

moved to predefined waypoints in the horizontal plane

whilst the end-effector remained facing the plant. In Fig. 8 a

visual representation of the procedure is shown. The way-

points were chosen following from a set of constraints con-

sisting of i) the robot workspace, ii) representative greenhouse

conditions such as a maximum distance of 0.40 m from the

target and a restricted maximum angle of approach around

90+ and iii) to have at least one viewpoint with a fully occluded

fruit and one viewpoint with a fully visible fruit. The motion

planning involved during the plant scanning phase is a closed-

loop execution of a plannedmotion trajectory, provided by the

inverse kinematics solver of Baxter as described in Section

2.2.1.

In parallel, the image acquisition node was continuously

triggered at 20 Hz to obtain images for (i) the SLAM node and

(ii) the fruit detection node. The ScanPlant state continuously

saved the pose in which the largest fruit part is detected. This

pose was set as the visual servo start pose after the plant was

fully scanned, under the assumption that a starting pose with

a large fruit visibility from the end-effector would result in a

more effective final positioning thereof. If no fruit was found,

the state returned to the Ready state. Otherwise the visual

servo control loop would commence in the Visual Servo state.

Each loop cycle triggered and analysed an image for geomet-

rical features. These features were used to calculate the pose

correction vector in the camera frame andwhen applied to the

end-effector, centres the camera with the fruit. For reaching

towards the fruit, the end-effector moved along its z-axis with

a constant speed of 0.03 ms�1. Depth information was there-

fore not required. Because the fruit target was placed just

outside the workspace of the robot, the fruit position was

determined as reached when the arm was fully extended and

the camerawas centredwith the fruit. The statemachine then

returned to the Ready state.

It is assumed that the control law improves the positioning

of the end-effector with regard to the fruit centre and
Fig. 8 e Top view of the experimental setup during the

ScanPlant state. The end-effector starts at waypoint 1 and

follows a trajectory towards waypoint 2 whilst facing the

plant and only moves in the horizontal plane y,x.
therefore ensures the fruit does not leave the view during the

visual servo approach. However, this cannot be excluded and

we have yet to implement a feature that either reverts to a last

known pose that includes a view on a fruit or resumes the

plant scanning state.

All states after the Ready state could transition to an Error

state. For example, in the Home and ScanPlant state this could

occur when the given waypoint pose could not be reached.

The Visual Servo state returned to the Error state when no

fruit was found during scanning. In the Error state each error

could be handled depending on the transition. In this imple-

mentation it automatically returned to the Ready state whilst

prompting the cause of failure.
4. Results

The framework was implemented and executed for a dense

sweet-pepper crop use case. Software source code of the

implementation of the framework is available under the BSD

License at the repository found at: https://github.com/rbrth/

framework.

The execution of the application resulted in the robot (i)

scanning the plant for fruit and (ii) a movement towards the

centre of a fruit. A video example can be found at: http://dx.

doi.org/10.1016/j.biosystemseng.2015.12.001. In Fig. 9 the last

frame of this video is displayed, showing the fruit detection

segmentation in the top left and the relative depth estimation

from the SLAM node at the bottom left. On the right, the final

pose of the end-effector is shown, centred with the camera

towards the fruit. The execution time of a single successful

execution of all states (excluding the error state) was

approximately 45 s.

Supplementary video related to this article can be found at

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001.

4.1. Plant scanning

During the plant scanning state, the fruit detection node

continuously analysed images from the end-effector. The

achieved rate of analysis was 20 Hz, equal to the image

acquisition exposure time. In most cases the visited way-

points provided sufficient viewpoints to find a suitable start-

ing location for the visual servo control, meaning that a

surface of the fruit was found.

4.2. Servo control

During the visual servo control the fruit became more visible,

often entirely. The end pose of the end-effector was always

centred with the fruit, except for the instances in which the

inverse kinematics solver of the robot failed to find a solution

of the joint positions. These occasions were characterised by

the robot arm already being fully extended to its limits, but

not yet horizontally or vertically aligned with the fruit. In

Section 5 the cause and solutions to this phenomenon will be

discussed.

In a case where a small patch of the fruit surface wasmade

visible from all viewpoints in the horizontal plane of the fruit,

https://github.com/rbrth/framework
https://github.com/rbrth/framework
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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Fig. 9 e Last frameof thevideoathttp://dx.doi.org/10.1016/j.biosystemseng.2015.12.001. The centreof the cameraon theend-

effector is alignedwith the centreof the fruit. The top left imageshows the fruit detectionnode's segmentation.Thebottomleft

image shows the LSD-SLAM node's relative depth estimation. The background in the movie was removed for clarity.
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the servo control moved the end-effector in the vertical plane

to centre whilst revealing more fruit surface. The result was a

curved motion trajectory towards the centre of the fruit.

When plant dislocation by a robot entering the crop was

simulated by moving the fruit within view of the camera

during visual servo control, the algorithm corrected the end-

effector accordingly by following the centre of the fruit.
4.3. Simultaneous localisation and mapping

During all motions of the robot, the SLAM node ran in parallel

to obtain three-dimensional information of the scene and a

current estimated pose of the camera. The average publishing

rate of respectively new keyframes and pose estimation was

on average 5 and 10 Hz As shown in Fig. 10, depth estimations

are primarily found on edges in the image. This result is native

to the LSD-SLAM library because it operates on image in-

tensity differences. In Section 5 the usability of this result will

be discussed.

The bridge node merged and aligned multiple pointclouds

from keyframes of the LSD-SLAM node, as displayed in Fig. 11.
Fig. 10 e The left figure displays a monochrome image with a c

node. The figure on the right displays the respective keyframe'
relative depth from the end-effector.
Again object edges are most discernible, relative depth infor-

mation within objects without high texture gradients is

sparsely available.
5. Discussion

The primary aim of this research was to design a framework

for eye-in-hand sensing and motion control to facilitate the

development of new robotic harvest applications, especially

in dense crops. On a low level, many stand-alone and func-

tionally dedicated libraries are already available to solve parts

of this challenge, e.g. ROS, ViSP and LSD-SLAM. Our frame-

work coherently integrates these parts to provide a higher

level functional implementation. It can replace custom solu-

tions by providing a standardised approach that supports a

variety of use cases. Flexibility is achieved through separation

of functional concerns in different modules (Felix & Ortin,

2014). One of the key aspects of the framework design was

to add a high degree of implementation flexibility to meet

specific use-case constraints. The secondary aim of our
oloured relative depth estimation overlay from the SLAM

s pointcloud in ROS RVIZ. The colour gradient indicates

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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Fig. 11 e Three-dimensional scene reconstruction. Multiple LSD-SLAM keyframes from different perspectives from the

camera on the end-effector were merged in a pointcloud. Visualised in ROS RVIZ with Baxter robot pose. An artificial sweet-

pepper is placed in front of the end-effector, indicated by the arrow. Other structures in the background can be recognized by

their edges. The colour gradient indicates relative depth from the end-effector.
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research was to demonstrate a framework implementation

for a dense sweet-pepper crop use-case. The example imple-

mentation shows the framework can be applied for a sweet-

pepper use-case with custom hardware. The added sensing

functionality of 3D scene reconstruction shows the extensi-

bility of the framework, without interference with the original

software. Results also indicate that the framework can be

effective for solving sensing and robot motion control in a

dense crop based on visual information from the end-effector,

although this should be further explored in a quantitative

study under greenhouse conditions.

Other approaches for solving robot sensing and motion

control are not always suitable for agri- and horticulture ap-

plications due to dense crop vegetation. For sensing fruit, the

occlusions of other plant parts can result in false negatives

when only a single viewpoint is used (Hemming et al., 2014b;

Van Henten et al., 2002). Furthermore, using multiple poses

during harvest attempts increases success rates (Henten et al.,

2003). Our framework allows for the acquisition of multiple

viewpoints by using the motion of the robot in combination

with an eye-in-hand approach. During the motion control

towards the fruit, corrections may be required when the robot

displaces a target after interacting with the dense crop. It is

hypothesised that additional viewpoints during motion to-

wards the target can resolve these problems, as well as pro-

vide more detailed information of the target. Eye-in-hand

sensing is preferred as the perspective from the end-effector is

likely to face the target. Some approaches already devote one

or more discrete look-and-move actions to correct for dis-

placed targets or refine rough estimated target positions

(Hayashi et al., 2010; Van Henten et al., 2002). The approach

implemented in our framework uses continuous corrective

actions through visual servo control, thereby enabling more

corrections and more target information.

On an abstract level, the design of the framework provided a

software architecture guideline to approach robot harvest

system implementations. The key element of this design was

to separate functional concerns to enablemodularity, resulting

in a system that facilitates extensions and replacements. For

example, substituting a camera only affected a single node and
could be achieved by replacing a single line of codewithout the

need of recompilation. Adding a node that analyses shared

resources does not require other nodes to be changed.

Expanding on previous research (Barth et al., 2014; Hellstrom&

Ringdahl, 2013), our implementation of this abstract level was

done in the ROS middleware, which is innately modular but it

does not separate concerns, or functions, automatically. Here

each concern was assigned to an individual ROS node, e.g. the

concern of coordination that in itself implements a modular

FSM. Thus the implementation of the framework remained

dependent on ROS and Linux and therefore the flexibility and

usability was constrained. For ROS developers this framework

is most interesting, for others it provides a useful abstract

architectural design guideline. Although modules were func-

tionally separated, they were not fully functionally indepen-

dent. A notable example is the fruit detection node that was

time constrained by the visual servo node. Such dependencies

should be identified and avoided, for example by distributing

the computation for visual servo control (Wu et al., 2010). The

framework was extended with a SLAM node for depth esti-

mation and 3D reconstruction. The nature of the LSD-SLAM

algorithm is to look for differences in image intensities,

therefore findingmatches at texture edges depending on scene

contrasts. For optimal scene reconstruction stationary scenes

are needed, scene reconstruction should therefore only be used

during stationary scenes, e.g. during plant scanning. Further

optimisation of scene reconstruction could be implemented by

pointcloud registration methods (Rusu & Cousins, 2011). Our

framework provides a guideline and implementation for ro-

botic harvest applications that enables access to visual servo

control and real-time sensing in a coherent and flexible

approach. The relevance of the framework should be

confirmed in other use-cases, under real conditions and with

further extensions.

The framework was successfully implemented for a sweet-

pepper use case and tested under controlled laboratory condi-

tions. Results showed that the application was able to scan an

occluded crop for fruit and move the end-effector towards the

detectedcentre of apart orwhole of the fruit. A single geometric

feature for the servo control algorithm proved sufficient to

http://dx.doi.org/10.1016/j.biosystemseng.2015.12.001
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centre the end-effector and reach the fruit. Furthermore, no

depth information was required for a successful servo motion.

This indicates that a simplistic and straightforward approach

can solve the motion challenge. However, relative depth esti-

mation or descriptive image features, like fruit size, may be

required to determine whether the centre of the fruit has been

reached. Another possible method includes an air pressure

sensor in the suction cup of the end-effector, which triggers

upon fruit contact as described in (Hemming et al., 2014c). The

execution timeperharvest cycle canbe improved.Although the

Baxter robot has a maximum speed of 0.6 ms�1, a high speed

resulted inoversteering during our experiments.When the goal

was reached, the spring kinematics of the joints dampen the

movement, which resulted in brief imprecise positioning. In a

visual servo control loop, consecutive over- and understeering

therefore produces an increasing spatial oscillation.Decreasing

the speed in our experiments resulted in a more accurate

movementwithnooversteer, eliminatingoscillations. For a real

world application, it is suggested that a robotwithmore precise

and faster joint controls is required. The use case imple-

mentation and experiments showed that eye-in-hand sensing

andmotioncontrol is aviableapproach for roboticharvestingof

a dense crop like sweet-pepper and cucumber. To further vali-

date the use case implementation, a more advanced study

under real greenhouse conditions is suggested.

Although no quantitative data was collected, the qualita-

tive performance of the visual servo control library indicated

that a more advanced study under real greenhouse conditions

is viable. Whilst the artificial crop setup provided a good

reflection of the occlusion problems faced in everyday prac-

tice, it remains a simplification of the real crop situation, as

occlusions from stems and fruit clusters were not taken into

account. Nonetheless the framework implementation showed

that where a small patchwasmade visible, the robotmanaged

to find the fruit and move the end-effector towards the fruit

centre. This indicates that our approach can be effective

under real greenhouse conditions.

The framework can potentially be implemented for robotic

harvest use-cases in greenhouses like sweet-pepper, cucum-

ber, tomato or strawberry, or in a more agricultural setting of

for instance apple, citrus or broccoli. The feature of using

multiple sensing viewpoints is especially functional for dense

crops, as multiple viewpoints may be required for fruit

detection. Although a distinction can be made between hard

and soft obstacles (Bac, Hemming,&VanHenten, 2013), where

the former (e.g stems) must be avoided at all costs but the

latter (e.g. leaves) can be displaced by the robot to a certain

extent, the use of visual servo control may be restricted by the

presence of obstacles. Our use-case was successfully imple-

mented using a single geometric point as feature for the visual

servo control. For use-cases that require a fixed end-pose,

multiple geometric features can be used. However, this re-

quires absolute depth information to model the interaction

matrix in Eq. (1). The LSD-SLAM library provides relative depth

information because it does not know the scale of the image.

To obtain absolute depth information with this library, a

calibration procedure can be performed during the initial start

of the application by scanning a structure with known di-

mensions. In the current growing practice crops are

frequently revisited to harvest newly ripened fruit, a possible
future extension of this research could therefore be to use

scene reconstruction to create a world model. The resulting

model could be used to i) retry failed harvesting approaches, ii)

skip sensing at harvested points, iii) use a crop growth model

to extrapolate the position of ripened fruit and iv) update the

model. For creating a world model, reconstruction could be

limited to relatively stationary plant parts (e.g. fruit and

stems) as opposed to frequently moving parts (e.g. leaves that

follow the sun). For creating a subset reconstruction, plant

part segmentations could be used (Bac, Hemming, & Van

Henten, 2014).

5.1. Conclusion

The significance of low level libraries that are available to the

robot research community to share and build upon common

functionality is evident, but individual libraries tackle only

isolated concerns, e.g. ROS as communication middleware or

ViSP for visual servo control algorithms. At a higher level, a

framework can combine these building blocks coherently to

provide an orderly structure and a newdimension of utility for

a specific set of use-cases. The aim of our research was to

provide such a framework for solving two key issues in robot

harvesting applications. The first was sensing in dense crops

with high fruit occlusions, which requiresmultiple viewpoints

to lower the number of false fruit detection positives. The

second was the motion execution using a visual feedback

loop. Implementation of this framework for a sweet-pepper

use case with dense vegetation indicated viability of the

framework and provided insights for further development.

Future research should focus on testing the framework under

real greenhouse conditions, different use-cases and by

extending on functionality.
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