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1. INTRODUCTION 

In this paper, we study the following functional: 

where R c R” is a bounded domain, with a sufficient smooth boundary 81;2 and h : lR + IR is 
a C1 function. We are going to use the Mountain-Pass theorem in order to prove the existence 
of a nontrivial critical point u E Weep. We suppose that p > n. 

Let us state the assumptions on h. 

(i) h(.) is increasing and h(r) + co as T + +oe; 
(ii) limU+*oo(h(u)/u) = 0; 

(iii) there exists some 1M > 0 such that 

lul - IuIPuh’ (u) 5 M, 

for all u E R; 
(iv) h(O) 5 c1 < Xl/P; 
(v) for every p > 0, h(p) > 0. 
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REMARK. It is easy to check that h(u) = ln(l +u2) or h(u) = ((ln( 1 +u~))~ verifies all the above 
conditions. 

Let us.denote by F(u) = ]u]Ph(u), f(u) = ]u]P-%h(u) + ]‘~L]P~‘(zL). It is well known that I is 
well defined and. Cl. 

Let us introduce the (PS) that we are going to use. 

CERAMI (PS) CONDITION. For every {.1~~} E W,llP(0) with I~(zL~)] < M and (1 + ]]u,l]r+,) < 
I’(u,), q4 >+ 0 for every 4 E WiJ’(R), th ere exists a strongly convergent subsequent. This 
condition has introduced by Cerami (see [1,2]). 

Finally, we are going to use the first eigenvalue and eigenfunction of the pLaplacian and for 
more details we refer to [3]. 

2. BASIC RESULTS 

We are going to use the Mountain-Pass theorem, so our first lemma is that I satisfies the (PS) 
condition due to Cerami. 

LEMMA 1. I satisfies the Cerami (5%) condition. 

PROOF. Suppose that there exists a sequence {un} c X such that II( 5 M and (1 + 

IMll,P) < I’(%& 4 >--+ 0 for every 4 E X. 
Then we have 

--&I’ 5 - IlDunll; + 
J 

pJ’(un) da: 2 M, (1) 
cl 

and, choosing ~4 = u,, 

(2) 

Now, consider the sequence a, = l/pII~nll”,-lh(ll~nll~). Th en multiplying inequality (1) with 
Us + 1 and substituting with (2), we arrive at 

5 J n (an + 1) PF (WI) - f (un) u, dx (3) 

+(a,+l)M+~, 
II%Ill,p 

1 + lI%lIl,p’ 

Then we can say 

J (an + 1) PJ' (4 - f (4 u, da: 5 J P 1% (%I IP h (Un (%I) - bn (4” u, (x) h’ (un (x)) dx CI Q P Iun (4”-’ h (in (~1) 
= J R lu, (x)1 - Iun (x)1” un (x) h’ (un (x)) dx I M. 

Suppose now that IIDu,llp -+ co. Next, we will show that there exists some c > 0 such 
that ]]u,]], > c for big enough n. Suppose not. Then, ]]u~]]~ -+ 0. But we have supposed 
that I(un) 5 M and it is easy to see that s, Iun(x)/Ph(un(x)) dx -+ 0. That is, we have a 
contradiction, because we have supposed that IIDu,I(~,~ + 03. 

Going back to (3), we obtain a contradiction to the hypothesis that IL, is not bounded. Using 
well-known arguments, we can prove that in fact {uLn} have a convergent subsequence. I 
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LEMMA 2. There exists some e E w$p(Q) such that I(e) 5 0. 

PROOF. Choose 4 E W$P(Q) such that 4(x) 2 p > 0 on some ball B(z,,r) G R and zero 
elsewhere. Then we claim that there exists big enough 6 E W such that I(&) 5 0. 

Suppose not. Then there exists a sequence &, -+ co such that 1(&d) 2 c > 0. That means 

: ll~411~ - / I&&J (xl” h (En4 (x)1 dx 2 c > 0. 
n 

Then we can say that 

That is, we have a contradiction. I 

LEMMA 3. There exists some p > 0 small enough and a > 0 such that I(U) 2 a for all IJ~l)ll,~ = p. 

PROOF. Suppose not. Then there exists some sequence {Us} G WJ*P(fl) with IIIJ,JI~,~ = prr -+ 0, 
such that I(un) 5 0. That is, 

Let Y&) = ~n(~)/II~nll~,p. 
Divide this inequality by ll~,Il~,~. Then we arrive at 

2 ll~nll; 5 f V’ynll; I s, IY~ (~)I” h (G (~1) dx. 

Note that Ilynlll,p = 1, so yn + y weakly in W$P(fl) and yn -+ y strongly in U’(R). Also, 
because lb, II I,~ -+ 0 and p > n we have IIzL~II~ -+ 0. So, from the above, we deduce that 

IID~nllp --+ Xlllvllp. Also, fr om the weak lower semicontinuity of the norm functional, we have that 

wPIl~YIIl,P 2 (hlP)llyll;~ N ow, using the variational characterization of the first eigenvalue, 
we arrive at the fact that IlJIyII~ = Xlllyll~ and llDynllp -+ llIIyllp. From the uniform convexity 
of H@‘(Q), we deduce that yn -+ y strongly in W$P(52) and, because Ilynjll,p = 1, we obtain 
that y # 0 and in fact y = ~1, i.e., the first eigenfunction. 

So, going back to (4), we obtain 

; IIDU~II; I J 1~1 (X)I”W dx -c 2 IIWII;. 
R 

That is, we have a contradiction. 

Then we can use the Mountain-Pass theorem to obtain a nontrivial critical point. 

3. APPLICATIONS TO DIFFERENTIAL EQUATIONS 

Consider the following elliptic equation: 

-Ap (u) = IuI~- u In (1 + u”) + lulp $, a.e. on Sz, 
(5) 

u = 0, a.e. on i3s2, 2ip<co. 

Here, as before, R C R” is a bounded domain with smooth enough boundary 6’0 and p > n. 
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Let us denote by f(u) = (u]p-2~1n(l + u2) + ]~]p(2~/(1+ u2)). Then it is easy to see that 
limU-*cY(f(U)/( ]UIp-“U)) -+ co. 

It is well known that for such kind of problems Ambrosetti-Rabinowitz [4] had introduced a 
hypothesis which states as follows. 

There exists some 0 > p such that 

for all ]u] > M for big enough M with F(u) = s,” f(r) dr. Fr om this condition, we can easily prove 
that F(u) 1 lule. So, th ere is not such a 6’ > p for f(u) = ]u]P-2u1n(l + u2) + ]~]~(2~/(1+ u”)) 
to satisfy the above condition. But it is easy to see that we can apply the results of the previous 
section, to the corresponding energy functional, and then derive a nontrivial critical point which 
in fact is a solution to problem (5). 

REFERENCES 
1. G. Cerami, Un criteria di esistenza per i punti critici su varieta illimitate, Rc. Ist. Lomb. Sci. L&t. 112, 

332-336, (1978). 
2. P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear 

problems with strong resonance at infinity, Nonl. Anal. 7, 981-1012, (1983). 
3. P. Lindqvist, On the equation div(lD~+‘-~Dz) + X~Z[P-~Z = 0, P mceedings of the American Math. Society 

109 (l), (May 1990). 
4. A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. 

Anal. 14, 349-381, (1973). 


