

Available at www.ElsevierMathematics.com

Applied Mathematics Letters

Applied Mathematics Letters 16 (2003) 1201-1204

www.elsevier.com/locate/aml

A Note on a Class of Noncoercive Functionals

N. HALIDIAS

University of the Aegean Department of Statistics and Actuarial Science Karlovassi, 83200, Samos, Greece nick@aegean.gr

(Received and accepted January 2003)

Communicated by A. Ambrosetti

Abstract—Our goal here is to prove the existence of a nontrivial critical point to the following functional:

$$I(u) = \frac{1}{p} \|Du\|_{p}^{p} - \int_{\Omega} |u|^{p} \ln(1+u^{2}).$$

by using the well-known Mountain-Pass theorem with the Cerami Palais-Smale condition. © 2003 Elsevier Ltd. All rights reserved.

Keywords—Mountain-Pass theorem, Nontrivial solution, Cerami PS condition, Noncoercive functionals, "Superlinear" elliptic problems, Critical point.

1. INTRODUCTION

In this paper, we study the following functional:

$$I(u) = \frac{1}{p} \left\| Du \right\|_{p}^{p} - \int_{\Omega} \left| u \right|^{p} h(u) \ dx,$$

where $\Omega \subseteq \mathbb{R}^n$ is a bounded domain, with a sufficient smooth boundary $\partial\Omega$ and $h: \mathbb{R} \to \mathbb{R}$ is a C^1 function. We are going to use the Mountain-Pass theorem in order to prove the existence of a nontrivial critical point $u \in W^{1,p}_o(\Omega)$. We suppose that p > n.

Let us state the assumptions on h.

- (i) $h(\cdot)$ is increasing and $h(r) \to \infty$ as $r \to \pm \infty$;
- (ii) $\lim_{u \to \pm \infty} (h(u)/u) = 0;$
- (iii) there exists some M > 0 such that

$$|u| - |u|^p uh'(u) \le M,$$

for all $u \in \mathbb{R}$;

- (iv) $h(0) \leq \mu < \lambda_1/p;$
- (v) for every $\mu > 0$, $h(\mu) > 0$.

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

 $^{0893\}text{-}9659/03/\$\,$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi: 10.1016/S0893-9659(03)00178-2

N. HALIDIAS

REMARK. It is easy to check that $h(u) = \ln(1+u^2)$ or $h(u) = ((\ln(1+u^2))^2$ verifies all the above conditions.

Let us denote by $F(u) = |u|^p h(u)$, $f(u) = |u|^{p-2} u h(u) + |u|^p h'(u)$. It is well known that I is well defined and C^1 .

Let us introduce the (PS) that we are going to use.

CERAMI (PS) CONDITION. For every $\{u_n\} \subseteq W_o^{1,p}(\Omega)$ with $|I(u_n)| \leq M$ and $(1 + ||u_n||_{1,p}) < I'(u_n), \phi > \to 0$ for every $\phi \in W_o^{1,p}(\Omega)$, there exists a strongly convergent subsequent. This condition has introduced by Cerami (see [1,2]).

Finally, we are going to use the first eigenvalue and eigenfunction of the p-Laplacian and for more details we refer to [3].

2. BASIC RESULTS

We are going to use the Mountain-Pass theorem, so our first lemma is that I satisfies the (PS) condition due to Cerami.

LEMMA 1. I satisfies the Cerami (PS) condition.

PROOF. Suppose that there exists a sequence $\{u_n\} \subseteq X$ such that $|I(u_n)| \leq M$ and $(1 + ||u_n||_{1,p}) < I'(u_n), \phi > \to 0$ for every $\phi \in X$.

Then we have

$$-M \le - \left\| Du_n \right\|_p^p + \int_{\Omega} pF(u_n) \, dx \le M,\tag{1}$$

and, choosing $\phi = u_n$,

$$-\varepsilon_{n} \frac{\|u_{n}\|_{1,p}}{1+\|u_{n}\|_{1,p}} \leq \|Du_{n}\|_{p}^{p} - \int_{\Omega} f(u_{n}) u_{n} dx \leq \varepsilon_{n} \frac{\|u_{n}\|_{1,p}}{1+\|u_{n}\|_{1,p}}.$$
(2)

Now, consider the sequence $a_n = 1/p \|u_n\|_{\infty}^{p-1} h(\|u_n\|_{\infty})$. Then multiplying inequality (1) with $a_n + 1$ and substituting with (2), we arrive at

$$\frac{\|Du_n\|_p^p}{cp \|Du_n\|_p^{p-1} h\left(\|Du_n\|_p\right)} \leq a_n \|Du_n\|_p^p \leq \int_{\Omega} (a_n+1) pF(u_n) - f(u_n) u_n dx \qquad (3) + (a_n+1) M + \varepsilon_n \frac{\|u_n\|_{1,p}}{1+\|u_n\|_{1,p}}.$$

Then we can say

$$\int_{\Omega} (a_n + 1) pF(u_n) - f(u_n) u_n dx \le \int_{\Omega} \frac{p |u_n(x)|^p h(u_n(x))}{p |u_n(x)|^{p-1} h(u_n(x))} - |u_n(x)|^p u_n(x) h'(u_n(x)) dx$$
$$= \int_{\Omega} |u_n(x)| - |u_n(x)|^p u_n(x) h'(u_n(x)) dx \le M.$$

Suppose now that $||Du_n||_p \to \infty$. Next, we will show that there exists some c > 0 such that $||u_n||_{\infty} > c$ for big enough n. Suppose not. Then, $||u_n||_{\infty} \to 0$. But we have supposed that $I(u_n) \leq M$ and it is easy to see that $\int_{\Omega} |u_n(x)|^p h(u_n(x)) dx \to 0$. That is, we have a contradiction, because we have supposed that $||Du_n||_{1,p} \to \infty$.

Going back to (3), we obtain a contradiction to the hypothesis that u_n is not bounded. Using well-known arguments, we can prove that in fact $\{u_n\}$ have a convergent subsequence.

1202

LEMMA 2. There exists some $e \in W_o^{1,p}(\Omega)$ such that $I(e) \leq 0$.

PROOF. Choose $\phi \in W^{1,p}_o(\Omega)$ such that $\phi(x) \ge \mu > 0$ on some ball $B(x_o,r) \subseteq \Omega$ and zero elsewhere. Then we claim that there exists big enough $\xi \in \mathbb{R}$ such that $I(\xi\phi) \le 0$.

Suppose not. Then there exists a sequence $\xi_n \to \infty$ such that $I(\xi_n \phi) \ge c > 0$. That means

$$\frac{\xi_n^p}{p} \left\| D\phi \right\|_p^p - \int_{\Omega} \left| \xi_n \phi \left(x \right) \right|^p h \left(\xi_n \phi \left(x \right) \right) \, dx \ge c > 0.$$

Then we can say that

$$\int_{\Omega} |\phi(x)|^{p} h(\xi_{n}\phi(x)) dx \leq M \Rightarrow$$
$$\int_{B(x_{o},r)} |\phi(x)|^{p} h(\xi_{n}\mu) dx \leq M \Rightarrow$$
$$h(\xi_{n}\mu) \int_{B(x_{o},r)} |\phi(x)|^{p} dx \leq M.$$

That is, we have a contradiction.

LEMMA 3. There exists some $\rho > 0$ small enough and a > 0 such that $I(u) \ge a$ for all $||u||_{1,p} = \rho$. PROOF. Suppose not. Then there exists some sequence $\{u_n\} \subseteq W_o^{1,p}(\Omega)$ with $||u_n||_{1,p} = \rho_n \to 0$, such that $I(u_n) \le 0$. That is,

$$\frac{1}{p} \left\| Du_n \right\|_p^p \le \int_{\Omega} \left| u_n \left(x \right) \right|^p h \left(u_n \left(x \right) \right) \, dx.$$

Let $y_n(x) = u_n(x) / ||u_n||_{1,p}$.

Divide this inequality by $||u_n||_{1,p}^p$. Then we arrive at

$$\frac{\lambda_1}{p} \left\| y_n \right\|_p^p \le \frac{1}{p} \left\| Dy_n \right\|_p^p \le \int_{\Omega} \left| y_n \left(x \right) \right|^p h\left(u_n \left(x \right) \right) \, dx. \tag{4}$$

Note that $||y_n||_{1,p} = 1$, so $y_n \to y$ weakly in $W_o^{1,p}(\Omega)$ and $y_n \to y$ strongly in $L^p(\Omega)$. Also, because $||u_n||_{1,p} \to 0$ and p > n we have $||u_n||_{\infty} \to 0$. So, from the above, we deduce that $||Dy_n||_p \to \lambda_1 ||y||_p$. Also, from the weak lower semicontinuity of the norm functional, we have that $(1/p)||Dy||_{1,p} \leq (\lambda_1/p)||y||_p^p$. Now, using the variational characterization of the first eigenvalue, we arrive at the fact that $||Dy||_p^p = \lambda_1 ||y||_p^p$ and $||Dy_n||_p \to ||Dy||_p$. From the uniform convexity of $W_o^{1,p}(\Omega)$, we deduce that $y_n \to y$ strongly in $W_o^{1,p}(\Omega)$ and, because $||y_n||_{1,p} = 1$, we obtain that $y \neq 0$ and in fact $y = u_1$, i.e., the first eigenfunction.

So, going back to (4), we obtain

$$\frac{1}{p} \|Du_1\|_p^p \le \int_{\Omega} |u_1(x)|^p h(0) \, dx < \frac{\lambda_1}{p} \|u_1\|_p^p.$$

That is, we have a contradiction.

Then we can use the Mountain-Pass theorem to obtain a nontrivial critical point.

3. APPLICATIONS TO DIFFERENTIAL EQUATIONS

Consider the following elliptic equation:

$$-\Delta_p \left(u\right) = \left|u\right|^{p-2} u \ln\left(1+u^2\right) + \left|u\right|^p \frac{2u}{1+u^2}, \quad \text{a.e. on } \Omega,$$

$$u = 0, \quad \text{a.e. on } \partial\Omega, \quad 2 \le p < \infty.$$
 (5)

Here, as before, $\Omega \subseteq \mathbb{R}^n$ is a bounded domain with smooth enough boundary $\partial \Omega$ and p > n.

N. HALIDIAS

Let us denote by $f(u) = |u|^{p-2}u\ln(1+u^2) + |u|^p(2u/(1+u^2))$. Then it is easy to see that $\lim_{u\to\infty} (f(u)/(|u|^{p-2}u)) \to \infty$.

It is well known that for such kind of problems Ambrosetti-Rabinowitz [4] had introduced a hypothesis which states as follows.

There exists some $\theta > p$ such that

$$0 < \theta F(u) \le f(u) u,$$

for all |u| > M for big enough M with $F(u) = \int_{o}^{u} f(r) dr$. From this condition, we can easily prove that $F(u) \ge |u|^{\theta}$. So, there is not such a $\theta > p$ for $f(u) = |u|^{p-2}u\ln(1+u^2) + |u|^p(2u/(1+u^2))$ to satisfy the above condition. But it is easy to see that we can apply the results of the previous section, to the corresponding energy functional, and then derive a nontrivial critical point which in fact is a solution to problem (5).

REFERENCES

- 1. G. Cerami, Un criterio di esistenza per i punti critici su varieta illimitate, Rc. Ist. Lomb. Sci. Lett. 112, 332-336, (1978).
- 2. P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonl. Anal. 7, 981-1012, (1983).
- 3. P. Lindqvist, On the equation $div(|Dx|^{p-2}Dx) + \lambda |x|^{p-2}x = 0$, Proceedings of the American Math. Society 109 (1), (May 1990).
- A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal. 14, 349-381, (1973).

1204