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Abstract-We consider a general&d Gause-type prey-predator system, where both the prey and 
the predator species have independent specific growth rate. We proved that the system has limit 

cycles globally. 

1. INTRODUCTION 

We consider a generalised Gause-type model of two interacting species which are in prey-predator 
relationship and where both species have independent specific growth rate in the absence of other, 
by the following set of autonomous differential equations: 

(l.la) 

(l.lb) 

z(0) = 5rJ > 0, y(0) = yc > 0 and . E $. 

Here, s(t) and y(t) d enote the biomass of the prey species x and the predator species y respec- 
tively at time t. The specific growth rate of the prey species x is g(z),and p(x) is the rate at which 
the species z are consumed by the predator y. G(0, y) is the specific growth rate of the predator y 
in the absence of the prey species x. It is considered in (l.lb) that the predator species has an 
alternative resource so that in the absence of prey, it can survive. Thus, this prey-predator model 
is quite different from the usual prey-predator model (see [l-3]). Such pre-predator model (1.1) 
can be obtained as a subsystem of a generalised model of three-species cyclic loops [4,5]. Three- 
species cyclic loops are found in some aquatic ecosystems [6]. Cyclic loops can occur in ecological 
communities [7] and also in biogeo-chemical food webs [8]. 

We consider the following assumptions: 

Pl) 
(4 
tb) 
cc> 

(4 

g,p and G are continuously differentiable functions. 
g(0) = o > 0. There exists a unique k > 0 such that g(k) = 0. g’(x) < 0 for x 2 0. 

G(z,O) = (~1 > 0, v < 0, x, y L 0. This implies that the predator population 
growth rate is density dependent and slows down as the population increases. Since 
species x and y are in prey-predator relation, 

Wx, Y> 
da: 

> 0 holds. 

There exists a L(x) such that G(s, L(x)) = 0 where L : R+ + R+ and L’(x) 2 0. 
This implies the existence of a monotonically increasing density dependent carrying 
capacity for the predator and also we assume 

lim L(x) = L < +co. 
2-00 
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p(O) = O-p'(z) > 0 for z L 0. 

lim,+, p(z) = P, where 0 < p, < +co. 
lim,,s+p(s)/z = p’(0) = ,Ll > 0. 
This means that the predator functional response p(z) is zero when z is sufficiently 
small and it is the increasing function of 2, but approaches asymptotically to a finite 
positive value when z is large enough. The specific loss rate p(z)/z is a non-zero 
quantity when z is sufficiently small. 

(H2) All the feasible equilibria are hyperbolic. 

2. DISSIPATIVITY OF THE SYSTEM (1.1) 

The system (1.1) describing the evolution of X(t) = (5, (t), y(t)), is said to be dissipative if all 
the trajectories of (1.1) are uniformly asymptotically bounded for t 2 0. In other words, there 
exists a constant A.4 such that 

ii& sup IlX(Q II I M 

For our system (1.1) the result regarding dissipativity is given in the following lemma. 

LEMMA 2.1. All solutions of (1.1) that initiate in R: are uniformly asymptotically bounded for 
some 5, ?j > 0 to be specified later and they are ultimately in the region B c Rt, where 

PROOF. By (Hlb) g’(z) < 0 + z I xg(x) + s(t) L max(kzo) = 3 (say). 
Again, dG(z, y)/dy < 0 + if yo < z, y(t) I L(z)+ ES z+ E for any E> 0. If YO 2 L then 

y(t) 5 m=@+ 6~0) = g (say) (see PI). 

2.1. Equilibria and Their Stability 

By (Hl), the trivial equilibrium Eo(O,O) and the two axial equilibria Er(k, 0), Ez(O,L(O)), 
always exist. 

The interior positive equilibrium of the system (1.1) is the intersection of the two isoclines 

i = i = 0 in the positive quadrant of the xy plane. 

From (l.la), the prey isocline: & = 0 is equivalent to 

x9(z) 

y = P(x) 
- = F(x) say (2.la) 

and from (l.lb), the predator isocline: i = 0 gives G(x, y) = 0. This is equivalent to the curve 

y = L(x). (2.lb) 

The predator isocline (2.lb) meets the y-axis at (O,L(O)) and it is a monotonically increasing 
function. The prey isocline F(x) intersects the a-axis at El and the y-axis at (O,a/P). For 
mathematical convenience we impose the following assumption on F(z). 

(H3) The prey isocline F(x) possesses a unique global maximum at XM 1 0 satisfying 

dF 
->O fOrO<X<XM 
dx 

< 0 for zM -C x 5 k. 

Together with (Hl)-(H3), we get the following result which ensured the existence of the interior 
positive equilibrium of the system (1.1). 

PROPOSITION 2.2. Let (HI)-(H3) hold. firther let L(0) < a//3 hold. Then there is a positive 
equilibrium E(f, e) in the interior of B. 
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PROOF. By Lemma (2.1), the system (1.1) is dissipative. The variational matrix V(z, y) of the 
system (1.1) is 

%Y) = 
[ 
p(z)F’(z) -P(Z) 
yG (X y) (24 I 9 -yG,(z, Y) 1 

From (2.2), it follows that Eo is a repeller along both the z- and y-directions. El is locally 
stable along the z-direction but unstable along the y-direction. E2 is locally unstable along the 
z-direction since L(0) < a/p. So there exists an equilibrium E in the interior of the positive zy 
plane. This follows from an application of the Poincare-Bendixson theorem. 

Now if the condition L(0) < cz/p is satisfied there may be more than one equilibria in the 
interior of B and hence, we further assume. 

(H4) If L(0) < Q/P, then the positive equilibrium E is unique in the interior of B. 
Moreover, the equilibrium E in the interior of B may lie on the increasing part of F(z) or 
may lie on the decreasing part of F(z). 

REMARK 2.3. If L(0) 2 Q/P, then there does not exist or exists multiple interior equilibria 
(see [5]) in the positive sy plane. We shall not consider this case in this paper. 

PROPOSITION 2.4. Let (H1)--(H4) and L(0) < cr/p hold. In addition, 

(a) Jet, E lie on the decreasing part of F(z), then E is a sink, and 
(b) Jet E lie on the increasing part of F(z), then E is a sink provided A < -G,(f, 6) < B 

and E is a source if -G,(i, jj) < A, where 

and B = %.i$+ 
X (2.3) 

PROOF. The characteristic equation for E(?, 6) is obtained from (2.2): 

c12+PlcL+q1 =o (2.4 

where 

and 

(a) 

(b) 

PI = -(df)J”(~) + @G,(% 9)) (2.5a) 

ql = &p(g) {GY($ W”(g) + G($C)) (2.5b) 

From (2.5), it is clear that if E lies on the decreasing part of F(s), that is, F’(x) < 0, 
then pl > 0 and q1 > 0. This implies that E is a sink. This completes the proof of part 

(a). 
Let E lie on the increasing part of F(x). We shall prove first that E cannot be a saddle 
point. E must be either a sink or a source. It follows from the Index Theorem [3] that the 
sum of the indices of all the saturated regular equilibria of a dissipative two-dimensional 
system is (-1)2 = +l. By Lemma (2.1), the system (1.1) is dissipative. In the positive 
zy plane, the axial equilibria El, E2 are non-saturated and the only saturated fixed point 
is E. So the index of E must be (+l). Then E must be a sink with two-dimensional (local) 
stable manifolds or a source with two dimensional (local) unstable manifolds. Let E be 
a saddle point, then its index is (-1) which contradicts the Index Theorem [3]. Hence, 
E can never be a saddle point. E can only be either a sink or a source. 

From (2.5), 

pl > 0 + -Gy(?,$) > A and 

q1 > 0 + -G,(f,$j) < B 

Thus, whenever E lies on the increasing part of F(s), E is a sink provided A < -G, < B and E 
is a source if -G, < A. 
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2.2. The Etistence of Limit Cycles 

Next, we investigate the existence of limit cycles globally. For this purpose, we consider that the 
equilibrium E lies on the increasing part of F(z) and -G,(li, 6) < A, that is, the equilibrium E 
is a source. Then by boundedness of solutions, there is an attracting limit cycle around E. This 
follows from our last result. 

THEOREM 2.6. Let (Hl)-(H4) and L(o) < a//? hold. Further, let E lie on the increasing part 
of F(x) and -G,(f, $) < A. Then there exists a limit cycle enclosing E, which is globally stable 
from the outside. 

Figure 1. Illustrating the proof of Theorem 2.6. 

PROOF. Let R be the rectangle with 0 < x < k and 0 < y < 5. The closure fi of R is divided by 

the isoclines k = j, = 0 into four compact regions /cl, kp, ks and Icq (see Figure 1). Let i be the 

compact rectangle: 0 5 x 5 max(k,$) and 0 5 y 5 max(g,c) for arbitrary fixed I, G > 0 and 

(G, G) 4 R. Also let y+ be the positive semiorbit of (1.1) with initial value (I, $) and w(r+) be 

its omega limit set. Since i is positively invariant, y+ E Inti (interior of k) and w(r+) G g. 
Again, while y+ is contained in a compact region where 5 and j, of (1.1) do not change sign, y+ 
tends to a limit as t + 00 and this limit is an equilibrium. But we get the following: 

(1) 

(2) 

(3) 

(4 

As the equilibrium El is locally unstable along the direction into the interior of positive 

xy plane, r+ cannot tend to El for t + cm. Rather y+ reaches Ici (or kz if (I, c) lies 
above the g = o isocline). 
Entering region ICI, after a finite time, as stated earlier y+ cannot approach to El. E is a 
source. So y+ cannot also converge E. y+ must leave ICI and enter k2. 
From ka, after finite times, y+ moves to kg. In region k3, convergence of y+ to Ez is not 
possible, as Ez is locally unstable along its orthogonal direction. So after some times on 
y+ leaves k3 and moves to kq. 
In kq, EO is a repellor. So y+ cannot converge EO or El. y+ must enter ICI. 

Following the same process described in (l)-(4), for t ---) CCL y+ spirals inwards R. (-y+ cannot 
leave R, as R is positively invariant). Further, y+ starts outside of R and y+ cannot intersect 
itself. Hence y+ is not a closed trajectory. 

From (l)-(4) it is also clear that Eo, El, E2, E 4 w(-y+). By Poincare-Bendixson theorem, 
w(r+) is a closed orbit and since y+ # w(r+), w(r+) is a limit cycle. Again by Poincare-Bendixson 
theorem, any closed orbit of (1.1) enclosing E must be in a positively invariant rectangle R. Thus, 
any closed orbit in R # w(+y+) must ben encircled by w(r+). Hence, w(r+) is the w-limit set for 

each initial value (h, c) lying outside domain of w(r+). 
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