Discrete Mathematics 110 (1992) 179-183 North-Holland

179

Nowhere-zero 3-flows of highly connected graphs

Hong-Jian Lai and Cun-Quan Zhang*

Department of Mathematics, West Virginia University, Morgantown, WV 26.506, USA

Received 16 April 1990; Revised 3 December 1990

Abstract

Lai, H.-J. and C.-Q. Zhang, Nowhere-zero 3.flows of highly connected graphs, Discrete Mathematics 110 (1992) 179-183.

Let G be a k-edge-connected graph of order n. If $k \ge 4 \lceil \log_2 n \rceil$ then G has a nowhere-zero 3-flow.

We use the notations of [2]. Let $G = (V, E)$ be a graph with vertex set V and edge set *E.* An *even subgraph* of G is a subgraph *H* of G such that the degree of each vertex is even in *H.* An *orientation D* of G is an assignment of a direction to each edge. A *weight function f* on $E(G)$ is an assignment of an integer $f(e)$ to each edge e. A k -flow of G is a pair (D, f) , consisting of an orientation D and a weight function f , such that

(1) $-k < f(e) < k$, for each edge e;

(2) at every vertex v the net outflow of f is zero, that is the sum of f-values of edges with initial end ν equals the sum of f-values of the edges with terminal end *V.*

(Refer to [12] and [6] for properties of integer flows.) The *support* of a *k-flow* is the set of all edges with nonzero weights. A *nowhere-zero k-flow* is a *k*-flow such that $f(e) \neq 0$ for every edge e of G.

Tutte's Conjecture (The 3-flow conjecture [9, 10,5]). Every 2-edge-connected graph without 3-edge-cut has a nowhere-zero 3-flow.

Jaeger's Conjecture (The weak 3-flow conjecture [6]). There is an integer *k* such that every k-edge-connected graph has a nowhere-zero 3-flow.

Correspondence to: Cun-Quan Zhang, Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA.

* The research of this author was partially supported by National Science Foundation under the grant DMS-8906973.

 $0.012-365X/92/$05.00$ \odot 1992 - Elsevier Science Publishers B.V. All rights reserved

Previous results. (A) (Jaeger [5]). *A cubic graph has a nowhere-zero 3-flow if and only if it is bipartite.*

(B) (Jaeger [5]). *Every 4-edge-connected graph has a nowhere-zero 4-flow.*

(C) (Grotzsch [4] or see [6, p. 791 and [lo]). *Every 2-edge-connected planar* graph without 3-edge-cut has a nowhere-zero 3-flow.

(D) (Grünbaum [3] and Aksionov [1]). *Every 2-edge-connected planar graph with at most three 3-cuts has a nowhere-zero 3-flow.*

(E) (Steinberg and Younger [lo]). *Every 2-edge-connected graph with at most one 3-cut that can be embedded in the projective plane has a nowhere-zero 3-flow.*

The following theorem is the main result of this paper.

Theorem. Let G be a k-edge-connected graph with t odd vertices. If $k \geq 4 \lceil \log_2 t \rceil$, *then G has a nowhere-zero 3-flow.*

Corollary. Let G be a k-edge-connected graph of order n. If $k \ge 4 \lceil \log_2 n \rceil$, then G has a nowhere-zero 3-flow.

The following lemmas will be used in the proof of the main theorem.

Lemma 1 (Nash-Williams [8] and Tutte [11], or see [7] or [2, p. 31]). *Every 2k-edge-connected graph contains k edge-disjoint spanning trees.*

The set of odd-degree vertices of a graph G is denoted by $O(G)$. A subgraph H of G is called a *parity subgraph* of G if $O(H) = O(G)$. A proof of the following well-known lemma will be given for the sake of completeness.

Lemma 2. *Every spanning tree of a connected graph G contains a parity subgraph of G.*

Proof. Let *T* be a spanning tree of *G*. For every edge *e* in $E(G) \setminus E(T)$, let C_e be the unique cycle contained in $T \cup \{e\}$. The symmetric difference (binary sum) of C_e 's for all e in $E(G) \setminus E(T)$ is an even subgraph *H* of G and *H* contains all edges of $E(G)\E(T)$. Thus $G\E(H)$ is a parity subgraph of G contained in T . \Box

Let *H* be a graph with a 3-flow (D, f) . The support of f is denoted by $H_{f\neq 0}$ or $Sup(f)$ if no confusion occurs and the subgraph of *H* induced by all edges with value zero in *f* are denoted by $H_{f=0}$. The following lemma plays a central role in the proof of the main theorem.

Lemma 3. Let T_1 , T_2 and T_3 be three edge-disjoint parity subgraphs of G and let H *be the subgraph of G induced by the edge set* $E(T_1 \cup T_2 \cup T_3)$. Then *H* has a 3-flow *(D, f)* such that $|O(H_{f=0})| \leq \frac{1}{2} |O(G)|$.

Proof. Let R_3 be a minimal parity subgraph of G contained in T_3 . It is obvious that $T_3 \backslash E(R_3)$ is an even subgraph of *H* and hence is the support of a 2-flow. So it is sufficient to show that $H' = E(T_1 \cup T_2 \cup R_3) = H\setminus [E(T_3)\setminus E(R_3)]$ has a 3-flow satisfying the lemma. Since it is minimal, the parity subgraph R_3 is acyclic and therefore is a union of edge-disjoint paths P_1, \ldots, P_t such that each P_μ joins a pair of odd vertices $v_{2\mu-1}$ and $v_{2\mu}$ of G where $O(G) = \{v_1, \ldots, v_{2l}\}\)$. Construct an even graph S_i for $i = 1, 2$ by adding edges $v_{2\mu-1}v_{2\mu}$ to T_i for each $\mu = 1, \ldots, t$.

Assign an orientation to $E(T_1)$, $E(T_2)$ and paths P_1, \ldots, P_t . And let the direction of ech edge in P_u and the direction of the new edges $v_{2u-1}v_{2u}$ in each S_i be the same as that of the path P_μ for each $\mu = 1, \ldots, t$. Let *D* denote the resulting orientation.

Since each S_i is even, let (D, f_i) be a nowhere-zero 2-flow of S_i . Let S_i^* be the even subgraph of G obtained by replacing each edge $v_{2\mu-1}v_{2\mu}$ by the path P_μ for $\mu=1,\ldots,t$. The flow (D, f_i) defines in the obvious way a nowhere-zero 2-flow of S_i^* for $i = 1, 2$ which we also denote by (D, f_i) . Then $(D, f_1 + f_2)$ is a 3-flow of *H'*. It is obvious that $H'_{f_1+f_2=0}$ is the union of some paths P_{i_1}, \ldots, P_{i_r} . If $r \le t/2$, then

$$
\left|O\left(\bigcup_{\mu=1}^r P_{i_\mu}\right)\right|=2r\leq t=\frac{|O(G)|}{2}.
$$

Otherwise, considering the 3-flow $(D, f_1 - f_2)$, we see that $H'_{f_1 - f_2 = 0}$ is the union of the paths in $\{P_1, \ldots, P_t\} \setminus \{P_{i_1}, \ldots, P_{i_r}\}\$ and has $2t - 2r (2t - 2r < t = \frac{1}{2} |O(G)|)$ odd vertices. \Box

Lemma 4. Let T_0, \ldots, T_{2s-1} be edge-disjoint subgraphs of a connected graph G *where* T_0 *is a parity subgraph of G and* T_1, \ldots, T_{2s-1} *are spanning trees of G. If* $|O(G)| \leq 2^s$, *then G has a nowhere zero 3-flow.*

Proof. The following basic property of graphs will be used to verify the cases of $s=0$ and $s=1$,

The number of odd vertices in any graph is even.
$$
(*)
$$

When $s = 0$ the graph G is an even graph by (*), and hence the graph G admits a nowhere-zero 2-flow. When $s = 1$, assume that $O(G) = \{x, y\}$. By (*), x and y are contained in the same component of T_0 and T_1 and therefore any edge-cut separating x and y must be of order at least two. By $(*)$ again, any edge-cut separating x and y must be of odd order. Thus, by Menger's Theorem, there are three edge-disjoint (x, y) -paths P_1 , P_2 and P_3 in G. Let $P_\mu = v_1^\mu \cdots v_{r_\mu}^\mu$ where $v_1^{\mu} = x$ and $v_{r_n}^{\mu} = y$ for $\mu = 1, 2, 3$. Assign a flow (D_1, f_1) on the induced subgraph $G(E(P_1 \cup P_2 \cup P_3))$ such that

 $v_i^{\mu} \rightarrow v_{i+1}^{\mu}$

for each edge of $G(E(P_1 \cup P_2 \cup P_3))$ and

$$
f_1(e) = \begin{cases} 1 & \text{if } e \in P_1 \cup P_2, \\ -2 & \text{if } e \in P_3. \end{cases}
$$

So (D_1, f_1) is a nowhere-zero 3-flow of $G(E(P_1 \cup P_2 \cup P_3))$. Since $G \setminus E(P_1 \cup P_2 \cup P_1)$ P_3) is even, it has a nowhere-zero 2-flow (D_2, f_2) and hence the graph G has a nowhere-zero 3-flow $(D_1 + D_2, f_1 + f_2)$.

Let $s \ge 2$. We proceed by induction on s. Let R_i be a parity subgraph contained in T_i for $i = 0, 1, 2$. By Lemma 3, let f_1 be a 3-flow of $H = G(E(R_0 \cup R_1 \cup R_2))$ such that $|O(H_{f=0})| \leq |O(H)/2|$. Let $G' = G\setminus E(H_{f\neq0})$. Since $G' = [G\setminus E(H)] \cup$ $E(H_{f=0})$ and $G \setminus E(H)$ is an even subgraph of G, $H_{f=0}$ is a parity subgraph of G'. Note that $|O(G')| \leq |O(G)/2| \leq 2^{s-1}$ and $H_{f=0}, T_3, \ldots, T_{2s-1}$ are edge-disjoint subgraphs of G'. By inductive hypothesis, G' has a nowhere-zero 3-flow f' . Thus $f + f'$ is a nowhere-zero 3-flow of G since Sup(f) \cap Sup(f') = \emptyset . \Box

Proof of the Theorem. Let $2^{s-1} < t \le 2^s$ (that is, $s = \lfloor \log_2 t \rfloor$). By Lemma 1, the graph G contains at least 2s edge-disjoint spanning trees. Then the main theorem is an immediate corollary of Lemma 4. \Box

The main theorem in this paper established a relation between the edgeconnectivity and a number of odd vertices of a graph which guarantees the existence of a nowhere-zero 3-flow. the method applied in the proof of Lemma 4 could be used to prove the weak 3-flow conjecture if the following conjecture could be verified.

Conjecture. There is a pair of 'large' integers a and *b* such that any graph G, with $|O(G)| \le |V(G)|/a$ and containing *b* edge-disjoint spanning trees, must have a nowhere-zero 3-flow.

Let $a \le 2^c$. Let G be a 2k-edge-connected graph where $k \ge b + 2c$. By Lemma 1, G contains at least *k* edge-disjoint spanning trees T_0, \ldots, T_{k-1} . Repeating the inductive argument in the proof of Lemma 4, we obtain a parity subgraph *H* such that

$$
E(H) \subseteq \bigcup_{i=0}^{2c-1} E(T_i)
$$

and a 3-how *f* with support in *H* and

$$
|O(H_{f=0})|\leq \frac{|O(G)|}{2^c}.
$$

Consider the spanning subgraph $G' = G \setminus E(H_{f\neq0})$ which has at least *b* edgedisjoint spanning trees and has at most $|V(G')|/2^c$ odd vertices. If the above conjecture were verified, then G' would have a nowhere-zero 3-flow f' and therefore G would have a nowhere-zero 3-flow $f' + f$.

References

- [l] V.A. Aksionov, On the extension of the 3-coloring of planar graphs (in Russian), Diskret. Analiz. 16 (1974) 3-19.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
- [3] B. Grtinbaum, Grotzsch's theorem on 3-colorings, Michigan Math. J. 10 (1963) 303-310.
- [4] H. Grotzsch, Zur Theorie der diskreten Gebiede. VII. Ein Dreifarbensatz fiir dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Natur. Reihe 8 (1958/9) 109-120.
- [5] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. **Theory' Ser.** B 26 (1979) 205-216.
- [6] F. Jaeger, Nowhere-zero flow problems, in: Selected topics in graph theory 3 (1988) 71-95.
- [7] S. Kundu, Bounds on the number of disjoint spanning trees, J. Combin Theory Ser. B (1974) 199-203.
- [8] C. St. J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445-450.
- [9] R. Steinberg, Grotzsch's Theorem dualized, M. Math. Thesis, University of Waterloo, Canada, 1976.
- [10] R. Steinberg and D.H. Younger, Grötzsch's Theorem for the projective plane, Ars Combin. 28 (1989) 15-31.
- [ll] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221-230.
- [12] D.H. Younger, Integer flows, J. Graph Theory 7 (1983) 349-357.