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Abstract

Lai, H.-J. and C.-Q. Zhang, Nowhere-zero 3-flows of highly connected graphs, Discrete
Mathematics 110 (1992) 179-183.

Let G be a k-edge-connected graph of order n. If k =4[log, n] then G has a nowhere-zero
3-flow.

We use the notations of [2]. Let G = (V, E) be a graph with vertex set V and
edge set E. An even subgraph of G is a subgraph H of G such that the degree of
each vertex is even in H. An orientation D of G is an assignment of a direction to
each edge. A weight function f on E(G) is an assignment of an integer f(e) to
each edge e. A k-flow of G is a pair (D, f), consisting of an orientation D and a
weight function f, such that

(1) —k <f(e) <k, for each edge e;

(2) at every vertex v the net outflow of f is zero, that is the sum of f-values of
edges with initial end v equals the sum of f-values of the edges with terminal end
v.

(Refer to [12] and [6] for properties of integer flows.) The support of a k-flow is
the set of all edges with nonzero weights. A nowhere-zero k-flow is a k-flow such
that f(e) # 0 for every edge e of G.

Tutte’s Conjecture (The 3-flow conjecture [9, 10, 5]). Every 2-edge-connected
graph without 3-edge-cut has a nowhere-zero 3-flow.

Jaeger’s Conjecture (The weak 3-flow conjecture [6]). There is an integer k such
that every k-edge-connected graph has a nowhere-zero 3-flow.
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Previous results. (A) (Jaeger [5]). A cubic graph has a nowhere-zero 3-flow if
and only If it is bipartite.

(B) (Jaeger [5]). Every 4-edge-connected graph has a nowhere-zero 4-flow.

(C) (Grotzsch [4] or see [6, p. 79] and [10]). Every 2-edge-connected planar
graph without 3-edge-cut has a nowhere-zero 3-flow.

(D) (Griinbaum [3] and Aksionov [1]). Every 2-edge-connected planar graph
with at most three 3-cuts has a nowhere-zero 3-flow.

(E) (Steinberg and Younger [10]). Every 2-edge-connected graph with at most
one 3-cut that can be embedded in the projective plane has a nowhere-zero 3-flow.

The following theorem is the main result of this paper.

Theorem. Let G be a k-edge-connected graph with t odd vertices. If k = 4[log, t],
then G has a nowhere-zero 3-flow.

Corollary. Let G be a k-edge-connected graph of order n. If k = 4[log, n|, then G
has a nowhere-zero 3-flow.

The following lemmas will be used in the proof of the main theorem.

Lemma 1 (Nash-Williams [8] and Tutte [11], or see [7] or [2, p.31]). Every
2k-edge-connected graph contains k edge-disjoint spanning trees.

The set of odd-degree vertices of a graph G is denoted by O(G). A subgraph H
of G is called a parity subgraph of G if O(H)= O(G). A proof of the following
well-known lemma will be given for the sake of completeness.

Lemma 2. Every spanning tree of a connected graph G contains a parity subgraph
of G.

Proof. Let T be a spanning tree of G. For every edge e in E(G)\E(T), let C, be
the unique cycle contained in T U {e}. The symmetric difference (binary sum) of
C.’s for all e in E(G)\E(T) is an even subgraph H of G and H contains all edges
of E(G)\E(T). Thus G\E(H) is a parity subgraph of G contained in T. O

Let H be a graph with a 3-flow (D, f). The support of f is denoted by H;, or
Sup(f) if no confusion occurs and the subgraph of H induced by all edges with
value zero in f are denoted by H;_,. The following lemma plays a central role in
the proof of the main theorem.
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Lemma 3. Let Ty, T, and T, be three edge-disjoint parity subgraphs of G and let H
be the subgraph of G induced by the edge set E(T; U T, U T3). Then H has a 3-flow
(D, f) such that |0(Hy—)| <} |O(G).

Proof. Let R; be a minimal parity subgraph of G contained in 7;. It is obvious
that T3\ E(R;) is an even subgraph of H and hence is the support of a 2-flow. So it
is sufficient to show that H' = E(T, U T, U R;) = H\[E(T3)\E(R3)] has a 3-flow
satisfying the lemma. Since it is minimal, the parity subgraph R; is acyclic and
therefore is a union of edge-disjoint paths P, ..., P, such that each P, joins a
pair of odd vertices v,_; and v,, of G where O(G) = {v,, ..., v, }. Construct
an even graph §; for i =1, 2 by adding edges v,,_,v,, to T, foreach u=1, ..., ¢

Assign an orientation to E(Ty), E(7,) and paths P, ..., F. And let the
direction of ech edge in P, and the direction of the new edges v,,_,v,, in each S,
be the same as that of the path P, for each u=1,...,¢ Let D denote the
resulting orientation.

Since each S; is even, let (D, f;) be a nowhere-zero 2-flow of §;. Let S be the
even subgraph of & obtained by replacing each edge v,,.,v,, by the path P, for

u=1,...,t The flow (D, f) defines in the obvious way a nowhere-zero 2-flow of

S for i =1, 2 which we also denote by (D, f;). Then (D, f, + f,) is a 3-flow of H".

It is obvious that H/ ,,_, is the union of some paths P, , ..., P,. If r<¢/2, then
|0(G)|

lo([} P )' —r<t=
u=1 * 2

Otherwise, considering the 3-flow (D, f; — f;), we see that Hf_, _, is the union of
the paths in {P,, ..., P}\{P,,..., P} and has 2t —2r (2t =2r<t=1%|0(G)|)
odd vertices. [

Lemma 4. Let Ty, . .., T,,_| be edge-disjoint subgraphs of a connected graph G
where Ty is a parity subgraph of G and T, . . ., T,,_, are spanning trees of G. If
|O(G)| <2°, then G has a nowhere zero 3-flow.

Proof. The following basic property of graphs will be used to verify the cases of
s=0ands=1,

The number of odd vertices in any graph is even. (*)

When s = 0 the graph G is an even graph by (), and hence the graph G admits a
nowhere-zero 2-flow. When s = 1, assume that O(G) = {x, y}. By (*), x and y are
contained in the same component of 7, and 7, and therefore any edge-cut
separating x and y must be of order at least two. By (*) again, any edge-cut
separating x and y must be of odd order. Thus, by Menger’s Theorem, there are
three edge-disjoint (x, y)-paths P, P, and P; in G. Let P, =v{---v} where
vi=x and v} =y for u=1, 2, 3. Assign a flow (D, f) on the induced subgraph
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G(E(P, U P, U Py)) such that
vi'— vl
for each edge of G(E(P,U P, U Py)) and

ifee PLUP,,
if e € ;.

So (D, f1) is a nowhere-zero 3-flow of G(E(P, U P,U P,)). Since G\E(P,U P, U
P;) is even, it has a nowhere-zero 2-flow (D,, f,) and hence the graph G has a
nowhere-zero 3-flow (D, + D,, fi + f).

Let s =2. We proceed by induction on s. Let R; be a parity subgraph contained
in T; for i=0, 1, 2. By Lemma 3, let f; be a 3-flow of H=G(E(R,UR,UR,))
such that |O(H,_,)| <|O(H)/2|. Let G’ = G\E(H;,). Since G' =[G\E(H)]U
E(Hyo) and G\E(H) is an even subgraph of G, H;_, is a parity subgraph of G'.
Note that |O(G')|<|0(G)/2|<2"" and H;_, Ty, ..., Ts,_, are edge-disjoint
subgraphs of G'. By inductive hypothesis, G’ has a nowhere-zero 3-flow f’. Thus
f +f' is a nowhere-zero 3-flow of G since Sup(f) NSup(f)=0. O

fe={1,

Proof of the Theorem. Let 2°~' <r<2’ (that is, s = [log, ¢]). By Lemma 1, the
graph G contains at least 2s edge-disjoint spanning trees. Then the main theorem
is an immediate corollary of Lemma 4. [

The main theorem in this paper established a relation between the edge-
connectivity and a number of odd vertices of a graph which guarantees the
existence of a nowhere-zero 3-flow. the method applied in the proof of Lemma 4
could be used to prove the weak 3-flow conjecture if the following conjecture
could be verified.

Conjecture. There is a pair of ‘large’ integers a and b such that any graph G,
with |O(G)| = |V(G)|/a and containing b edge-disjoint spanning trees, must have
a nowhere-zero 3-flow.

Let a<2° Let G be a 2k-edge-connected graph where k= b + 2¢. By Lemma
1, G contains at least k edge-disjoint spanning trees Ty, . . ., T,_,. Repeating the
inductive argument in the proof of Lemma 4, we obtain a parity subgraph H such
that

E@)e U ET)

and a 3-flow f with support in H and

oG
ot <A



Nowhere-zero 3-flows of highly connected graphs 183

Consider the spanning subgraph G’'= G\E(H;.,) which has at least b edge-
disjoint spanning trees and has at most |V(G')|/2° odd vertices. If the above
conjecture were verified, then G' would have a nowhere-zero 3-flow f’ and
therefore G would have a nowhere-zero 3-flow f' + f.

References

[1] V.A. Aksionov, On the extension of the 3-coloring of planar graphs (in Russian), Diskret.
Analiz. 16 (1974) 3-19.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and
Elsevier, New York, 1976).

[3] B. Grinbaum, Grétzsch’s theorem on 3-colorings, Michigan Math. J. 10 (1963) 303-310.

[4] H. Grotzsch, Zur Theorie der diskreten Gebiede. VII. Ein Dreifarbensatz fiir dreikreisfreie
Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Natur. Reihe 8
(1958/9) 109-120.

[5] F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory' Ser. B 26
(1979) 205-216.

[6] F. Jaeger, Nowhere-zero flow problems, in: Selected topics in graph theory 3 (1988) 71-95.

[7]1 S. Kundu, Bounds on the number of disjoint spanning trees, J. Combin Theory Ser. B (1974)
199-203.

[8] C. St. J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc.
36 (1961) 445-450.

[9] R. Steinberg, Grotzsch’s Theorem dualized, M. Math. Thesis, University of Waterloo, Canada,
1976.

[10] R. Steinberg and D.H. Younger, Grétzsch’s Theorem for the projective plane, Ars Combin. 28
(1989) 15-31.

[11] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math.
Soc. 36 (1961) 221-230.

[12] D.H. Younger, Integer flows, J. Graph Theory 7 (1983) 349-357.



