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a b s t r a c t

A numerical study is performed to analyze the mixed convection heat transfer and fluid
flow in lid-driven cavities with different lengths of the heating portion and different
locations of it. The left wall has been heated fully or partially to a higher temperature,
whereas the right wall is maintained at a lower temperature. Three different lengths of the
heating portion and three different locations of it are used along the hotwall. The remaining
portions of the left wall, and the top and the bottom walls of the cavity are insulated.
The finite volume method is used to discretize the governing equations which are then
solved iteratively. The velocities and pressure are coupled by the SIMPLE algorithm. Results
are presented graphically in the form of streamlines, isotherms and velocity profiles. It is
concluded that the heat transfer rate is enhanced on reducing the heating portion andwhen
the portion is at middle or top of the hot wall of the cavity.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mixed convection flow and heat transfer is one of the major problems studied in the thermo-fluids area. It has possible
applications in many engineering, technological and natural processes. This includes food processing, crystal growth,
electronic cooling, oil extraction, solar collectors and thermo-hydraulics of nuclear reactors. Many investigations have
been conducted on lid-driven cavity flow and heat transfer during the past three decades using experimental or numerical
methods by several investigators. Mohamad and Viskanta [1] investigated the effects of a sliding lid on the fluid flow and
thermal structures in a shallow lid-driven cavity. They found that themaximum local heat transfer rate occurs at the starting
area of the sliding lid and decreases along the sliding lid. Chenak et al. [2] studied mixed convection and conduction heat
transfer in open cavities. They showed that heat transfer across the cavity is enhanced when the cavity aspect ratio is
increased. Prasad and Koseff [3] investigated combined forced and natural convection in a lid-driven cavity experimentally.
Chamkha [4] investigated the problem of unsteady laminar combined convection flow and heat transfer of an electrically
conducting and heat generating or absorbing fluid in a vertical lid-driven cavity in the presence of a uniform magnetic
field. He found that the presence of the internal heat generation effect is found to decrease the average Nusselt number
significantly for aiding flow and to increase it for opposing flow. How and Hsu [5] examined transient mixed convection in
a partially divided enclosure. They revealed that the time to reach the steady state depends strongly on the configuration of
the divider.
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Nomenclature

cp specific heat, J/(kg K)
g gravitational acceleration, m/s2
Gr Grashof number
k thermal conductivity, W/(m K)
L cavity length, m
LH heater length, m
Nu local Nusselt number
Nu average Nusselt number
P pressure, Pa
Pr Prandtl number
Re Reynolds number
T temperature, °C
1T temperature difference, Th − Tc
t time, s
u, v velocity components, m/s
U, V dimensionless velocities
U0 lid velocity, m/s
W cavity width, m
x, y Cartesian coordinates, m
X, Y dimensionless Cartesian coordinates

Greek symbols

α thermal diffusivity, m2/s
β coefficient of thermal expansion of fluid, K−1
θ dimensionless temperature
ρ density of the fluid, kg/m3
µ dynamic viscosity, Pa s
ν kinematic viscosity, m2/s
ψ stream function, m2/s
τ dimensionless time

Subscripts

c cold wall
h hot wall
H heater

Zhang [6] examined numerical simulation of a two-dimensional square driven cavity using fourth-order compact finite
difference schemes. He compared his computed solutions up to Re = 7500 with the benchmark solutions obtained by other
researchers. Hossain and Gorla [7] numerically investigated the effect of viscous dissipation on mixed convection flow in
a rectangular enclosure. They drew the conclusion that the heat transfer rate from the top heated surface is increased on
increasing the Eckert number and Reynolds number. Amiri et al. [8] provided numerical simulation of combined thermal
and mass transport in a square lid-driven cavity. Their results demonstrated that the heat and mass transfer rates inside
the cavity are enhanced for low values of Richardson numbers. A numerical study on laminar mixed convection in shallow
driven cavities with a hot moving lid on top that are cooled from the bottom has been carried out by Sharif [9]. He observed
that average Nusselt number increases slightly with the cavity inclination angle for the forced convection dominated
case while it increases much more rapidly with inclination angle for the natural convection dominated case. Ji et al. [10]
performed a numerical and experimental study on transient mixed convection in a lid-driven enclosure. They showed that
the temperature field exhibits weak fluctuating behavior at early times in the mid and upper portions of the cavity.
Convection in a two-dimensional square cavity with partially heated walls has been an important topic because of its

applications such as in electronic equipment cooling, solar energy collectors and nuclear reactors. Kuhn and Oosthuizen [11]
numerically investigated unsteady natural convection in a partially heated rectangular cavity. Their results showed that the
heat transfer is affected by the position of the heated element unless the heater is very close to a horizontal wall. Yucel and
Turkoglu [12] studied natural convection in a rectangular enclosure with partial heating and cooling. They found that the
mean Nusselt number decreases with increasing heater size for a given cooler size and that the Nusselt number increases on
increasing the cooler size for a given heater size. Oztop [13]made a numerical study on combined convection heat transfer in
a partially heated lid-driven enclosure. He found that the location of the heater is themost effective parameter on combined
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Fig. 1a. Schematic diagram of the physical configuration and the coordinate system.

convection flow and temperature field. He concluded that heat transfer is enhanced when the heater is located on the left
vertical wall. Chen and Chen [14] numerically investigated laminar, steady, two-dimensional natural convection flows in a
square enclosure partially heated on the left andbottomwalls. They revealed that the heat transfer rate is gradually increased
by increasing the length of the heat source segment.
Kandaswamy et al. [15] made a numerical study on buoyancy-driven convection in an enclosure with partially thermally

active vertical walls. Their results illustrated that heat transfer rate is increased when the heating location is at middle of
the hot wall. Nithyadevi et al. [16,17] numerically studied the natural convection in a square cavity with partially active
vertical walls. They found that the heat transfer rate is enhanced when the heating location is at the middle of the hot wall.
Ghasemi and Aminossadati [18] carried out a numerical study on mixed convection in a partially heated square cavity. In
this study, they kept the right wall at low temperature and move vertically either a constant velocity or with a sinusoidal
oscillation. The results indicated that the direction and magnitude of the sliding wall velocity affect the heat transfer rate.
At low Richardson numbers, the average heat transfer rate for a cavity with an oscillating wall is lower than that for a cavity
with a constant velocity wall.
In most of the studies found in the literature, vertical walls are considered to be isothermal inmixed convection flow and

heat transfer in enclosures. However, in many engineering applications the heater and cooler play an important role in the
fluid flow and heat transfer, particularly for electronic equipment cooling. In order to understand the effect of heater size
and locations on mixed convection, in the present study we examine the heat transfer and fluid flow for different sizes of
the heating portion and different locations of it in a lid-driven cavity.

2. Mathematical formulation

Consider unsteady, laminar, incompressible combined convective flow and heat transfer in a two-dimensional square
cavity of size L filled with air. The top and bottom walls of the cavity are insulated. The left wall is either fully or partially
heated to temperature Th while the right wall is maintained at a temperature Tc such that Th > Tc . Three different lengths
LH of the heating portion and three different locations of it are used along the hot wall. The remaining portions are adiabatic
while partially heating the left wall. The top wall of the cavity is allowed to move in its own plane at a constant speed U0.
The physical model and the coordinate system considered in the investigation are shown in Fig. 1a. The thermo-physical
properties of the fluid are assumed to be constant, except in the buoyancy term. The Boussinesq approximation is valid. It
is further assumed that viscous dissipation is neglected in the study.
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where t, u, v, p, T , x and y are the time, fluid velocity components in the x- and y-directions, pressure, temperature and
the coordinate directions, respectively. The parameters β , k, ν, ρ0, cp and g are the fluid volumetric thermal expansion
coefficient, thermal conductivity, kinematic viscosity, fluid density, the specific heat, and acceleration due to gravity,
respectively.
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Table 1
Comparison of average Nusselt number with available literature values for lid-driven cavity.

Gr Re
400 1000
Present work Reference [9] Difference (%) Present work Reference [9] Difference (%)

102 4.09 4.5 −9.11 6.48 6.55 −1.07
104 3.85 3.82 0.78 6.47 6.50 −0.46
106 1.10 1.17 −5.98 1.66 1.81 −8.28

The initial and boundary conditions for the problem can be written as follows:

For t = 0: u = v = 0 T = 0, 0 ≤ (x, y) ≤ L

For t > 0: u = v = 0
∂T
∂y
= 0 y = 0

u = U0; v = 0
∂T
∂y
= 0 y = L

u = v = 0 T = Tc x = L
u = v = 0 x = 0.

Case 1: (Increasing heater length from bottom)
T = Th x = 0, 0 ≤ y ≤ ε1 + L/6
∂T
∂x
= 0 x = 0, ε1 + L/6 ≤ y ≤ L

Case 2: (Increasing heater length from top)
T = Th x = 0, ε1 − L/6 ≤ y ≤ L
∂T
∂x
= 0 x = 0, 0 ≤ y ≤ ε1 − L/6

Case 3: (Heater placement)
T = Th x = 0, ε1 − L/6 ≤ y ≤ ε1 + L/6
∂T
∂x
= 0 x = 0, 0 ≤ y ≤ ε1 − L/6, ε1 + L/6 ≤ y ≤ L



(5)

where ε1 = L/6, 3L/6 and 5L/6 denotes the distance of the center of the heating portion from the bottom of the cavity. In
case 1, the normalized length, LH , of the heat source is varied as L/3, 2L/3, L of the cavity height, extending from the bottom
left corner. In case 2, the heat source LH , is varied as L/3, 2L/3, L of the cavity height, increasing from the top left corner.
In case 3, LH is kept constant at L/3 but the placement is varied at the bottom, middle, and top of the left wall so that ε1 is
L/6, 3L/6, 5L/6 from the lower left corner. However, the heater length LH = L/3 at the bottom in case 1 and the placement
of heater when ε1 = 1/6 at the bottom in case 3 are the same. Similarly, the heater length LH = L/3 at the top in case 2 and
the placement of heaterwhen ε1 = 5L/6 at the top in case 3 are the same. Thus, there are three caseswith six configurations.
It is convenient to non-dimensionalize Eq. (1) through (5) using the following dimensionless variables:
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The previous governing equations result in the following dimensionless equations:
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where the Reynolds number Re = U0L/ν, the Grashof number Gr = gβ1TL3/ν2, the Prandtl number Pr = ν/α, and the
thermal diffusivity α = k/ρCp.
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Fig. 1b. Grid independent test.

The dimensionless initial and boundary conditions of the problem under consideration can be written as

For τ = 0: U = V = 0 θ = 0 0 ≤ (X, Y ) ≤ 1

For τ > 0: U = V = 0;
∂θ

∂Y
= 0 Y = 0

U = 1; V = 0;
∂θ

∂Y
= 0 Y = 1

U = V = 0 θ = 0 X = 1
U = V = 0 X = 0

Case 1: θ = 1 X = 0, 0 ≤ Y ≤ ε2 + 1/6
∂θ

∂X
= 0 X = 0, ε2 + 1/6 ≤ Y ≤ 1

Case 2: θ = 1 X = 0, ε2 − 1/6 ≤ y ≤ 1
∂θ

∂X
= 0 X = 0, 0 ≤ y ≤ ε2 − 1/6

Case 3: θ = 1 X = 0, ε2 − 1/6 ≤ Y ≤ ε2 + 1/6
∂θ

∂X
= 0 X = 0, 0 ≤ Y ≤ ε2 − 1/6, ε2 + 1/6 ≤ Y ≤ 1

(11)

where ε2 = 1/6, 3/6 and 5/6.
The stream function is defined in the usual way as U = ∂ψ

∂Y and V = −
∂ψ

∂X . It is taken thatψ = 0 at all walls of the cavity.
The local Nusselt number and average Nusselt number at the hot wall of the cavity are expressed as Nu = −

(
∂θ
∂X

)
x=0 and

Nu = 1
LH

∫ LH
0 Nu dY , respectively, where LH is the length of the heating portion.

3. Method of solution

The governing equations (7)–(10) together with the boundary conditions (11) are discretized using the finite volume
method [19]. The QUICK scheme [20] is used for the convective terms and the central difference scheme is used for the
diffusive terms. An implicit scheme is used for time marching. The velocities and pressure are coupled by the SIMPLE
algorithm [19]. An iterative process solves each variable obtained from the resulting set of discretized equations. The process
is repeated until the following convergence criterion is satisfied:

∣∣∣Φn+1(i,j)−Φn(i,j)
Φn+1(i,j)

∣∣∣ ≤ 10−6 for each variable. In order to
determine the proper grid size for this study, a grid independence test is conducted for Ri = 0.01 and 100 in a square cavity.
A uniform grid is chosen in both X- and Y -directions. It is found that an 81 × 81 grid is sufficiently fine to ensure a grid
independent solution; see Fig. 1b. The agreement between the present computational result and that of Sharif [9] is seen to
be good with a maximum discrepancy of about 9.11, which is shown in Table 1. The present code is also validated against
the result of Chamkha [4]. This is shown in Fig. 1c.

4. Result and discussion

The combined free and forced convection heat transfer and fluid flow for different lengths of the heating portion and
different locations of it in a lid-driven cavity is numerically investigated. The working fluid is chosen as air with Prandtl
number Pr = 0.71. The Reynolds number is taken as 102 and 103 and the Grashof number is varied from 102 to 106. The
Richardson number provides ameasure for the importance of the natural convection relative to the forced convection effect.
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Fig. 1c. Comparison of the isotherms and streamlines for Gr = 100, Re = 1000, Pr = 0.71 with the work of Chamkha [4].

The Richardson number is varied from 0.01 to 100. The effects of three different lengths (LH = 1/3, 2/3 and 1) of the heating
portion and three different locations (ε2 = 1/6, 3/6 and 5/6) of it on the heat transfer and fluid flow inside the two-
dimensional square lid-driven cavity are investigated numerically.

4.1. Effect of the size of the heating portion

Fig. 2(a)–(f) show typical temperature contours for different Richardson numbers (Ri = 0.01, 1.0, 100) and different
lengths of heating portion (LH = 1/3, 2/3, 1) with ε2 = 1/6, 2/6, 3/6 and 5/6, respectively. The isotherms are distributed
over the entire cavity when the Richardson number is small in Fig. 2(a), i.e. forced convection dominates. On increasing the
Richardson number to Ri = 100, thin boundary layers are formed at both the left bottom of the hot wall and the top of
the cold wall, as natural convection dominates. The same temperature effect is seen except near to the hot wall in Fig. 2(b)
for different Richardson numbers as occurred in Fig. 2(a) for different lengths of heating portions. It is also found that the
isotherms showvertical temperature stratification forRi = 100.When LH = 2/3 and ε2 = 5/6, the isotherms are distributed
over thewhole cavity for forced andmixed convection regimes. However, thermal stratification in the core region disappears
when Ri = 100. This is clearly seen from Fig. 2(c). The heat distribution inside the cavity is very poor when reducing the
heating portion size to LH = 1/3, which is clearly seen from the isotherm patterns in Fig. 2(d)–(f).
Fluid flow is displayed in the formof streamlines for different Richardson numbers and for different lengths of the heating

portion (Ri = 0.01, 1.0, 100) in Fig. 3. Fig. 3(a) shows that there is a primary circulating eddy in the above half of the cavity
generated by the movement of the top wall for Ri = 0.01. Buoyancy force does not play an important role when Ri is less
than unity. Since the shear force dominates the buoyancy force, the core region of the circulating eddy inside the cavity is
near to the top of the cavity. Neither forced convection nor natural convection dominates at Ri = 1.0, and the core region of
the eddy moves to the center of the cavity. The eddy occupies the whole cavity for the natural convection dominated case,
Ri = 100, and the eddy is elongated horizontally. The circulation rate of the eddy is slightly increased when the Richardson
number is increased. Fig. 3(b) and (c) show that there is no considerable change in the flow field on reducing the heating
length at Ri = 0.01 and Ri = 1.0. But, in the case of natural convection dominated flow, the flow field is altered depending
on heating location. The area of the core region is decreased and flow speed is increased considerably when the heating
portion is reduced to LH = 2/3 and LH = 1/3; see Fig. 3(b) & (d).

4.2. Effect of the position of the heating portion

The influence of different locations of the heating portion for different Richardson numbers, Ri = 0.01, 1.0 and 100 is
displayed in Fig. 2(d)–(f). Fig. 2(d) exhibits that when forced convection dominates (Ri = 0.01), the isotherms are crowded
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(a) LH = 1, ε2 = 3/6.

(b) LH = 2/3, ε2 = 2/6.

(c) LH = 2/3, ε2 = 5/6.

(d) LH = 1/3, ε2 = 1/6.

Fig. 2. Isotherms for different Richardson numbers and different heating locations.
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(e) LH = 1/3, ε2 = 3/6.

(f) LH = 1/3, ε2 = 5/6.

Fig. 2. (continued)

at the left bottom of the cavity because the heating portion is kept at the bottom of the cavity. On increasing the Richardson
number to Ri = 1.0, the isotherms move towards the heating portion. Thin boundary layers are formed at both the left
bottom of the hot wall and the top of the cold wall as natural convection dominates on increasing the Richardson number
to Ri = 100. This is evidence for a good heat transfer rate. Fig. 2(e) shows the occurrence of the same temperature effect
except near to the heating portion. By changing the location of the heating portion to the top of the hot wall, transfer of heat
is by conduction in the lower half of the cavity for a given Richardson number.
Fluid flow for different locations of the heating portion for different Richarson numbers is displayed in Fig. 3(d)–(f).

Fig. 3(d) shows that there is a primary circulating eddy in the upper half of the cavity generated by the movement of top
wall for Ri = 0.01. As the shear force dominates, the core region of the circulating eddy is near to the moving lid of the
cavity. It moves to the centre of the cavity and occupies the entire cavity in the mixed convection regime, i.e., Ri = 1.0. It is
observed that the eddy is stretched out in the natural convection dominant case (Ri = 100). The same flow patterns occur as
in Fig. 3(d) for all convections that are presented in Fig. 3(e). It is very interesting to see that the flow speed is decreased on
changing the location of the heating portion from the bottom to the top for Ri = 100. That is, natural convection becomes
stronger when the heater is at the bottom of the wall. There is no considerable change in the absolute value of the stream
function on changing the location of the heating portion from the bottom to the top for Ri = 0.01.

4.3. Effect on the heat transfer rate

Fig. 4(a)–(b) display the local Nusselt numbers for different Richardson numbers and different lengths of the heating
portion. In Fig. 4(a), a high heat transfer rate is observed near to the adiabatic portion of the hot wall because the buoyancy
force is boosted up in the presence of some unheated space above the heating portion. But such behavior is not found in
the fully heated wall. On increasing the Richardson number, there is a considerable increment in the local Nusselt number.
Similar behavior of the local Nusselt number is observed when Re = 1000 in Fig. 4(b). Fig. 5(a)–(b) present the local Nusselt
numbers for different Richardson numbers for different locations of the heating portion. Fig. 5(a) shows that a high heat
transfer rate occurs near to the adiabatic portion of the hot wall. Since the buoyancy force is improved in the presence of
some unheated space above the heating portion, the same performance is not initiated when the heating portion is located
at the top of the hot wall. There is a significant increment in local Nusselt number on increasing the Richardson number.
Comparable behavior of the local Nusselt number is observed when Re = 1000 in Fig. 5(b).
The time history of the average Nusselt number for different Richardson number is displayed in Fig. 6. In the beginning,

the average Nusselt number is suddenly decreased and a steady state is reached after some time. When the Richardson
number is increased, the heat transfer rate increases constantly. The steady state is reached more quickly in the natural
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(a) LH = 1, ε2 = 3/6.

(b) LH = 2/3, ε2 = 2/6.

(c) LH = 2/3, ε2 = 5/6.

Fig. 3. Streamlines for different Richardson numbers and different heating locations.

convection case than in the forced convection case. The time to reach steady state is very high for Ri = 1, that is, the
mixed convection regime. The effect of average Nusselt number versus time is displayed in Fig. 7 for different locations and
different lengths of the heating portion at R = 1.0. In Fig. 7(a), the heat transfer rate is increased when the length of the
heating portion is reduced. The time to reach steady state is reduced on increasing the length of the heating portion. It is
interesting to see that the heat transfer is higher for the heating portion being in themiddle of the hot wall than for the other
two locations. Fig. 7(b) shows the effect of heat transfer rate for different places of heating. The heat transfer rate is enhanced
when the heating portion is at the middle of the hot wall of the cavity. The time to reach steady state is increased when the
heating portion is at the top of the hot wall. Fig. 8(a)–(b) presents the average Nusselt number versus Richardson number for
different lengths of the heating portion. It is observed that the heat transfer rate is increased when the Richardson number
is increased and the length of the heating portion is reduced for Ri = 100; see Fig. 8(a). It is also observed that the heat
transfer rate is very high when the heating portion is reduced and it is placed at the bottom of the hot wall for Ri = 103;
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(d) LH = 1/3, ε2 = 1/6.

(e) LH = 1/3, ε2 = 3/6.

(f) LH = 1/3, ε2 = 5/6.

Fig. 3. (continued)

this is clearly seen in Fig. 8(b). It is noted here that a high heat transfer rate occurs in both cases (Re = 102 & Re = 103) on
keeping the length of the heating portion at LH = 1/3 and placing it at ε2 = 1/6. On comparing these two graphs, it is found
that a better heat transfer rate is obtained by reducing the heating portion length.
In order to find the effect on the heat transfer rate of the location of the heating portion, the average Nusselt number

against Richardson numbers for different locations of the heating portion are depicted in Fig. 9(a)–(b). Both figures show
that the heat transfer rate is increased when the Richardson number is increased. There are fluctuations with Richardson
number when locating the heating portion from the bottom to the top on hot wall; see Fig. 9(a). The heat transfer rate is
enhanced on placing the heating portion at the top of the hot wall for Ri < 1, whereas the heat transfer rate is enhanced on
placing the heating portion at the middle of the hot wall for Ri ≥ 1. That is, in the case of forced convection the top heating
location provides better heat transfer rate, and the middle heating location gives better heat transfer in the case of natural
convection. However, the opposite behavior is observed for Ri = 103 in Fig. 9(b). That is, in the case of forced convection, the
middle heating location provides better heat transfer rate, and the top heating location gives better heat transfer in the case
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of natural convection. It is observed from Fig. 9(a) and (b) that the heat transfer rate is enhanced when the heating location
is at the middle or top of the hot wall depending on the Reynolds number. Comparing Figs. 8 and 9, it is also observed that
the heat transfer rate is enhanced on reducing the heating portion and while the portion is at the middle or top of the hot
wall of the cavity.

5. Conclusion

A numerical study has been performed to analyze mixed convection heat transfer and fluid flow in a lid-driven cavity
with different lengths of the heating portion and different locations of it. There is no considerable change in the flow field
on reducing the heating portion length at Ri = 0.01 and Ri = 1.0. But, in the case of Ri = 100 (natural convection
dominated flow), the flow field depends strongly on theheating location. A steady state is reachedmorequickly in thenatural
convection case than in the forced convection case. The time to reach steady state is very high for the mixed convection
regime. It is found that a better heat transfer rate is obtained on reducing the heating portion length in the hot wall of a
differentially heated cavity. It is observed that the heat transfer rate is enhanced when the heating location is at the middle
or top of the hot wall depending on the Reynolds number. From the above two results, it is concluded that the heat transfer
rate is enhanced on reducing the length of the heating portion and when the portion is at the middle or top of the hot wall
of the cavity.
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