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1. Introduction

   The excessive and unregulated use of pesticides 
in agriculture and public health has caused severe 
environmental pollution and severity of risks to human 
health. There is also a widespread concern about reducing 
the pesticides residues in food grains, meat, vegetables 
and milk[1]. Diazinon [DIA: O,O-diethyl-O-(2-isopropyl-
4-methyl-6-pyrimidinyl) phosphorothionate] is one of 
the organophosphorus insecticides (OPIs) and widely used 
in agriculture and public health throughout the world[2]. 
Previous studies showed that DIA-induced tissues injury 
depends on the increase of oxidative stress and cell 

death[3,4], which can be directly induced by the parent 
pesticide or by toxic oxygenated metabolites. DIA induces 
swelling of mitochondria in hepatocytes[5]. This affects 
mitochondrial membrane transport in rat liver, and disturbs 
cytochrome P450 system in human liver[6]. It causes toxic 
effects on blood cells, spleen, thymus and lymph nodes of 
rats[7] and other organisms[7,8]. 
   Aspirin (acetyl salicylic acid, ASA) represents the prototype 
of non-steroidal anti-inflammatory drugs (NSAIDs) and 
has been widely used as analgesic, antipyretic, and anti-
inflammatory agent in the world[9]. Previous studies reported 
that ASA made beneficial effects by making some changes 
in the antioxidant system and exerted no harmful effects[10-

12] . In contrast, NSAIDs may exert the therapeutic effects 
by chelating various physiologically important metallic 
cations in the body e.g. gastrointestinal irritation, untoward 
and prolonged bleeding, renal function disturbance, skin 
eruptions and otic effects[13]. 
   Free radicals have become an attractive means to explain 
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the toxicity of numerous xenobiotics and some of these 
free radicals interact with various tissue components e.g. 
DNA, protein, lipids, resulting in dysfunction[14,15]. Lipid 
peroxidation (LPO) is one of the molecular mechanisms 
of pesticides toxicity; it can disturb the biochemical and 
physiological functions of red blood cell (RBC)[15]. RBCs are 
highly susceptible to oxidative damage due to the high cell 
concentration of polyunsaturated fatty acid, hemoglobin and 
oxygen, which may produce oxidative changes in RBC. To 
protect itself, RBCs possess effective antioxidative enzyme 
systems e.g. superoxide dismutase (SOD), catalase (CAT) and 
glutathione peroxidase (GPx), which neutralize the reactive 
oxidants into none or less reactive species[15,16]. They give 
protection by directly scavenging superoxide radicals 
and hydrogen peroxide. SOD catalyzes the dismutation of 
superoxide radical (O2

.-) into hydrogen peroxide (H2O2) and 
CAT breaks H2O2 to water and molecular oxygen. GPx reduces 
H2O2 to water by oxidizing two molecules of glutathione (GSH) 
into oxidized glutathione (GSSG). It is known that insecticides 
and drugs may induce metabolic pathways to generate toxic 
metabolites and drug/insecticide interactions can result in 
altered response/toxicity[4,17]. 
   In fact, one area of increasing interest is the study of 
the ability of essential trace mineral to modulate the 
effects of environmental toxicants. In that respect, several 
studies have shown that selenium (Se) was of fundamental 
importance to human health because it is important in 
many biochemicals and physiological processes[18,19]. As a 
constituent of selenoenzyme-GSH-Px, Se plays an antioxidant 
role, it protects cells against damages by free radicals and 
permits regeneration of a membrane lipid molecule through 
reacylation[19]. It plays an important role in antioxidant 
defense systems as well as protects the structure and 
function of proteins, DNA and chromosomes against oxidation 
injury[20,21].
   Although many studies have evaluated the therapeutic 
effect of ASA and the toxic effect of DIA, there is paucity of 
information on the adverse effects of combined exposure to 
NSAIDs “ASA” and OPI “DIA” in LPO and oxidative damage in 
rat erythrocytes and the antioxidant role of Se. So, this study 
amid to investigate the possible effects of ASA and DIA on 
cellular oxidant/antioxidant system in rat erythrocytes and to 
assess the adverse effects of combined exposure to ASA and 
DIA on rat erythrocytes and the antioxidant role of Se.

2. Materials and methods

2.1. Experimental animals 

   Male Wister rats weighing (97依5) g were obtained from the 
Animal Breeding House of the National Research Centre, 
Dokki, Cairo, Egypt, and maintained in clean plastic cages 
in the laboratory animal room at (23依2) °C. The animals 
were fed on a standard laboratory pellet diet and water ad 
libitum. Rats were kept at 12 h light 12 h dark cycles at a 

room temperature of 18-22 °C and acclimatized for 1 week 
prior to the start of experiments. All animal experiments were 
approved by the Animal Care & Experimental Committee, 
National Research Centre, Cairo, Egypt, and international 
guidelines for care and use of laboratory animals. 

2.2. Chemicals 

   ASA (Aspocid® tablets, The Arab Drug Co., Egypt), each 
tablet that contains 75 mg ASA, was purchased from local 
pharmacies. DIA (Nasr-Cidol® 60% EC) was obtained from 
El-Nasr Mediate Chemical Co., Egypt. Sodium selenite 
(Na2SeO3) was purchased from Mallinckrodt. Inc. (Paris, 
France). Thiobarbituric acid (2, 6-dihydroxypyrimidine-2-
thiol; TBA) was obtained from Merck (Germany). The assay 
kits used for biochemical measurements of CAT (EC 1.11.1.6), 
SOD (EC 1.15.1.1) and GPx (EC 1.11.1.9) were purchased from 
Biodiagnostic Company, 29 Tahrir Str., Dokki, Giza, Egypt. All 
other chemicals were of reagent grades and were obtained 
from the local scientific distributors in Egypt.

2.3. Experimental design

2.3.1. Animal treatment schedule
   The animals were randomly divided into eight groups and 
each consists of six rats. DIA, ASA and selenium (sodium 
selenite, Na2SeO3) were prepared in distilled water and given 
via oral route for 28 consecutive d. Animals in Group 1 were 
served as control and given only distilled water (0.5 mL/rat). 
Animals in Group 2 were given Se (Na2SeO3) at a dose of 200 
µg/kg body weight/d[22]. Animals in Group 3 were given DIA at 
a dose of 20 mg/kg body weight[23]. Animals in Group 4 were 
given ASA at a dose of 22.5 mg/kg body weight. The selected 
dose of ASA was corresponded to the maximum administration 
dose of 1 350 mg/personal/day based on the manufacture 
pamphlet. Animals in Group 5 were given simultaneously 
DIA (20 mg/kg body weight) and ASA (22.5 mg/kg body weight). 
Animals were co-administered Se with DIA, ASA and ASA+DIA 
for 5, 6 and 8 Groups, respectively. 

2.3.2. Blood collection and erythrocytes preparation
   At the end of experimental period, blood samples were 
withdrawn from the animals under light ether anaesthesia by 
puncturing the retero-orbital venous plexus of the animals 
with a fine sterilized glass capillary and collected in EDTA 
tubes. Within 10 min of blood collection, the erythrocytes 
were sedimented by centrifugation at 3 500 r/min for 10 min 
at 4 °C, using Hereaeus Labofuge 400R, Kendro Laboratory 
Products GmbH, Germany. The erythrocytes were washed 
for three times (5 mL, each) with cold isotonic saline and the 
buffy coat was discarded. Then, 0.5 mL of the erythrocytes 
suspension was destroyed by osmotic pressure, using the 
same volume of deionized water and centrifugation at 10 000 
x g for 10 min at 4 °C. The supernatant was then obtained and 
stored at -20 °C until measurements within one week.
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2.4. Oxidative stress biomarkers in rat erythrocytes 

   The biochemical measurements, except that of LPO, 
were performed according to the details given in the kit’s 
instructions. The principals below of different methods are 
given for each concerned biochemical parameter.

2.4.1. Determination of antioxidant enzymes activities

2.4.1.1. SOD (EC 1.15.1.1)
   SOD activity in erythrocyte lysate was determined according 
to the method of Nishikimi et al[24]. The method is based 
on the ability of SOD enzyme to inhibit the phenazine 
methosulphate-mediated reduction of nitroblue tetrazolium 
dye. Briefly, 0.05 mL erythrocyte lysate was mixed with 1.0 mL 
buffer (pH 8.5), 0.1 mL nitroblue tetrazolium and 0.1 mL 
NADH. The reaction was initiated by adding 0.01 mL phenazine 
methosulphate, and then increased in absorbance was read at 
560 nm for five minutes. SOD activity was expressed in µmol/
mg protein.

2.4.1.2. CAT (EC 1.11.1.6)
   CAT activity in erythrocyte lysate was determined according 
to the method of Abei[25]. The method is based on the 
decomposition of H2O2 by CAT. The sample which contains 
CAT is incubated in the presence of a known concentration of 
H2O2. After incubation for exactly one minute, the reaction is 
quenched with sodium azide. The amount of H2O2 remaining 
in the reaction mixture is then determined by the oxidative 
coupling reaction of 4-aminophenazone (4-aminoantipyrene, 
AAP) and 3,5-dichloro-2-hydroxybenzenesulfonic acid in the 
presence of H2O2 and catalyzed by horseradish peroxidase. 
The resulting quinoneimine dye [N-(4-antipyrl)-3-chloro-
5-sulfonate-p-benzoquinonemonoimine] is measured at 510 
nm. The CAT activity was expressed in µmol/mg protein.

2.4.1.3. GPx (EC 1.11.1.9)
   GPx was assayed by the method of Paglia and Valentine[26]. 
The activity was measured based on the principle that GSSG 
produced by GPx is reduced at a constant rate by glutathione   
(GSH) reductase with NADPH as a cofactor. The NADPH allows 
the maintenance of predictable levels of reduced GSH. 
The oxidative rate of NADPH was monitored at 340 nm. The 
activity of GPx was measured expressed as nmoles of GSH 
(oxidized/min)/mg protein.

2.4.2. Determination of LPO 
   Malondialdehyde (MDA), as a marker for LPO was 
determined in serum by the double heating method of Draper 
and Hadley with some modifications[27]. The principle of the 
method is based on spectrophotometric measurement of the 
color produced during the reaction of TBA with MDA. For this 
purpose, 2.5 mL of 100 g/L trichloroacetic acid solution was 
added into 0.5 mL serum in a centrifuge tube and placed in a 
boiling water bath for 15 min. After cooling under tap water, 
the mixture was centrifuged at 600 g for 10 min, and 2 mL of 

the supernatant was transferred into a test tube containing 1 
mL of 6.7 g/L TBA solution and placed again in a boiling water 
bath for 15 min. The solution was then cooled under tap water 
and its absorbance was measured spectrophotometrically at 
532 nm. The concentration of MDA was calculated using the 
follow equation MDA (nmoL/mL)=[(Absorbance of sample/
Absorbance of standard)伊100].

2.5. Protein concentration

   Protein concentrations in the hemolysates were determined 
spectrophotometrically based on the colorimetric biuret 
method by standard kits according to Bradford[28]. 

2.6. Spectrophotometric measurements

   The spectrophotometric measurements were performed by 
using a Shimadzu UV-VIS Recording 2401 PC (Japan).

2.7. Statistical analysis 

   The results were expressed as means依SE. All data were 
done with the Statistical Package for Social Sciences (SPSS 
17.0 for windows). The results were analyzed using One way 
analysis of variance (ANOVA) followed by Duncan’s test for 
comparison between different treatment groups. Statistical 
significance was set at P ≤0.05.

3. Results 

   Our results revealed that DIA, ASA and DIA+ASA caused a 
statistically significant decrease (P≤0.05) in SOD activity 
in rat erythrocytes (Figure 1). Compared to the control 
value, the change in SOD activity accounted to -29.39%, 
-20.61% and -43.42% of DIA, ASA and DIA+ASA-treatment, 
respectively. Supplementation of Se modulated SOD 
activity and the change accounted to -11.89 %, -3.95% and 
-14.47% of DIA, ASA and DIA+ASA-treatment, respectively.
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Figure 1. SOD activity in erythrocytes of male rats exposed to DIA, ASA, Se 
and their combination. 
Values are expressed as mean依SE (n=6). Values not sharing the same 
superscripts letters differ significantly at P≤0.05.

   Administration of DIA, ASA and ASA+DIA led to 
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significant decreases (P≤0.05) in the activities of CAT 
enzyme when compared to the control group (Figure 2). 
The most influence and decreases in the activities of the 
aforementioned enzyme was observed in the treatments 
of ASA+DIA by -30.53%. Compared to control values, co-
administration of Se mitigated the significant decreases 
of CAT activity in DIA (-9.04%), ASA (-4.78%) and DIA+ASA 
(-15.36%), respectively.
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Figure 2. CAT activity in erythrocytes of male rats exposed to DIA, ASA, Se 
and their combination. 
Values are expressed as mean依SE (n=6). Values not sharing the same 
superscripts letters differ significantly at P≤0.05.

   Figure 3 shows that DIA, ASA and DIA+ASA caused 
significant decrease in GPx activity in erythrocytes of 
rats and the change accounted to -38.35%, -17.37% and 
-48.31%, respectively. In contrast, Se with DIA and ASA-
treated animals retained the levels of GPx at the normal 
values and the change accounted to -6.99% and 2.33%, 
respectively. 
  MDA level in DIA, ASA and DIA+ASA treatments were 
significantly (P≤0.05) higher than that in control group 
and the change accounted to 61.80%, 20.79% and 105.62%, 
respectively (Figure 4). Co-administration of Se to DIA and 
ASA-treated rats retained the levels of MDA at the normal 
values and the change accounted to 4.49% and 3.93%, 
respectively. Treatment with Se alone did not result in 
significant alteration in SOD, CAT and GPx activity and 
MDA level compared to control treatment.
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Figure 3. GPx activity in erythrocytes of male rats exposed to DIA, ASA, Se 
and their combination. 
Values are expressed as mean依SE (n=6). Values not sharing the same 
superscripts letters differ significantly at P≤0.05.
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Figure 4. MDA levels in erythrocytes of male rats exposed to DIA, ASA, Se 
and their combination. 
Values are expressed as mean依SE (n=6). Values not sharing the same 
superscripts letters differ significantly at P≤0.05.

4. Discussion 

   Free radicals and reactive oxygen species are toxic to 
biological system, the toxicity is related in particular to 
hydroxyl radical, which in turn, can react with the molecular 
components of the cell and generates second radicals that 
interact with other molecules to continue the radical chain 
reaction. Free radicals have become an attractive means to 
explain the toxicity of several xenobiotics e.g. pesticides 
and drugs[4,15,16]. Previous studies reported that free radicals 
interact with various cells components (e.g. DNA, protein, 
lipids), resulting in modifications and loss of function[4,15,29]. 
It can disturb the biochemical and physiological functions 
of RBC[15], cause LPO and result in membrane fluidity[29]. 
RBCs are highly susceptible to oxidative damage due to 
the high cell concentration of polyunsaturated fatty acid, 
hemoglobin and oxygen, which may produce oxidative 
changes in RBC. To protect itself, RBCs possess effective 
antioxidative enzyme systems e.g. SOD, CAT and GPx, which 
neutralize the reactive oxidants into none or less reactive 
species[15,31].
   In fact, SOD, CAT and GPx are antioxidant enzymes 
that function as blockers of free radical process[32]. SOD 
destroys the free radical superoxide (O2

.-) by converting it 
to hydrogen peroxide (H2O2) that can in turn be destroyed 
by CAT or GPx reactions to water and molecular oxygen. The 
results of the present work have shown that DIA, ASA and 
DIA+ASA could decrease SOD activity in rat erythrocytes. The 
decrease in SOD activity accounted to -29.39%, -20.61% and 
-43.42% and Se restored SOD activity to -11.89 %, -3.95% and 
-14.47% of DIA, ASA and DIA+ASA-treatment, respectively. 
The decrease in SOD activity in treated rats may be due to 
the use of this enzyme in converting the O2

.- to H2O. Peixoto 
et al.[33] showed that xenobiotics (e.g. pesticide) can induce 
mitochondria O2

.- production and if additionally SOD was 
inhibited the amount of O2

.- formed in cell could make 
hazardous levels.
   CAT (hydrogen peroxide oxidoreductase, EC 1.11.1.6) is 
ubiquitously present in a wide range of aerobic cell types, 
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with the highest activities in mammals’s liver, kidney 
and RBC[34]. Even though CAT is not essential for some 
cells type under normal conditions, it plays an important 
role in the acquisition of tolerance to oxidative stress in 
the adaptive response of cells[35]. It is found as a soluble 
protein in erythrocytes, where it may protect hemoglobin 
from peroxidation[29]. In the present study, rats treated 
with DIA, ASA and ASA+DIA showed significant decreases 
in CAT activity and the most influence and decreases were 
observed in ASA+DIA-treatments (-30.53%). Compared to the 
controls, co-administration of Se mitigated the significant 
decreases of CAT activity in DIA (-9.04%), ASA (-4.78%) 
and DIA+ASA (-15.36%), respectively. Some studies have 
indicated that superoxide radicals are potent inhibitors 
of CAT[36], and the increased H2O2 resulting from CAT 
inhibition could finally inhibit SOD activity. This indicates 
the rate of free radicals formation[37]. The increase of CAT 
activity following Se treatment may be due to the decrease 
of superoxide radicals as the result of increasing the 
selenoenzyme-GPx. 
   The selenoenzyme-GSH-Px (e.g., GPx, EC 1.11.1.1.9), 
catalyze the reduction of a variety of hydroperoxides 
(ROOH and H2O2) using GSH, thus protecting animals cells 
against oxidative damage[38]. Although GPx shares the 
substrate, H2O2, with CAT, it can react effectively with lipid 
and other organic hydroperoxides alone[39]. Results in the 
present study showed that DIA, ASA and DIA+ASA caused 
significant decrease in GPx activity in rat erythrocytes and 
co-administration of Se retained the levels of GPx at the 
normal values. The decrease of GPx activity induced by 
DIA and/or ASA may be attributable to a direct inhibitory 
oxidative effect on the enzyme. The inhibition of GPx by ASA 
may result in the accumulation of H2O2 with subsequent 
oxidation of the lipids. In fact, the GSH redox cycle is a 
major source of protection against low levels of oxidant 
stress, whereas CAT becomes more significant in protecting 
against severe oxidant stress[39]. In animals cells, especially 
in human erythrocytes, the principal antioxidant enzyme 
for the detoxification of H2O2 has been considered to be GPx 
for a long time, as CAT has much lower affinity for H2O2 than 
GPx[40]. However, reduction of antioxidant enzyme activity 
could be caused by a direct effect on the enzyme by DIA-
induced reactive oxygen species generation, depletion of 
the enzyme substrates and down-regulation of transcription 
and translation processes[41].
   MDA is a major oxidation product of peroxidized 
polyunsaturated fatty acids and increased MDA content is 
an important indicator of LPO[42]. It has been suggested as 
one of the molecular mechanisms involved in xenobiotics 
(e.g. pesticides) that induced toxicity[15,16]. In fact, normal 
RBCs function depends on the intactness of the erythrocyte 
membrane, which is the target for many toxic, including the 
OPIs[15,43]. Our results revealed that DIA, ASA and DIA+ASA 
treatments induced significantly in increased MDA level 
and the change accounted to 61.80%, 20.79% and 105.62%, 
respectively. Co-administration of Se retained these levels 
of MDA at the normal values and the change accounted to 
4.49% and 3.93%, respectively. 
   OPIs induce oxidative stress, which play an essential 

role in its induced toxicity in rats[4,15,16], in mice[41], in 
human[44] and in vitro study[45,46]. Previous studies[3,4,47] 

reported that DIA-induced tissues injury initially depends 
on the development of oxidative stress and cell death, 
which can be directly induced by the parent pesticide or 
by toxic oxygenated metabolites. It has been reported that 
DIA induced erythrocyte LPO and changed the activities of 
antioxidant enzymes in vitro[48]. 
   In a previous study, ASA was reported to cause LPO and 
change antioxidant enzyme activities in erythrocytes and 
liver samples of rats[49]. Nair et al.[50] reported that ASA 
(40 mg/kg) caused significant decrease in the activity of 
reduced GSH, SOD, glutathione-s-transferase and CAT 
activities in intestine and colon of female rats. It impairs 
the antioxidant system resulting in worsening the clinic 
symptoms and prognosis of the disease[51,52]. Galunska et 
al.[52] showed that administration of ASA (300 mg/kg) to rats 
induced gastric mucosal damage, which was accompanied 
by the development of oxidative stress, evidenced by the 
accumulation of MDA and concomitanted initial activation 
of cell antioxidant defenses. GPx and SOD were inhibited 
in male C57 BL/6 mice feed with diet contain ASA (1%, w/w) 
for two weeks[51]. It has been reported that normal dose 
ASA [approximately (10 mg/kg per day for 30 d] may cause 
peroxidation in the human erythrocytes due to its oxidant 
potential[53]. ASA at concentration of 5.0 mmol/L inhibited 
the activity of antioxidant enzymes (e.g. SOD and CAT) in rat 
liver homogenate and erythrocytes in vitro[54]. It changes 
oxygen free-radical metabolism (e.g. SOD, CAT, GPx) in liver 
and kidney of rats[55]. The mechanism of how ASA impairs 
the antioxidant system is not clear, it may be due to the 
decreased levels of trace elements (selenium, zinc, etc.), 
which functioning as cofactors of antioxidant enzymes[56,57]. 
Supporting this hypothesis is the increase in the antioxidant 
enzyme levels with trace element supplementation during 
long-term treatment[58]. In addition, co-administration of 
free radical scavengers, such as the antioxidants, vitamin 
E[59] and vitamin C[60] with ASA results in markedly less 
gastric mucosal damage compared with ASA alone[61]. These 
results indicated that oxygen radicals are generated in 
the development of ASA-induced damage to the mucous, 
parietals and endothelial cells.
   The mechanisms of protective action of Se against 
oxidative damage induced by DIA and/or ASA could 
be explained by stimulating free radical scavenging 
antioxidant enzymes activities, e.g. SOD, CAT and GPx. This 
might be coupled with the ability of antioxidants such as 
N-acetyl cysteine and stimulated several antioxidative 
enzymes against damages from free radicals insult[62,63]. Se 
increased antioxidant capacity in the cells by the increased 
activity of GSH reductase which enhances the availability 
of GSH “one of the most intrinsic antioxidants that prevents 
cell damage”[63]. 
   It can be concluded that DIA and ASA induced oxidative 
stress and lipid peroxidation in rat erythrocytes. The 
results revealed the pronounced ameliorating effect of Se in 
DIA and ASA intoxicated rats. We supposed that antioxidant 
supplementation may be beneficial for the people using 
ASA for longer periods and exposure to pesticides.
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