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We investigated the limits at which blur due to defocus, crossed-cylinder astigmatism, and trefoil became
noticeable, troublesome or objectionable. Black letter targets (0.1, 0.35 and 0.6 logMAR) were presented
on white backgrounds. Subjects were cyclopleged and had effectively 5 mm pupils. Blur was induced
with a deformable, adaptive-optics mirror operating under open-loop conditions. Mean defocus blur lim-
its of six subjects with uncorrected intrinsic higher-order ocular aberrations ranged from 0.18 ± 0.08 D
(noticeable blur criterion, 0.1 logMAR) to 1.01 ± 0.27 D (objectionable blur criterion, 0.6 logMAR).
Crossed-cylinder astigmatic blur limits were approximately 90% of those for defocus, but with consider-
able meridional influences. In two of the subjects, the intrinsic aberrations of the eye were subsequently
corrected before the defocus and astigmatic blur were added. This resulted in only minor reductions in
their blur limits. When assessed with trefoil blur and corrected intrinsic ocular aberrations, the ratio of
objectionable to noticeable blur limits in these two subjects was much higher for trefoil (3.5) than for
defocus (2.5) and astigmatism (2.2).

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The question of the extent to which the retinal image may be
degraded by defocus or aberration before it starts to appear to be
noticeably blurred is of great importance for our understanding
of the basic processes of vision, for the design of visual instru-
ments, corrective lenses and other visual aids, and for the out-
comes of refractive surgery.

There have been many reports of subjective depth-of-focus for
spherical blur (Atchison, Charman, & Woods, 1997; Atchison, Fish-
er, Pedersen, & Ridall, 2005; Atchison, Guo, & Fisher, 2009; Camp-
bell, 1957; Campbell & Westheimer, 1958; Charman & Whitefoot,
1977; Ciuffreda et al., 2006; Jacobs, Smith, & Chan, 1989; Ogle &
Schwartz, 1959; Plakitsi & Charman, 1993; Tucker & Charman,
1986; Walsh & Charman, 1988; Wang & Ciuffreda, 2005; Wang &
Ciuffreda 2006; Wang, Ciuffreda, & Irish, 2006), but few of subjec-
tive limits for astigmatism or for other monochromatic
aberrations.

In two pioneering studies, Burton and Haig (1984) and Haig and
Burton (1987) asked subjects to compare quasi-monochromatic
computerised images on a video-monitor, one image being aber-
rated by different amounts of Seidel aberrations, the other being
affected only by diffraction. They determined the aberrations cor-
responding to just noticeable differences in image quality when
ll rights reserved.

son).
subjects viewed the targets through 2 mm pupils, where the eye’s
monochromatic aberrations had negligible effect and only diffrac-
tion degraded the retinal image of the targets. To compensate for
this further stage of diffraction, inverse filtering was applied to
the computer images to ensure that the retinal images were those
required, i.e. those experienced by an aberration-free eye with a
2 mm pupil and those with the additional aberration. Across sub-
jects and in their two studies, the authors determined 75% thresh-
olds of about 0.11, 0.11, 0.15 and 0.23 lm for the Seidel coefficients
for defocus, spherical aberration, astigmatism and coma, respec-
tively. Converted to longitudinal values, the limits for astigmatism
as cylinders were about 1.4 times greater than those for defocus
blur (0.32 DC compared with 0.23 D). Using a broadly similar
method, Legras, Chateau, and Charman (2004) found that, in diop-
tric terms, the cross-cylinder blur limit was about 1.25 times the
limit for defocus.

Clinical data on the relative effects of spherical and cylindrical
errors on visual acuity can also be used to predict the likely effects
of astigmatism on blur limits, although this must be done with
caution, since such visual acuity data are not directly concerned
with just-detectable decrements in the clarity of images. A further
complication is that the effects of cylinder on acuity measured
with letter targets are known to vary with the axis of the cylinder
and the form of the particular letter (Rabbetts, 2007).

Sloan (1951) determined the relationship between visual acuity
and ametropia, based on clinical studies (Crawford, Shagass, & Pas-
hby, 1945; Kempf, Collins, & Jarman, 1928) and found that cylindrical
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Fig. 1. Experimental system. See text for details.
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errors reduce visual acuity at 0.8 the rate for spherical errors. Using
Pincus’ (1946) data of visual acuity versus refraction for military
recruits, but omitting hypermetropic and compound hypermetro-
pic astigmatism, Raasch (1995) found that pure cylindrical errors
C reduce visual acuity at about 0.7 the rate for spherical errors,
slightly lower than the factor given by Sloan (Sloan, 1951). If these
results could be transferred to blur limits, then the limits for cylin-
drical errors should be about 1.3 times greater than those for
spherical errors of the same magnitude.

Note here that corrections are often considered in terms of
mean sphere M and crossed-cylinder astigmatic components J180

and J45 (Thibos, Wheeler, & Horner, 1997) where

M ¼ Sþ C=2; J180 ¼ �½C cosð2hÞ�=2; J45 ¼ �½C sinð2hÞ�=2

In these equations, S and C are again sphere and cylinder errors,
and h is the cylinder axis. In the geometrical optics approximation,
the sizes of the blur circle produced by 1 D of M, J180, or J45 are the
same, and hence they are likely to have similar effect on visual acu-
ity. However, if the effects of diffraction are allowed for, both the
point-spread function and the modulation transfer functions for
astigmatism vary with orientation, whereas those for spherical
defocus do not (Charman & Voisin, 1993).

There has been some recent work on the effect of individual and
combined aberrations on visual acuity and contrast sensitivity.
Applegate, Ballentine, Gross, Sarver, and Sarver (2003) and Apple-
gate, Marsack, Ramos, and Sarver (2003) had three well-corrected
subjects with small pupils determine visual acuity using letter
charts which were pre-distorted as if they were viewed by aber-
rated eyes. Different Zernike aberrations with coefficients of the
same magnitude had different effects on the visual acuity simula-
tion, with aberrations of small or no orientation dependence hav-
ing greater effects than those of higher orientation dependence.
In dioptric terms, ratios of visual acuity loss with astigmatism com-
pared to defocus were 1.1 and 0.8 for high- and low-contrast let-
ters, respectively (Applegate, Ballentine, et al., 2003), and 0.8 for
high-contrast letters (Applegate, Marsack, et al., 2003). Further-
more, depending upon sign and type, different aberrations could
combine to improve visual acuity beyond that achievable with sin-
gle aberrations having the same root-mean-square (rms) wave-
front error as the combination. Rocha, Vabre, Harms, Chateau,
and Krueger (2007) also investigated the influence of different
aberrations on vision. These were simulated with an adaptive op-
tics system that initially compensated for the aberrations of the
subjects’ eyes. For 5 mm pupils, individual second, third and
fourth-order Zernike rms aberrations of 0.3 lm all reduced Landolt
C visual acuity by about 0.15 logMAR relative to the fully corrected
state, but for aberrations of 0.9 lm, spherical aberration and defo-
cus produced greater losses (0.6 logMAR) than did oblique astig-
matism (0.39 logMAR), oblique coma (0.34 logMAR) and oblique
trefoil (0.23 logMAR).

Several other studies (Piers, Fernandez, Manzanera, Norrby, &
Artal, 2004; Piers, Manzanera, Prieto, Gorceix, & Artal, 2007; Guo,
Atchison, & Birt, 2008; Atchison et al., 2009) have explored the ef-
fect on through-focus visual performance of eliminating one or
more of the eye’s normal aberrations and have found greater rates
of loss of visual acuity and contrast sensitivity away from best fo-
cus and small decreases in the corresponding blur limits.

Although information on the relationship between aberration
levels and through-focus visual acuity is useful, what is more
important for many practical purposes such as spectacle lens toler-
ances is the level of additional aberration at which an individual
with normal inherent levels of higher-order ocular aberration be-
comes aware of the blur due to the extra aberration. This report de-
scribes an investigation, using adaptive optics, into the subjective
blur limits of a small group of subjects when the aberrational blur
was produced by crossed-cylinder astigmatism. In contrast to ear-
lier laboratory studies, which were confined to cylinders or cross-
cylinders with either vertical or horizontal axes, the effect of
changing axis orientation was also explored. Since blur limits de-
pend upon the criterion used to assess the blur, the study used
three different criteria as employed in earlier work (Atchison
et al., 2005, 2009). The blur limits for astigmatism were also com-
pared with those for defocus. Extensions to the present investiga-
tion included determining the effect of correcting the inherent
higher-order aberrations of the eye on the blur limits for defocus
and astigmatism, with orientation varied for astigmatism. Blur lim-
its were also measured for third-order trefoil after correction of all
other intrinsic ocular aberrations.

2. Methods

2.1. Subjects

This study followed the tenets of the declaration of Helsinki and
received ethical clearance from the Queensland University of Tech-
nology’s Human Research Ethics Committee.

There were six subjects in good ocular and general health, five
of whom were used in a previous study of defocus blur limits
(Atchison et al., 2005). Data from the previous study are not pre-
sented here. Age range was 24–70 years (mean 31 ± 10 years). Only
right eyes were used. One subject was myopic (refraction �2.25 D)
and the other subjects were emmetropic (subjective refractions
�0.25 D to +0.75 D). Subjects had 60.25 D cylinder by subjective
refraction and corrected visual acuities of at least 6/6. Subjects
were cyclopleged with 1% cyclopentolate, applied every hour. Pu-
pils were dilated to at least 6 mm; for one subject, this required
an additional drop of 2.5% phenylephrine at the start of each ses-
sion. All six subjects took part in an experiment measuring defocus
and astigmatic limits without any correction for the higher-order
aberrations of their eyes. Two of the subjects, DAA and WNC,
underwent further experiments measuring defocus, astigmatism
and trefoil blur limits when their intrinsic higher-order ocular
aberrations were corrected. All sessions were conducted with
5.0 mm pupils.

2.2. Apparatus

The apparatus was the same as that described in detail by Atch-
ison et al. (2009) (Fig. 1). A 543 nm He–Ne laser was used for cal-
ibration purposes. Radiation was provided by a superluminescent
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diode (Hamamatsu Photonics, 830 nm, FWHM 25 nm) with 14 lW
irradiance at the cornea, 50 times lower than the Australian/New
Zealand laser safety standard limits (Standards Australia, 2004).
The pupil position was monitored and realigned as necessary using
infrared illumination and images from a Pixelink Pl-A741 firewire
camera displayed on a computer monitor. The eye pupil was also
imaged onto the surface of an ImagineEyes Mirao52 deformable
mirror and onto the microlens array of a HASO 32 Hartmann–
Shack sensor. An optical trombone arrangement, consisting of a
set of fixed right-angle mirrors and a set of movable right-angle
mirrors, between the pupil and the mirror varied defocus indepen-
dent of the mirror (precision 0.1 mm/0.0088 D). The radiation re-
flected from the subject’s fundus was imaged onto the camera of
the Hartmann–Shack sensor.

Polychromatic (black on white) stimuli were provided by a
white OLED microdisplay (eMagin Corporation) with a background
luminance of approximately 60 cd/m2. This was seen by subjects
through a Badal lens and a 2.5 mm stop A that was conjugate with
the eye pupil and provided the effective 5.0 mm pupil size. Stimuli
consisted of three 99% Weber-contrast black letters selected from
the 10 letters (D, E, F, H, N, P, R, U, V, Z; non-serif, 5 � 4 matrix, let-
ter spacing equal to letter width) found on Bailey–Lovie charts
(Bailey & Lovie, 1976). Three target sizes were used, with detail
of 0.1, 0.35 and 0.6 logMAR (approximately 6/7.5, 6/13 and 6/24
Snellen, respectively). Five presentations were made at each letter
size, with a random selection of three letters for any presentation.

2.3. Procedures and instructions

Three different blur criteria were used in the study. Subjects
determined ‘‘clear”, ‘‘noticeable” blur, ‘‘troublesome” blur and
‘‘objectionable” blur positions by rotating a knob on a control
box to alter the shape of the deformable mirror in open-loop mode.
The use of the method of adjustment with manual knob has some
shortcomings, but we have argued previously that the approach is
valid and reasonable for this type of experiment, particularly for
exploring a number of parameters in a short time (Atchison
et al., 2005).

As previously described (Atchison et al., 2005, 2009) subjects
were given an explanation of the nature of the task to be per-
formed regarding the different blur criteria:

‘‘In this experiment we want you to turn the knob to find the fol-
lowing three levels of blur. . .

First Noticeable/Just Noticeable blur: This is the knob position
where you first notice a change in the crispness and sharpness of
the letters, but the letters should still be clear enough to read.

Just troublesome blur: This is the knob position at which you first
start to be troubled by the lack of clarity of the target. You should
still be able to read the letters.

Just objectionable blur: This is the level of blur at which you
would refuse to tolerate on a full time basis. The blur has just
reached a point at which it is unacceptable; you may or may not
be able to read the chart.”

Limits for defocus blur were measured for comparison with the
astigmatism blur-limit data. For defocus, M, the control knob was
rotated in both the clockwise and the anticlockwise directions to
induce hypermetropic and myopic blur respectively.When estab-
lishing the blur limits for crossed-cylinder astigmatism, J, 8 semi-
meridians encompassing 180� were used. Different procedures
were adopted depending on the meridians. For oblique and regular
astigmatism (Zernike terms Z�2

2 and Z2
2) the knob could be rotated

in both clockwise and anticlockwise directions. For regular astig-
matism, clockwise rotation produced astigmatism in which the
aberration was maximally negative along the horizontal meridian
and maximally positive along the vertical meridian, and anticlock-
wise rotation produced astigmatism in which the signs of the aber-
rations were reversed from this. To be consistent with the ANSI/ISO
standards on wavefront convention in ophthalmic optics (Ameri-
can National Standards Institute, 2004; International Standards
Organisation, 2008), we used absolute values for the astigmatism
coefficient C2

2 and assigned the 0� meridian for the anticlockwise
rotation and the 90� meridian for clockwise rotation. A similar ef-
fect occurred for oblique astigmatism, except that here the 45�
meridian coincided with the anticlockwise rotation and the 135�
meridian coincided with clockwise rotation. For any other merid-
ian, there was a combination of the two Zernike aberrations, and
it was possible to rotate in only the clockwise direction. We pro-
duced angles of 22.5�, 67.5�, 112.5� and 157.5�. The order of merid-
ians was 0� and 90�, 45� and 135�, 22.5�, 67.5�, 157.5� and 112.5�.

For two of the subjects, blur limits were also measured for astig-
matism and defocus after correction of all other intrinsic ocular
aberrations. Additionally, blur limits were measured for third-or-
der trefoil after correction of all other intrinsic ocular aberrations.
Blur limits for this aberration were assessed in broadly the same
way as those for astigmatism, but now the angles were, in order,
0� and 60�, 30� and 90�, 15�, 45�, 105� and 75� (i.e. a 120� range,
as trefoil repeats every 120�).

The step size for the three aberration types at 5.7 mm pupil
diameter was 0.1 lm specified in the ‘‘fringe” system, in which
normalisation terms are not included in Zernike polynomials. To
put this into the ANSI/ISO system, the coefficient must be divided
by the relevant normalisation term (Atchison, 2004). Each step cor-
responded to a 15� turn of the knob. For the 5.0 mm pupil used for
viewing the targets, the step size in the ANSI/ISO system was
approximately 0.044 lm (equivalent to 0.049 D) for defocus,
0.031 lm for astigmatism (0.025 D) and 0.024 lm for trefoil.

At the start of each session, the mirror was turned on. Using the
calibration laser with the feedback of the Hartmann–Shack sensor,
the operator drove the mirror to minimise the system’s aberrations
(rms < 0.026 lm for 5 mm pupil size). After at least 20 min and
checking with a hand optometer that the subject had minimal
residual accommodation, he/she was aligned carefully in the appa-
ratus with the help of a bitebar. The operator moved the optical
trombone until the Zernike defocus coefficient C0

2 was within
±0.05 lm. The subject’s wavefront aberrations were measured.
The operator adjusted the mirror to reduce the Zernike second-or-
der astigmatism coefficients to within ±0.05 lm and generally to
within ±0.03 lm (5 mm pupil). Residual aberrations were deter-
mined. Next, the subject determined a ‘‘best-focus” position by
moving the optical trombone backwards and forwards for six set-
tings. The mean of these was taken as the position at which the
trombone was set for the session. The subject altered blur by rotat-
ing the knob in one direction to determine ‘‘noticeable”, ‘‘trouble-
some” and ‘‘objectionable” blur positions. The operator reset the
mirror defocus to the ‘‘best-focus” position and the subject made
determinations in the opposite direction. The operator would al-
ways remind the subject of the overall direction he/she should ro-
tate the knob and the blur criterion to be used. The orders of initial
direction and letter size were randomised. Each letter size was pre-
sented five times and limits for the blur criteria were recorded.

After measurements were taken, the operator checked the
residual aberrations after resetting the mirror to the ‘‘best-focus”
position.

The procedure for astigmatism and trefoil was almost the same
as for defocus, except that, as described above, for some meridians
measurements could only be made with a clockwise rotation of the
knob. For two subjects, defocus and astigmatism blur limits were
also determined following minimisation of higher-order aberra-
tions. For this situation, and also during the determination of the
trefoil blur limits for these two subjects, rather than the operator
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manually adjusting the mirror to reduce astigmatism coefficients,
all aberrations other than defocus were minimised at 830 nm.
2.4. Calibration

At the end of each subject’s session, calibrations of the mirror
were made to convert mirror settings to wave and longitudinal
aberrations. The subject was removed from the apparatus, the
superluminescent diode was turned off, and the calibration laser
was turned on. For the aberration of interest (and meridian for
astigmatism and trefoil), the mirror was varied in 0.3–1.0 lm Zer-
nike fringe steps to cover the range of subject settings. For each
mirror setting, all aberrations were measured with the wavefront
sensor according to the ANSI/ISO aberration standards (American
National Standards Institute, 2004; International Standards Orga-
nisation, 2008). A quadratic fit was then made for the aberration
of interest. In all cases, the second-order term was small compared
to the linear term. The calibration was different for each subject
and aberration, since the mirror initially has to correct either the
subject’s astigmatism alone or their astigmatism combined with
all higher-order aberrations. The nature of these individual aberra-
tions affects the ability of the mirror to faithfully change its shape
to alter a particular aberration without accompanying change in
other aberrations.
2.5. Analysis

The Zernike aberration coefficients for astigmatism and trefoil
were converted to magnitude and axis format (American National
Standards Institute, 2004; International Standards Organisation,
2008) using

Cnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC�m

n Þ
2 þ ðCm

n Þ
2

q
; anm ¼ arctanðC�m

n =Cm
n Þ=jmj

where for astigmatism n = 2 and m = 2, and for trefoil n = 3 and
m = 3.

When analysing the data, the measurements of second-order
Zernike aberration coefficients were converted to dioptres for defo-
cus M and astigmatism J by multiplying by 1.11 and 0.78 according
to the formulae

M ¼ 4
ffiffiffi
3
p

C0
2

R2 ; J ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 C�2

2

� �2
þ C2

2

� �2
� �s

R2 ¼ 2
ffiffiffi
6
p

C22

R2

where C0
2 is the defocus Zernike coefficient (lm), C�2

2 and C2
2 are the

astigmatism Zernike coefficients (lm) and R is the pupil semi-diam-
eter in mm (2.5 mm). To help in interpretation of later plots involv-
ing astigmatism, we note that a conventional crossed-cylinder
astigmatic blur of y/�2y � a22 in magnitude and axis format is
A = y, a22, e.g. +1.0/�2.0 � 180 gives 1.00, 180 and +1.0/�2.0 � 90
gives 1.00, 90.

For each subject, direction of blur (for defocus) or meridian, blur
limit criterion, and letter size, the five measurements were aver-
aged. For defocus, the dioptric equivalents were shifted so that
the midpoints of the noticeable limits in the two directions were
zero.

For defocus, an analysis of variance was conducted on blur lim-
its with subjects as repeated measures, and with blur direction,
blur criterion, and letter size as within-subject factors. For astigma-
tism, an analysis of variance was conducted on blur limits with
subjects as repeated measures, and meridian, blur criterion, and
letter size as within-subject factors. For both analyses, a Green-
house–Geisser correction was used where Mauchly’s test of sphe-
ricity was significant for the within-subjects factors.
3. Results

3.1. Residual aberrations

Table 1 shows subjects’ residual wavefront aberrations for
5 mm pupils. The root-mean-square (rms) values are the values
obtained when astigmatism was reduced to near zero with the
adaptive-optics mirror, and defocus ignored (i.e. they include only
higher-order aberrations and any residual uncorrected second-or-
der astigmatism). Where individual aberrations had rms values
>0.1 lm, the coefficients are given. Aberration levels appear to be
typical of those for normal subjects with the pupil sizes and ages
involved, e.g. Applegate, Donnelly, Marsack, Koenig, and Pesudovs
(2007). For the two subjects for whom full adaptive-optics correc-
tions were used, residual aberrations at the start of sessions were
reduced to 0.05–0.06 lm (DAA) and 0.06–0.08 lm (WNC). Residual
aberrations by the end of sessions had increased to 0.06–0.07 lm
and 0.10–0.12 lm for these two subjects, the increases of 20–
100%, reflecting real changes in aberrations over the session and
minor changes in head/eye position.
3.2. Calibrations

Fig. 2 shows calibration curves for subject DAA when (a) astig-
matism and (b) trefoil were manipulated along particular meridi-
ans. Fits in each case are quadratic. The astigmatism plot (left
panel) shows that the astigmatism introduced effectively changed
in a linear way with the mirror setting. The plot also shows that the
astigmatism changes were accompanied by very small changes in
defocus: the latter varied by only 0.03 lm across the range of astig-
matism settings. Changing the astigmatism setting introduced
negligible amounts of other aberrations (<0.1 lm variation, not
shown). The fit for this figure is representative of the astigmatism
for all subjects, both without and with adaptive-optics correction.
The trefoil plot (right panel, Fig. 2) shows that although the trefoil
mirror setting introduced linear changes in the trefoil there was
also some accompanying variation in astigmatism for this subject,
with the change in astigmatism being 15% of the change in trefoil.
Although undesirable, we considered this to be small enough to al-
low evaluation of the trefoil blur limits. The other subject for
whom trefoil was measured showed a change in astigmatism
<1% of the change in trefoil. Changing the trefoil setting introduced
negligible amounts of other aberrations for both subjects (not
shown).
3.3. Defocus versus astigmatism

Fig. 3 shows the group mean blur limits at each letter size for
defocus (solid symbols) and astigmatism (open symbols) as a func-
tion of astigmatic meridian. Each individual panel shows the limits
for 0.6 (top), 0.35 (middle) and 0.1 (bottom) logMAR letter sizes.
The three panels show noticeable blur limits (top), troublesome
blur limits (middle) and objectionable blur limits (bottom). Note
the different vertical scales used in the panels. The defocus is the
average of positive and negative values.

Mean blur limits and their 95% confidence limits for defocus for
the group ranged from 0.18 ± 0.08 D (just noticeable, 0.1 logMAR)
to 1.01 ± 0.27 D (objectionable, 0.6 logMAR). Across the range of
subjects and meridians, the ratio of astigmatism blur limits to
defocus blur limits varied between 0.83 and 0.95 for various com-
binations of letter sizes and blur limits, with a mean and its 95%
confidence limits of 0.90 ± 0.04. Disregarding meridional variation,
this indicates that astigmatism has slightly more subjective blur-
ring effect than does defocus of the same magnitude.



Table 1
Total residual root-mean-square (rms) wave aberrations and major individual aberrations (microns) for each subject for 5 mm pupils (only aberrations >0.1 lm are listed). For
each eye, astigmatism has been corrected and defocus has been set to zero.

Subject Rms aberrations (lm) Major individual aberrations and their coefficients (lm)

DAA 0.16 Spherical aberration +0.12
CO 0.27 Horizontal coma +0.17, vertical coma �0.13, spherical aberration +0.14
EM 0.25 Trefoil �0.11, oblique trefoil �0.18
PG 0.18 Spherical aberration +0.13
AM 0.22 Trefoil �0.18
WNC 0.23 Horizontal coma +0.16, vertical coma �0.11

a b

Fig. 2. Main changes in aberration coefficients with change in mirror setting for subject DAA for (a) astigmatism with instrument meridian 67.5�, and (b) trefoil with
instrument meridian 45�. Note that coefficients are not zero at the zero mirror setting; this is because of adjustments of the system to correct the subject’s aberrations, either
with the optical trombone (defocus) or with the mirror (astigmatism, trefoil).
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3.4. Effect of meridian on astigmatism blur limits

Meridian had a significant effect on the subject group blur limits
(F2.8,14.0 = 4.4, p = 0.024). Within-subjects contrast testing showed
that the limits for 90� were significantly less than those for 67.5�,
22.5�, 157.5� and 0�, the limits for 112.5� were significantly smaller
than those for 157.5� and 0� and the limits for 45� and 135� were
significantly smaller than those for 0�. Relative to the results for
the 90� meridian, these effects amount to considerable mean in-
creases, averaged across all letter sizes and criteria, of 76–80%, or
0.20–0.21 D, for 157.5� and 0� (Fig. 3).
3.5. Effect of blur-limit criterion on defocus and astigmatism blur
limits

For defocus, blur-limit criterion had a highly-significant effect
on blur limits (F1.1,5.5=37.3, p = 0.001). There were significant inter-
actions of blur criterion with letter size (F1.3,6.6 = 23.4, p = 0.002).
Across all letter sizes, the ratio of troublesome to noticeable blur
limits was 1.7 times and the ratio of objectionable to noticeable
blur limits was 2.6 times. The ratio of troublesome to noticeable
blur increased from 1.5 times for 0.1 logMAR letters to 1.8 times
for 0.6 logMAR letters, and the ratio of objectionable to noticeable
blur increased from 2.4 times for 0.1 logMAR letters to 2.8 times for
0.6 logMAR letters. These results are similar to those of the previ-
ous studies (Atchison et al., 2005, 2009).

For astigmatism, the blur-limit criterion again had a highly-sig-
nificant effect on blur limits (F2.8,14.0 = 4.4, p = 0.024). There were
significant interactions of blur criterion with letter size
(F1.25,6.3 = 24.5, p = 0.002) but not with meridian. Across all letter
sizes, the ratio of troublesome to noticeable blur limits was 1.7
times and the ratio of objectionable to noticeable blur limits was
2.6 times. The ratio of troublesome to noticeable blur increased
from 1.6 times for 0.1 logMAR letters to 1.8 times for 0.6 logMAR
letters, and the ratio of objectionable to noticeable blur changed
little with letter size.

The influence of blur criterion on blur limits was thus similar for
defocus and astigmatism.
3.6. Effect of letter size on defocus and astigmatism blur limits

For defocus, letter size had a highly-significant effect on blur
limits (F2,10 = 55.6, p < 0.001). Across both blur directions and the
blur criteria, increasing letter size from 0.1 logMAR to 0.6 logMAR
increased blur limits by 2.3 times. Again, these results are similar
to those of the previous study (Atchison et al., 2009).

For astigmatism, letter size again had a highly-significant effect
on blur limits (F1.0,5.0 = 18.9, p = 0.007). As noted in this section,
there were significant interactions of letter size with blur criterion,
but there were none between letter size and meridian. Across all
orientations and blur criteria, increasing letter size from 0.1 log-
MAR to 0.6 logMAR increased blur limits by 2.2 times.

The influence of letter size on blur limits was thus similar for
defocus and astigmatism.



Fig. 3. Mean defocus (solid symbols) and astigmatism blur limits (open symbols) as
a function of astigmatism axis for the subject group (n = 6). Pupil size 5 mm. Limits
are shown for noticeable blur (top row), troublesome blur (middle row), and
objectionable blur (bottom row): in each case results are shown for letter sizes 0.1,
0.35 and 0.6 logMAR. Note that the vertical scales differ in the three rows. Blur is
expressed in dioptres (see text). Error bars represent ±95% confidence intervals. For
clarity, data for different blur criteria are off-set slightly relative to each other and
horizontal dotted lines are drawn through defocus symbols.
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3.7. Effect of adaptive optics condition on defocus and astigmatism
blur limits

Fig. 4 shows subject DAA’s defocus and astigmatism blur limits,
with the left and right columns showing results without and with
adaptive-optics correction of higher-order aberration, respectively.
Fig. 5 is similar, but for subject WNC. The left-hand columns of Figs.
4 and 5 show that, when higher-order aberrations are uncorrected,
blur limits for individuals vary with the meridian of the astigma-
tism. For subject DAA, this variation is significant but generally
small (Fig. 4). For subject WNC, the effects are significant and con-
siderable with much larger blur limits for 0� and 157.5� than with-
in the range 22.5–112.5� (Fig. 5).

For defocus, adaptive-optics correction reduced DAA’s blur lim-
its for the different criterion-letter size combinations to about 52–
88% of the values obtained with no correction, with a mean of 70%.
The corresponding values for WNC were 66–110% with a mean of
83%. These reductions are statistically significant (p < 0.01).

For astigmatism, adaptive-optics correction reduced DAA’s blur
limits for the different criterion-letter size combinations to 82–93%
of their original values, with a mean of 88%. The corresponding val-
ues for WNC were 76–115%, mean 98%. Thus, for these subjects and
across all meridians, the reductions in blur limits with adaptive-
optics correction were proportionately smaller for astigmatism
than for defocus. Adaptive-optics correction reduced the meridio-
nal variation in blur limits for WNC.

It is probable that the results of correction of monochromatic
aberrations will vary with the aberrations of the individual eye
but it seems reasonable to suggest that any associated reductions
in defocus and astigmatic blur limits will be always modest, at
least for 5 mm pupils and during observation of white-light tar-
gets, when uncorrected chromatic aberrations will still play an
important role in degrading the retinal image and will thus tend
to mask the improvement in image quality given by correction of
the monochromatic aberrations.

3.8. Between-subject effects for defocus and astigmatism blur limits

For defocus, there was a significant between-subjects effect
(F1,5 = 176.0, p < 0.001) on blur limits. There was a considerable
range of sensitivity between subjects. Ratios of blur limits of the
subjects (blur limit of subject divided by limit for the most sensi-
tive subject, averaged across all blur criteria and letter sizes) were
1.0–1.7. In general, subjects showed proportionate effects with
variation in blur criterion and letter size. In the previous study
the ratios were 1.0–3.1; the least-sensitive subject of the other
study was not used this time.

For astigmatism, there was a significant between-subjects effect
(F1,5 = 38.9, p = 0.002) on blur limits. The ratios of blur limits, aver-
aged across all meridians, blur criteria and letter sizes were 1.0–
2.1. As evidenced by comparing the left-hand columns of Figs. 4
and 5, between-subject effects were not proportionate with change
in meridian.

In general, between-subject variation was similar for defocus
and astigmatism.

3.9. Blur limits for trefoil for subjects DAA and WNC

Fig. 6 shows trefoil blur limits with 5 mm pupils for subjects
DAA and WNC with adaptive-optics correction for intrinsic ocular
aberrations. The corresponding defocus blur limits are shown for
comparison. Unlike the previous figures, the side scale is in micro-
metres rather than dioptres. Microns are used here because trefoil
cannot usefully be expressed in dioptric terms. For direct compar-
ison purposes, previous dioptric results with adaptive-optics cor-
rection (Figs. 4 and 5) can be expressed in microns by
multiplying them by factors of 0.902 (defocus) and 1.276 (astigma-
tism). When expressed in microns, the blur limits were a mean 50%
and 18% greater for trefoil than for defocus and astigmatism,
respectively.

The calibration results showed intrusion of variable astigma-
tism for subject DAA as trefoil was varied (Fig. 2). As the change
in astigmatism was only 15% of the change of trefoil for this sub-
ject, and less than 1% for subject WNC, this was not considered
important.

Overall, WNC had slightly greater trefoil blur limits than DAA
(mean difference about 12%). Both subjects showed meridional ef-
fects but, as was found in the case of astigmatism, this was more
marked for WNC than for DAA.

Across all letter sizes, the ratio of troublesome to noticeable
blur limits for the two subjects was 2.2 times and the ratio of
objectionable to noticeable blur limits was 3.5 times (for defocus



Fig. 4. Mean defocus (solid symbols) and astigmatism blur limits (open symbols) of subject DAA as a function of astigmatism axis. Pupil size 5 mm. Limits are shown for
noticeable blur (top row), troublesome blur (middle row) and objectionable blur (bottom row): in each case results are shown for letter sizes 0.1, 0.35 and 0.6 logMAR. Note
that the vertical scales differ in the three rows. Results are without correction of higher-order aberrations (‘‘HO”, left column) and with correction of higher-order aberrations
(‘‘no HO”, right column). Pupil size 5 mm. Error bars represent standard deviations of five measurements. For clarity, data for different blur criteria are off-set slightly relative
to each other and horizontal dotted lines are drawn through defocus symbols.
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with adaptive optics for these two subjects the values were 1.7 and
2.5 times; corresponding values for astigmatism were 1.6 and 2.2).
The ratio of troublesome to noticeable blur increased from 1.6
times for 0.1 logMAR letters to 2.7 times for 0.6 logMAR letters
(defocus 1.6–2.1 times, astigmatism 1.5–1.9 times), and the ratio
of objectionable to noticeable blur increased from 2.3 times for
0.1 logMAR letters to 4.4 times for 0.6 logMAR letters (defocus
2.3–2.9 times, astigmatism 1.9–2.9 times) (Fig. 7). This shows that,
at the largest letter size, the relationships between the three blur
criterion limits are considerably different for trefoil than for defo-
cus and astigmatism.

4. Discussion

As might be expected, the present study showed that astigmatic
blur limits were affected by a variety of factors.

We note first that there were meridional influences on astig-
matic blur limits: such influences were not explored in earlier
studies. The 90� meridian gave the smallest blur limits for this
group of subjects, with meridians nearly at right angles to this
having substantially increased limits. For the subject group and
averaged across all letter sizes and blur criteria, at 157.5� and
0� these effects amounted to mean increases of 76–80%, or
0.20–0.21 D, with respect to the values for the 90� meridian
(Fig. 3). These effects are analogous to clinical observations of
the impact of cylindrical errors on visual acuity (Rabbetts,
2007).

The meridional dependence of astigmatic blur limits is expected
to be at least in part due to the interaction of the added astigma-
tism with other existing aberrations of the eye, including influence
of the choice of best-focus position. Simulations showed little ef-
fect of astigmatic meridian on the image quality of letters in the
absence of other aberrations. However, in eyes with normal levels
of higher-order aberration, the situation is more complex. There
appears to be little interaction of astigmatic meridian with some
aberrations (e.g. coma, trefoil, see, e.g. top row of Fig. 8), but there



Fig. 5. Mean defocus and astigmatism blur limits of subject WNC. Other details are as for Fig. 4.
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are considerable interactions with other aberrations such as sec-
ondary astigmatism (bottom row, Fig. 8).

There was also considerable intra-subject variability for astig-
matic blur limits. As well as interactions of astigmatism with other
aberrations, the random letters selected were a factor. In general,
closed letters such as P and R appeared to blur before open letters,
and particular letters were possibly affected more by some astig-
matic meridians that were others.

Overall, mean blur limits for defocus and 5 mm pupils (Fig. 3)
ranged from 0.18 ± 0.08 D (just noticeable, 0.1 logMAR) to
1.01 ± 0.27 D (objectionable, 0.6 logMAR). Disregarding meridional
variations, crossed-cylinder astigmatism had only a slightly more
deleterious subjective effect than defocus on vision: without adap-
tive correction of higher-order aberrations, and across all subjects,
meridians and blur criteria, blur limits for crossed-cylinder astig-
matism were about 90% of the corresponding defocus blur limits.
This value is compatible with the results of previous work., which
also suggested that the degrading effects of defocus blur were
broadly similar to those of crossed-cylinder astigmatism, with vi-
sual acuity deteriorating for astigmatism by 0.8–1.1 times (Apple-
gate, Ballentine, et al., 2003, Applegate, Marsack, et al., 2003) and
0.7–1.0 times (Rocha et al., 2007) the values found for defocus,
and with the just-detectable blur limit for cross-cylinder astigma-
tism being about 1.25 times that for defocus (Legras et al., 2004).
We note that Legras et al. were comparing their simulated aber-
rated images with those for a standard eye which itself suffered
from aberrations which included significant astigmatism
(�0.38 DC axis 180�), whereas in the present study any existing
astigmatism in the subjects’ eyes was first corrected. Other condi-
tions also differed. Thus, it is not unreasonable that slightly differ-
ent results were obtained. As noted earlier, the geometric
prediction is that the blurring effects should be the same (Thibos
et al., 1997). For most practical purposes, given the variations
across subjects, meridians, letter sizes and other factors, it seems
reasonable to assume as a working approximation that the blurring
effects of defocus and crossed-cylinder astigmatism are indeed
similar (cf. Raasch, 1995) and that tolerances in visual instrumen-
tation and ocular corrections should be set accordingly.

For the two subjects tested with full adaptive correction, reduc-
ing the higher-order aberrations had mild to moderate effects on
blur limits for the white-light targets used: the limits were reduced
to about 76% (defocus) and 93% (astigmatism) of their original val-



Fig. 6. Mean trefoil (open symbols) and defocus blur limits (solid symbols) for subjects DAA (left column) and WNC (right column) as a function of trefoil axis for noticeable
blur (top row), troublesome blur (middle row) and objectionable blur (bottom row): in each case results are shown for letter sizes 0.1, 0.35 and 0.6 logMAR. Intrinsic ocular
higher-order aberrations have been corrected. Note that the vertical scales differ in the three rows. Pupil size 5 mm. Error bars represent standard deviations of five
measurements. For clarity, data for different blur criteria are off-set slightly relative to each other and horizontal dotted lines are drawn through defocus symbols.
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ues. It seems reasonable to attribute the lack of a more marked ef-
fect to the fact that chromatic aberration remained uncorrected. It
is well-known that the potential visual benefits of aberration are
only fully realised when both monochromatic and chromatic aber-
rations are eliminated (see LeGras & Rouge, 2008; Yoon & Williams,
2002) and the same must apply to reductions in aberration toler-
ances. It may be, too, that neural adaptation to the eye’s intrinsic
aberrations plays a role (Artal et al., 2004; Chen, Artal, Gutierrez,
& Williams, 2007) and that correction of aberration produces less
effect on sensitivity to blur than might be expected on purely opti-
cal grounds.

For the two subjects tested, there was a considerably different
relationship between the different blur limits for trefoil as com-
pared with those for defocus and astigmatism. For trefoil, the ratio
of objectionable to noticeable blur limits was much higher for the
0.6 logMAR letters (4.4) than for 0.1 logMAR letters (2.3) (Fig. 7).
While a trend of increasing ratios with larger letters also occurred
with defocus and astigmatism, this was much less marked (e.g. 2.9
and 1.9 for 0.6 and 0.1 logMAR letters, respectively, for astigma-
tism). For trefoil, both subjects noted that, with objectionable blur
and large letters, the letters appeared to lose contrast rather than
become blurred as was the case with astigmatism, and this neces-
sitated a change in criterion about what was objectionable. This
loss of contrast was supported by simulations (Fig. 9). Relevant
here is the finding by Rocha et al. (2007) that substantial amounts
of oblique trefoil (0.9 lm for a 5 mm pupil) produced much smaller
decrements in acuity (+0.22 logMAR) than the same rms level of
defocus (+0.62 logMAR) and oblique astigmatism (+0.39 logMAR),
even though the effects for the different aberrations were similar
at lower rms levels (0.1 and 0.3 lm). This may imply that as the
amount of trefoil is increased from zero, noticeable blur occurs at
similar rms levels as in the case of other aberrations. However,
with further increase in the trefoil, enough high-frequency infor-
mation still remains for recognition of letters to be possible and
acuity to suffer little loss, whereas with increasing defocus and
astigmatism this high-frequency information is lost at a lower



Fig. 7. Some ratios of blur limits for defocus, astigmatism and trefoil for subjects
DAA and WNC. The lines join the means for the two subjects and the extremes of
each vertical bar indicate the values for the individual subjects.

Fig. 8. Simulations of combinations of astigmatism and other aberrations on image
quality of a 0.1 logMAR letter D. The effect of meridian of astigmatism is more
marked in the presence of secondary astigmatism (bottom row) than in the
presence of coma (top row). Pupil size 5 mm.

Fig. 9. Simulations of effects astigmatism (top row) and trefoil (bottom row) on
image quality of a 0.6 logMAR letter D. Pupil size 5 mm. For the two aberrations,
0.2 lm coefficient produces similar effects on quality, slightly blurring the letter.
For a 0.5 lm coefficient, astigmatism produces a very blurred letter, while trefoil
results mainly in reduced contrast.
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rms aberration level (see Fig. 9 for examples), resulting in a corre-
spondingly higher loss in acuity. The ratios of the limits of trouble-
some and objectionable blur to noticeable blur for trefoil would,
then, be expected relatively greater than those for defocus and
astigmatism, as observed in the present study. We note too that
the recent study (Fernández-Sánchez et al., 2008) in which trefoil
(orientation not specified) was introduced by custom-made con-
tact lenses showed that low levels of trefoil (0.07 and 0.17 lm)
had no effect on visual acuity or contrast sensitivity with a 5 mm
pupil but that 0.96 lm caused significant losses. This is broadly
compatible with our data (Fig. 6) which show that, for the smallest,
0.1 logMAR, letter size used, just noticeable limits for trefoil were
about 0.2 lm (higher than the low levels used by Fernández-Sán-
chez et al.) and objectionable blur limits, at which the letters were
beginning to be difficult to recognise, were about 0.5 lm, so that
levels of 0.96 lm would be expected to cause acuity loss.

As only two subjects were examined with full adaptive correc-
tion to investigate the influence of astigmatism, defocus and trefoil
on blur limits, the results for these conditions must be treated with
some caution. The finding of a different dependence of trefoil blur
limits on letter size than occurred for defocus and astigmatism blur
limits is supported by simulations (Fig. 9) and a previous visual
acuity study, as described in the previous paragraph.

The Mirao 52 mirror performed very well in open-loop mode
with astigmatism blur (and defocus as shown in the previous
study), at least for the range of aberrations of our subjects. Calibra-
tions showed that the measured aberrations were linear functions
of induced aberration with little other aberration introduced. For
trefoil, astigmatism was induced that changed at 15% and 1% of
the rate of the trefoil for two subjects. This was considered accept-
able. The intrusion of other aberrations could be controlled by
monitoring aberrations using a laser that bypasses the eye and pro-
vides feedback to the mirror during experiments.

In the experiments, a 5.7 mm pupil was used to control aberra-
tions, while aberrations were measured at a 5.0 mm pupil. Because
of the nature of Zernike polynomials, a given higher-order Zernike
polynomial for a given pupil size will, when truncated by a smaller
pupil, give additional lower-order terms. For trefoil, other terms
produced were small and inconsequential. This would not be the
case for some other aberrations such as spherical aberration, for
which a reduction from a 5.7 mm to a 5.0 mm pupil would intro-
duce a defocus coefficient that is �68% of the amount of the spher-
ical aberration coefficient at the larger pupil. It is reasonable to
correct across a larger pupil size than is required for measurement
because of concerns about the accuracy of the wavefront at the
edge of the pupil, and a way of providing accurate aberrations such
as spherical aberration would be to have a more sophisticated
waveform at the controlling pupil size to guarantee the correct
aberrations at the smaller, measuring pupil size.
5. Conclusions

Under the conditions of the study, in eyes with their normal lev-
els of higher-order aberration crossed-cylinder astigmatic blur had
a slightly more adverse effect on vision than spherical blur. The
astigmatic blur limit across the subjects, criteria, letter sizes and
pupil diameters tested was, on average, about 90% of the corre-
sponding defocus limit. Although astigmatic meridian had a signif-
icant effect on the blur limits, it was not large. As a working
approximation, then, the values of tolerances for defocus blur can
also be used for crossed-cylinder astigmatic blur. With the black
letter targets on a white background used and no correction for
ocular chromatic aberration, correction of higher-order aberrations
slightly reduced the limits of defocus blur but had less effect on the
astigmatic limits. Subjective limits of trefoil blur were higher than
those for defocus and astigmatism, particularly when the objec-
tionable blur criterion was used. This was because increases in tre-
foil appeared to primarily affect the contrast of the letter images
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rather than the sharpness of their contours. The results are partic-
ularly relevant to spectacle lens design, notably that of progressive
addition lenses in which aberrations cannot be eliminated from
visually-sensitive regions: the data can help designers to under-
stand how much aberration can be tolerated.
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