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Abstract

We prove a uniform Poincar!e inequality for non-interacting unbounded spin systems with a
conservation law, when the single-site potential is a bounded perturbation of a convex function
with polynomial growth at in1nity. The result is then applied to Ginzburg–Landau processes to
show di6usive scaling of the associated spectral gap.
c© 2003 Elsevier Science B.V. All rights reserved.

MSC: 60K35

Keywords: Conservative spin systems; Poincar!e inequality; Ginzburg–Landau process; Spectral gap

1. Introduction and main result

Consider a probability measure � on R of the form

�(d�) =
e−V (�)

Z
d�; (1.1)

with Z =
∫

e−V (�)d�. Denote by �N the N -fold product measure obtained by tensoriza-
tion of � on RN , N ∈N. The canonical Gibbs measure with density �∈R is de1ned
by conditioning �N on the (N − 1)-dimensional hyperplane

∑N
i=1 �i = �N , i.e.

	N;� = �N

(
·
∣∣∣∣∣

N∑
i=1

�i = �N

)
: (1.2)

∗ Tel.: +39-6-5488-8230; fax: +39-6-5488-8072.
E-mail address: caputo@mat.uniroma3.it (P. Caputo).

0304-4149/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0304-4149(03)00044-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82690454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:caputo@mat.uniroma3.it


224 P. Caputo / Stochastic Processes and their Applications 106 (2003) 223–244

We are going to give suDcient conditions on the potential V in order that the canonical
measures 	N;� satisfy a Poincar!e inequality, uniformly in � and N .

For any probability measure 	 we write 	(F) =
∫
Fd	 for the mean of a function F

and Var	(F) for the variance 	(F2) − 	(F)2. For any smooth function F on RN we
write @iF for the partial gradient along the ith coordinate. We say that a measure 	 on
RN satis1es a Poincar!e inequality if there exists a 1nite constant 
 such that

Var	(F)6 

N∑
i=1

	[(@iF)2]

holds for every smooth, real function F . Specializing to the canonical Gibbs measures
(1.2) we de1ne the quadratic form

EN;�(F) =
N∑
i=1

	N;�[(@iF)2]:

For every N ∈N and �∈R the Poincar!e constant is given by


(N; �) = sup
F

Var	N; �(F)
EN;�(F)

; (1.3)

where the supremum is carried over all smooth, non-constant, real functions F on RN .
We say that a uniform Poincar!e inequality holds whenever

sup
N∈N

sup
�∈R


(N; �)¡∞: (1.4)

The main result of this paper states that such an estimate holds when V is of the form
V = ’ +  with  a smooth bounded function and ’ a uniformly convex function
satisfying some mild growth condition at in1nity. In order to describe the latter we
de1ne the class � of functions ’∈C2(R;R) with second derivative ’′′ obeying the
following conditions:

• Uniform convexity: There exists �¿ 0 such that ’′′¿ �.
• Polynomial growth at in2nity: There exist constants �−; �+ ∈ [0;∞) and a constant

C ∈ [1;∞) such that
1
C
6 lim inf

x→∞
’′′(±x)
x�±

6 lim sup
x→∞

’′′(±x)
x�±

6C: (1.5)

Clearly, any uniformly convex polynomial belongs to �. The perturbation will be taken
from the class �, de1ned as the set of functions  ∈C2(R;R) such that | |∞ ¡∞,
| ′|∞ ¡∞ and | ′′|∞ ¡∞.

Theorem 1.1. Assume V is of the form V = ’ +  with ’∈� and  ∈�. Then the
measures 	N;� satisfy a uniform Poincar3e inequality.

The proof of Theorem 1.1 will be given in the next three sections. It relies on a pow-
erful idea recently introduced by Carlen et al. (2001, 2002). A similar technique was
then used also in Caputo and Martinelli (2003) to study the relaxation to equilibrium
for a conservative lattice gas dynamics. The argument of Carlen et al. (2001, 2002),
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see also Caputo (2003), essentially shows that in view of the permutation symmetry
of the measures (1.2) one can reduce the problem to the analysis of a one-dimensional
process. The latter will be studied by means of a local limit theorem expansion. The
technical condition (1.5) on the growth at in1nity is of help in establishing uniform
estimates in the local central limit theorem (see Lemma 2.5). It is also used to estimate
the tails of the transition probabilities of the above-mentioned one-dimensional process
(see Lemma 3.4).

Poincar!e inequalities for conservative systems are usually studied on the level of
the corresponding Ginzburg–Landau or Kawasaki dynamics (Bertini and Zegarlinski,
1999a, b; Cancrini and Martinelli, 2000; Lu and Yau, 1993). This is an ergodic di6usion
process on the hyperplane

∑N
i=1 �i =�N , with 	N;� as reversible invariant measure, and

Dirichlet form of the type

DN;�(F) =
N−1∑
i=1

	N;�[(@i+1F − @iF)2]:

In this context, the Poincar!e inequality becomes a statement about the gap in the
spectrum of the associated self adjoint Markov generator, or equivalently about the
rate of convergence to equilibrium in the L2(	N;�)-norm. In Section 4, we shall see
that an immediate corollary of Theorem 1.1 is an estimate of the form

Var	N; �(F)6CN 2 DN;�(F) (1.6)

for all smooth functions F with a constant C independent of � and N . This says that
the spectral gap scales di6usively with the size of the system, uniformly in the density.
Such estimates are usually a key step in establishing hydrodynamical limits, see Kipnis
and Landim (1999). The question of the generality under which estimate (1.6) holds
was already raised in Varadhan (1993). It was pointed out that when V is a uniformly
convex function then (1.6) holds. Indeed, in this case a general argument based on the
Bakry–Emery criterium applies, see Caputo (2001) and Chafai (2002). More directly,
when there is no perturbation ( =0), Theorem 1.1 (without the additional requirement
(1.5)) becomes an immediate consequence of the Brascamp–Lieb inequality (Brascamp
and Lieb, 1976). On the other hand, the extension to bounded perturbations of a uni-
formly convex function proved to be rather challenging. We refer the reader to Bach
et al. (2000), Bodineau and Hel6er (1999), Gentil and Roberto (2001), Ledoux
(2001b), and Yoshida (1999) and references therein to get an idea of the diDculties one
has to face when leaving the purely convex setting. Recently it was shown in Landim
et al. (2002) that (1.6) holds when V is of the form V (x) = ax2 +  (x), a¿ 0 and  
a bounded function. The authors prove the statement (1.6) by adapting the martingale
method originally introduced in Lu and Yau (1993). They also prove that the stronger
logarithmic Sobolev inequality holds. The recent paper (Chafai, 2002) gives further
development along the same lines by slightly improving the hypothesis on the poten-
tial V . These results seem to rely strongly on the fact that V is essentially quadratic.
Our approach is substantially simpler and covers a wider class of potentials. On the
other hand, it is based on the permutation symmetry (exchangeability) of the canonical
measure and it might be diDcult to adapt to truly interacting non-product cases.
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We conclude this introduction with some comments on three questions posed by the
referee about possible extensions of Theorem 1.1.

1. One can try to generalize Theorem 1.1 to the case of Rd-valued variables, d¿ 1.
Here the convex part of the potential is a function ’∈C2(Rd;R) with uniformly posi-
tive hessian matrix. The technical diDculty is in the derivation of the uniform expansion
in Theorem 2.1 in the presence of a non-trivial covariance structure. Note, however,
that some form of the Bobkov’s estimate we use there is still available in the multi-
dimensional case (Bobkov, 1999). We have not worked out the details but we see no
serious obstacle to the extension of the result to this case.

2. In contrast to the technical assumption (1.5), the uniform convexity assumption
’′′¿ � seems to be necessary. If, for instance, the potential V is of the form V (x) =
|x|1+�, �∈ [0; 1), we cannot expect a uniform Poincar!e inequality. Indeed, in this case
direct computations show that the variance �2

� appearing in (2.3) below diverges (when
|�| → ∞) as |�|1−� for �¿ 0, and as �2 for � = 0. An interesting question here is
whether the ratio 
(N; �)=�2

� remains bounded uniformly.
3. A very interesting problem is to prove that the assumptions of Theorem 1.1 are

suDcient for a uniform logarithmic Sobolev inequality. As already mentioned, this
has been shown to hold when ’ is quadratic (Landim et al., 2002; Chafai, 2002).
While the results of Sections 2 and 3 below can be useful to attack this question, the
argument of Theorem 4.1 relies entirely on Hilbert space techniques. An inspection of
the reasoning in Section 4 reveals that the log-Sobolev counterpart of our main estimate
on the operator P, cf. (4.6), can be formulated as a suitable approximate subadditivity
property for entropies. To establish such an entropy version of the Carlen–Carvalho–
Loss approach remains a challenging problem.

The rest of the paper goes as follows. In Section 2, we prove a uniform local central
limit theorem expansion. This is used in Section 3 to study the one-dimensional process
which plays a key role in the iterative proof of Theorem 1.1. The latter is given
in Section 4. In Section 5, we discuss the application to spectral gap estimates for
Ginzburg–Landau processes.

2. Basic tools

We assume throughout that V is a potential satisfying the hypothesis of Theorem
1.1. Namely, V (x)=’(x)+  (x), ’∈� and  ∈�, where � is the class of uniformly
convex C2-functions satisfying (1.5) and � is the class of bounded C2-functions with
bounded 1rst and second derivatives. Given �∈R de1ne the probability density

h�(x) =
e−V (x+�)−�(�)x

Z�
; (2.1)

with Z� =
∫

e−V (x+�)−�(�)x dx. The parameter � = �(�)∈R, the so-called chemical po-
tential, is uniquely determined by � through the condition∫

xh�(x) dx = 0: (2.2)
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We write �2
� for the variance

�2
� =

∫
x2h�(x) dx: (2.3)

Unless otherwise speci1ed all integrals here and below are understood to range over
the real line. We call �� the probability measure with density h�(·−�). If �N;� denotes
the product �� ⊗ · · · ⊗ �� (N times), N ∈N, then the canonical measure 	N;� can
be equivalently obtained as in (1.2) with �N replaced by �N;�. It will be useful to
work directly with the density h�, which brings the original measure “back to the
origin”. Note that, when the potential V is quadratic h� is just a 1xed gaussian density,
independently of �.

2.1. Uniform local central limit theorem

Let  i be the canonical projection of RN onto R given by  i�= �i, �= (�1; : : : ; �N )
∈RN . We call 	1

N;� the one-site marginal of 	N;�, i.e. 	1
N;�=	N;� ◦ −1

1 is the distribution
of �1 under 	N;�. By permutation symmetry all one-site marginals coincide. The density
gN;� of 	1

N;� can be written in the form

gN;�(x) =
h�(x − �)G�

N−1(x − �)

G�
N (0)

; (2.4)

with

G�
N (x) =

∫
d�1 · · ·

∫
d�N

(
N∏
i=1

h�(�i)

)
�

(
N∑
i=1

�i + x

)
: (2.5)

Here we are using Dirac’s notation

f(0) =
∫

dxf(x)�(x):

Note that if we consider independent random variables �i with common distribution
de1ned by the density h�, then the normalized sum

1

��
√
N

N∑
i=1

�i

has a density given by

F�
N (z) = ��

√
NG�

N (−z��

√
N ):

We shall use the classical local central limit theorem expansion for the density F�
N .

Introduce the centered moments mk;�:

mk;� =
∫

xkh�(x) dx; k = 1; 2; : : :

so that in particular m1;� = 0, m2;� = �2
�.
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Theorem 2.1. Uniformly in z ∈R and �∈R:

F�
N (z) =

e−z2=2
√

2 

(
1 +

P3(z)√
N

+
P4(z)
N

)
+ O(N−3=2); (2.6)

where P3; P4 are the polynomials

P3(z) =
m3;�

6�3
�

(z3 − 3z);

P4(z) =
m2

3;�

72�6
�
(z3 − 3z) +

m4;� − 3�4
�

24�4
�

(z4 − 6z2 + 3): (2.7)

For every 1xed �∈R the above expansion holds uniformly in z ∈R as soon as the
1fth moment m5;� exists, see e.g. Feller (1971, Chapter XVI, Theorem 2). What is
important for us is that (2.6) holds uniformly in z ∈R and �∈R. This in turn follows
by the standard proof provided one has a uniform bound on normalized moments
and a uniform control of the characteristic functions. In particular, Theorem 2.1 is a
consequence of the following properties:

• Bounds on normalized moments: for every n there exists Cn ¡∞ such that

sup
�∈R

∣∣∣∣mn;�

�n
�

∣∣∣∣6Cn: (2.8)

• Bounds on characteristic functions: Let v�(*) =
∫

ei*xh�(x) dx and set Sv�(*) = v�(*=��).
Then

∃C ¡∞: sup
�∈R

| Sv�(*)|6 C
*2 ; (2.9)

∀+¿ 0; ∃c+ ¡ 1: sup
�∈R

sup
|*|¿+

| Sv�(*)|6 c+: (2.10)

We prove the above bounds in Lemmas 2.2 and 2.5 below.

Lemma 2.2. Assume V =’ +  with ’∈�, | |∞ ¡∞. Then there exists k =
k(| |∞)¡∞ such that for every n¿ 2

sup
�∈R

∣∣∣∣m2n;�

�2n
�

∣∣∣∣6
n∏

‘=2

(1 + k‘2): (2.11)

In particular, (2.8) holds.

Proof. We 1rst establish a bound for the Poincar!e constant in terms of the variance
�2
�. We denote by �� the probability measure with density (Z�)−1e−V (x)−�(�)x and by

�̃� the probability measure with density (Z̃�)−1e−’(x)−�(�)x. Clearly Z� = e−��(�)Z�
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(cf. (2.1)) and

Z̃� =
∫

e−’(x)−�(�)x dx∈ [e−| |∞Z�; e| |∞Z�]:

Let 
� and 
̃� be the Poincar!e constants associated to �� and �̃�, respectively. Let also
�̃2
� denote the variance of �̃�, �̃2

� = �̃�(x2)− �̃�(x)2. We shall use here a result derived
by Bobkov in Bobkov (1999), which says that since the density of �̃� is log-concave
one has the bound


̃�6 12�̃2
�: (2.12)

It is not diDcult to establish a similar bound for ��. Namely, for any smooth function
f such that ��(f) = 0 we write

��(f2)6 ��[(f − �̃�(f))2]6 e2| |∞ �̃�[(f − �̃�(f))2]

6 e2| |∞ 
̃��̃�[(f′)2]6 e4| |∞ 
̃���[(f′)2];

so that


�6 e4| |∞ 
̃�:

On the other hand,

�̃2
�6 �̃�[(x − �)2]6 e2| |∞��[(x − �)2] = e2| |∞�2

�:

From (2.12) we obtain


�6 12e6| |∞�2
�: (2.13)

Once we have such an estimate the proof of (2.11) is immediate. For every n∈N we
have

m2n;� = Var�� [(x − �)n] + m2
n;�

6 n2
���[(x − �)2(n−1)] + m2
n;� = n2
�m2(n−1);� + m2

n;�:

Setting k = 12 e6| |∞ , from (2.13) we have

m2n;�6 kn2�2
�m2(n−1);� + m2

n;�:

This implies the claim for n = 2 and one obtains the rest through induction using
m2

n+1;�6 �2
�m2n;�. This last inequality also shows that to prove (2.8) we can restrict to

even powers.

Remark 2.3. Another important application of Bobkov’s bound (2.12) is the following
exponential tail estimate. It is well known (see e.g. Ledoux, 2001a) that Poincar!e
inequality implies exponential integrability. In our setting, if 
� denotes the Poincar!e
constant of �� and .�(x) = x − �, then

sup
�∈R

��

[
exp

|.�|√

�

]
¡∞: (2.14)



230 P. Caputo / Stochastic Processes and their Applications 106 (2003) 223–244

The above estimate is easily obtained from the following argument: set u(t) =
��[exp t.�] and use Poincar!e inequality to write u(t) − u(t=2)26 
�(t=2)2u(t). For
t ¡ 2=

√

� this gives

u(t)6 (1 − 
�(t=2)2)−1u(t=2)2:

Iterating this inequality and using u(t=s)s → 1, s → ∞, we obtain

u(t)6
∞∏
k=1

(1 − 
�(t=2k)2)−2k−1
;

which is 1nite as soon as t ¡ 2=
√

�. Setting t=1=

√

� and repeating the argument for

��[exp − t.�] we arrive at (2.14).
On the other hand, by (2.13) one has 
�6 k�2

� for some uniform constant k ¡∞.
Using Markov’s inequality we deduce that there exists C ¡∞ such that for every
T ∈ (0;∞), �∈R one has the tail estimate

��[|.�|¿ ��T ]6C e−T=C : (2.15)

We shall need some control on �2
� as a function of �. The following Lemma relies on

the assumption (1.5).

Lemma 2.4. Assume V =’+  with ’∈� and | |∞ ¡∞. Then there exists k ¡∞
such that for every �∈R one has

1
k’′′(�)

6 �2
�6

k
’′′(�)

: (2.16)

Proof. Since the bounded perturbation  only a6ects constants (depending only on
| |∞) in (2.16) we may assume that the potential is convex from start. Thus for
the rest of this proof we set V = ’, ’∈�. To obtain the upper bound we use the
Brascamp–Lieb inequality (Brascamp and Lieb, 1976)

�2
�6 ��[(’′′)−1]: (2.17)

In particular, since ’′′¿ �, we have �2
�6 1=�. We then write, for any 3¿ 0

�2
�6 ��[(’′′)−1; |.�|63] + ��[(’′′)−1; |.�|¿3] (2.18)

so that

�2
�6’′′(�)−1 sup

�:|�|63

∣∣∣∣ ’′′(�)
’′′(� + �)

∣∣∣∣+ 1
�
��[|.�|¿3]: (2.19)

Choose 3 = B log(2 + |�|) with B¿ 0 to be 1xed later. From (1.5) we infer that

sup
�∈R

sup
�:|�|63

∣∣∣∣ ’′′(�)
’′′(� + �)

∣∣∣∣¡∞:

Moreover, by (2.15) and the bound �2
�6 �−1 we see that the second term in (2.19) is

bounded by C(2+ |�|)−B=C for some uniform C ¡∞. Collecting all this and choosing
B suDciently large we have the sought upper bound �2

�6 k’′′(�)−1.
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To 1nd the lower bound we use the inequality

�2
�¿ ��[’′′]−1: (2.20)

To prove (2.20) note that for any f∈L2(��) one has �2
�=��[.2

�]¿ 2��[f.�]−��[f2].
Choose now f(x) = �dV�(x)=dx where V�(x) = ’(x) + �(�)x =−log h�(x− �) + const.
and �∈R. Integration by parts shows that ��[f.�] = � and ��[f2] = �2��[’′′]. We
have obtained

�2
�¿ 2� − �2��[’′′]; �∈R:

Optimising over � gives (2.20). We can now estimate

��[’′′]6’′′(�) sup
�:|�|63

∣∣∣∣’′′(� + �)
’′′(�)

∣∣∣∣+ ��[’′′; |.�|¿3]:

Choosing 3 = B log(2 + |�|) the 1rst term is bounded by k ’′′(�) as above. The sec-
ond term can be bounded uniformly in � by taking B suDciently large. Namely, we
use (1.5) to write ’′′(x)6 �(1 + |x|)� for some given constant �¡∞ and estimate
|x|6 |.�|(1 + |�|=|.�|). By Lemma 2.2 ��[.

2�
� ] is bounded uniformly in � for every �

and therefore using also (2.15) we can 1nd a constant C ¡∞ such that

��[’′′; |.�|¿3]6 ��[(’′′)2; |.�|¿3]1=2��[|.�|¿3]1=2

6C(1 + |�|)�(2 + |�|)−B=C :

Taking B large we have obtained the desired bound ��[’′′]6 k’′′(�).

Lemma 2.5. Assume V = ’ +  with ’∈�,  ∈�. Then (2.9) and (2.10) hold.

Proof. Let Sh�(x) = ��h�(��x) denote the density of the normalized variable .�=��.
Observe that

Sv�(*) =
∫

ei*x Sh�(x) dx:

Writing Sv�(*) = | Sv�(*)| ei5�(*) for some real function 5�(*) we have

| Sv�(*)| =
∫

cos(*x − 5�(*)) Sh�(x) dx: (2.21)

A double integration by parts shows that

| Sv�(*)|6 1
*2

∫
| Sh′′� (x)|dx;

where Sh′′� (x) denotes the second derivative of the density Sh�. We compute∫
| Sh′′� (x)|dx = �2

�

∫
|h′′� (x)|dx = �2

�

∫
|V ′

�(x + �)2 − V ′′(x + �)|h�(x) dx;

where V ′
� and V ′′

� = V ′′ denote the 1rst and second derivative of the potential V�(x) =
V (x) + �(�)x. Integration by parts yields

∫
V ′
�(x + �)2h�(x) dx = ��[(V ′

�)
2] = ��[V ′′] =

��[’′′] + ��[ ′′]. Using | ′′|∞ ¡∞ and the bounds in Lemma 2.4 we thus conclude
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that �2
�

∫ |h′′� (x)|dx is uniformly bounded and therefore | Sv�(*)|6C=*2 as claimed in
(2.9).

We turn to the proof of the estimate (2.10). In view of the uniform bound | Sv�(*)|=
O(*−2) proven above we only need to check that for any given constants +¿ 0 and
C ¡∞ we have some c+ ¡ 1 such that

sup
�∈R

sup
+6|*|6C

| Sv�(*)|6 c+: (2.22)

To prove (2.22) we rely on Lemma 5.5 in Landim et al. (1996). This lemma tells us
that if for each � we can 1nd an interval I� ⊂ R such that |I�|¿ 10 ��=+ and

inf
�∈R

∫
I�
h�(x) dx¿ 0; (2.23)

sup
�∈R

sup
x;y∈I�

h�(x)=h�(y)¡∞; (2.24)

then the integral in (2.21) is bounded uniformly by some c+ ¡ 1.
We choose I� = {x: |x|6T��} for some T ¿ 0 to be 1xed below. For the 1rst

property we require T¿ 5 =+. The property (2.23) is guaranteed by (2.15):∫
I�
h�(x) dx¿ 1 − Ce−T=C ¿ 0;

provided T is large enough. It remains to check (2.24). Set

u�(x; y) = ’(y) + �(�)y − ’(x) − �(�)x;

and write h�(x − �)=h�(y − �) = exp[u�(x; y) +  (y) −  (x)]. Since  is bounded it
suDces to show that u�(x; y) is uniformly bounded for x; y∈ I� +�. Since ’ is convex,
the function g�(x) := ’(x)+�(�)x has a unique minimum �∗, solution of ’′(x)=−�(�).
We 1rst claim that |�−�∗|6 2T�� when T is suDciently large, uniformly in �. To see
this, suppose �¡�∗−2T�� (a similar argument applies in the case �¿�∗+2T��). In
this case g� is strictly decreasing in the interval [�− T��; �∗]. Therefore, letting (as in
the proof of Lemma 2.2) �̃� denote the probability measure with density (Z̃�)−1e−g� ,

�̃�[|x − �|6T��]6 2�̃�[x∈ (�; � + T��)]6 2�̃�[|x − �∗|6T��]: (2.25)

On the other hand, we know that �̃�[|x−�|6T��]¿ 1−j, for every +¿ 0, whenever
T¿Tj with some Tj¡∞ uniformly in �. The latter estimate follows from the uniform
bound �̃�[|x−�|¿T��]6 k��[|x−�|¿T��] (cf. the proof of Lemma 2.2) and (2.15).
Clearly, this is in contradiction with (2.25) when j is suDciently small and �¡�∗ −
2T��. Therefore |�− �∗|6 2T��, as claimed.

Using this, we see that x∈ I� + � implies |x − �∗|6 3T��. Therefore, an expansion
of u�(x; y) up to second order around the point (�∗; �∗) allows to estimate

|u(x; y)|6 9T 2�2
� sup
|z|63T��

’′′(�∗ + z); x; y∈ I� + �:

As in Lemma 2.4, �2
�’

′′(�∗ + z)6C�2
�’

′′(�)6C′ uniformly in |z|6 3T��,
|� − �∗|6 2T��, �∈R. This implies supx;y∈I� h�(x)=h�(y)¡∞ and the proof of the
lemma is completed.
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3. The operatorK

Here we introduce the relevant one-dimensional process and prove a key spectral
estimate, see Theorem 3.1 below. Let H denote the Hilbert space L2(R; 	1

N;�) and use
the symbol 〈·; ·〉 for the corresponding scalar product 〈f; g〉 = 	N;�[( Sf ◦  1)(g ◦  1)],
with Sf denoting the complex conjugate function. Write also 〈f〉 for the mean of a
function f∈H w.r.t. 	1

N;�. We write H0 for the subspace of f∈H such that 〈f〉=0.
We de1ne the stochastic self-adjoint operator K : H → H by the sesquilinear form:

〈f;Kg〉 = 	N;�[( Sf ◦  1)(g ◦  2)]; f; g∈H: (3.1)

Let .� be the linear function .�(x) = x − �. A simple computation shows that

K.� = − 1
N − 1

.� (3.2)

for every �∈R. Thus the spectrum of K always contains the eigenvalues −(N −1)−1

and 1. We prove below that the rest of the spectrum is con1ned around zero within a
neighbourhood of radius O(N−3=2).

Theorem 3.1. There exists C ¡∞ independent of � and N such that for every
f∈H0 satisfying 〈f; .�〉 = 0 one has

|〈f;Kf〉|6C; N−3=2〈f;f〉: (3.3)

The rest of this section deals with the proof of Theorem 3.1. The strategy is essentially
the same as in Caputo and Martinelli (2003), where this type of result has been es-
tablished for a discrete lattice gas model. Adaptation to our setting, however, requires
some non-trivial modi1cations.

Denote by g̃N;�(x; y) the density of the joint distribution of (�1; �2) under 	N;�:

g̃N;�(x; y) =
h�(x − �)h�(y − �)G�

N−2((x − �) + (y − �))

G�
N (0)

: (3.4)

When f is real and 〈f〉 = 0 we write

〈f;Kf〉 =
∫ ∫

dx dy gN;�(x)gN;�(y)QN;�(x; y)f(x)f(y); (3.5)

where we introduced the kernel

QN;�(x; y) =
g̃N;�(x; y) − gN;�(x)gN;�(y)

gN;�(x)gN;�(y)
: (3.6)

De1ne the set

B� = {(x; y)∈R2: |x − �| + |y − �|6B�� logN}; (3.7)

where B is a constant to be 1xed later on. The following expansion is the key step in
the proof of Theorem 3.1.
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Lemma 3.2. For every B¡∞, there exists C ¡∞ such that

sup
�∈R

sup
(x;y)∈B�

∣∣∣∣QN;�(x; y) +
.�(x).�(y)

�2
�N

∣∣∣∣6CN−3=2: (3.8)

Proof. In order to simplify notations we shall write

Sx = .�(x) = x − �; Sy = .�(y) = y − �:

Using (2.4) and (3.4) we rewrite

QN;�(x; y) =
G�

N−2( Sx + Sy)G�
N (0) − G�

N−1( Sx)G�
N−1( Sy)

G�
N−1( Sx)G�

N−1( Sy)
: (3.9)

We now use the expansion of Theorem 2.1. With the change of variable

��

√
NG�

N ( Sx) = F�
N (− Sx=��

√
N ); (3.10)

we see that the only terms in ��
√
NG�

N ( Sx) which are not negligible w.r.t. O(N−3=2) in
the range | Sx|6B�� logN are given by the constant term in P4 and the linear terms in
P3 and P4. This implies

sup
�∈R

sup
| Sx|6B�� log N

∣∣∣∣∣��

√
NG�

N ( Sx) − e− Sx 2=2�2
�N√

2 

(
1 +

� + � Sx
N

)∣∣∣∣∣6CN−3=2; (3.11)

� :=
m4;� − 3�4

�

8�4
�

; � :=
m3;�

2�4
�

+
m2

3;�

24�7
�

√
N

:

Note that by Lemma 2.2 � is uniformly bounded and � Sx is bounded by C logN in the
range | Sx|6B�� logN for some uniform C ¡∞.

We introduce the following convention. We call +(N ) anything which vanishes at
least as O(N−3=2) uniformly in (x; y)∈B�. Thus the result (3.11) will be used in the
form

��

√
NG�

N ( Sx) =
e− Sx 2=2�2

�N√
2 

(
1 +

� + � Sx
N

)
+ +(N ): (3.12)

Use now (3.12) to write

2 �2
�(N − 1)G�

N−1( Sx)G�
N−1( Sy)

= e−( Sx 2+ Sy 2)=2�2
�(N−1)

(
1 +

� + � Sx
N − 1

)(
1 +

� + � Sy
N − 1

)
+ +(N )

= e−( Sx 2+ Sy 2)=2�2
�N
(

1 +
2� + �( Sx + Sy)

N

)
+ +(N ):
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Furthermore, writing q(N ) = (N − 1)=
√

N (N − 2) = 1 + O(N−2), one has

2 �2
�(N − 1)G�

N−2( Sx + Sy)G�
N (0)

= q(N )e−( Sx+ Sy)2=2�2
�(N−2)

(
1 +

� + �( Sx + Sy)
N − 2

)(
1 +

�
N

)
+ +(N )

= e−( Sx+ Sy)2=2�2
�N
(

1 +
2� + �( Sx + Sy)

N

)
+ +(N )

= e−( Sx 2+ Sy 2)=2�2
�N
(

1 − Sx Sy
�2
�N

)(
1 +

2� + �( Sx + Sy)
N

)
+ +(N ):

Inserting in (3.9) we have obtained

QN;�(x; y) = − Sx Sy
�2
�N

+ +(N ):

Remark 3.3. As a simple consequence of expansion (2.6) and the change of variable
(3.10) we have

G�
N−1(x − �)

G�
N (0)

= e−(x−�)2=2�2
�(N−1) + O(N−1=2) (3.13)

uniformly in x∈R and �∈R. In particular, by (2.4) we have the uniform bound

gN;�(x)6Ch�(x − �): (3.14)

Next we need to control the atypical region Bc
�. We shall use 1B� and 1Bc

�
to denote

the indicator function of the set B� (de1ned in (3.7)) and its complement, respectively.

Lemma 3.4. There exist constants C; B¡∞ such that uniformly in � and N∫ ∫
dx dy g̃N;�(x; y)|f(x)| |f(y)|1Bc

�
(x; y)6CN−3=2〈f;f〉: (3.15)

Proof. We 1rst consider the set

Q� = {(x; y)∈R2: |x − �| + |y − �|6 k logN}; (3.16)

where k is a 1nite constant to be 1xed later. When �� is very small this set is much
larger than B�. We 1rst show that (3.15) holds with Bc

� replaced by Qc
� for k suD-

ciently large (but independent of N; �):∫ ∫
dx dyg̃N;�(x; y)|f(x)| |f(y)|1Qc

�
(x; y)6CN−3=2〈f;f〉: (3.17)

To do this 1rst step we proceed as follows. For all x∈R we set

�x = � +
�− x
N − 1

; (3.18)

and observe that if g̃N;�(x; y) is the density of the joint law of (�1; �2), then gN−1;�x is
the density of the law of �1 under the conditioning �2 = x. In particular, g̃N;�(x; y) =
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gN;�(x)gN−1;�x(y). Moreover, a simple computation shows that as soon as N¿ 3 we
have 1Qc

�
(x; y)6 :x; (k=4) log N (y) + :y; (k=4) log N (x), where :x;T denotes the characteristic

function of the event {|.�x |¿T}, T¿ 0. We have∫ ∫
dx dyg̃N;�(x; y)|f(x)| |f(y)|:x; (k=4) log N (y)

6 〈f;f〉1=2
(∫

dx gN;�(x)
[∫

dy gN−1;�x(y)|f(y)|:x; (k=4) log N (y)
]2
)1=2

6 〈f;f〉
(

sup
x∈R

∫
dy gN−1;�x(y):x; (k=4) log N (y)

)1=2

:

Now by (3.14) we estimate gN−1;�x(y)6Ch�x(y − �x) and from the exponential tail
bound (2.15) we obtain∫

dy gN−1;�x(y):x; (k=4) log N (y)6C��x

[
|.�x |¿

k
4

logN
]
6C′N−k=C′��x (3.19)

for some constant C′ ¡∞. Since ��x is bounded from above uniformly, see (2.17), it
follows that there exist C; k0 ¡∞ independent of � and N such that∫ ∫

dx dyg̃N;�(x; y)|f(x)| |f(y)|:x; (k=4) log N (y)6CN−3=2〈f;f〉

holds as soon as k¿ k0. Repeating the argument with x and y interchanged yields
(3.17).

We turn to the original claim (3.15). From the previous estimate (3.17) we may
replace 1Bc

�
by 1Q�1Bc

�
in (3.15). With the notations introduced above we write

1Q�1Bc
�
(x; y)6 1{|.�|6k log N}(y):y; (��B=4) log N (x)

+ 1{|.�|6k log N}(x):x; (��B=4) log N (y): (3.20)

Let us estimate one of the two terms coming from the decomposition (3.20).∫ ∫
dx dyg̃N;�(x; y)|f(x)| |f(y)|1{|.�|6k log N}(x):x; (��B=4) log N (y)

6 〈f;f〉1=2
( ∫

dx gN;�(x)1{|.�|6k log N}(x)

×
[∫

dy gN−1;�x(y)|f(y)|:x; (��B=4) log N (y)
]2
)1=2

6 〈f;f〉


 sup

x∈R:
|x−�|6k log N

∫
dy gN−1;�x(y) :x; (��B=4) log N (y)




1=2

:
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As in (3.19) we know that there exists C ¡∞ such that for every x∈Rd∫
dy gN−1;�x(y):x; (��B=4) log N (y)6CN−��B=C��x :

The point here is that we may restrict to x satisfying |x− �|6 k logN and for such x
Lemma 2.4 tells us that ��x =�� is bounded uniformly in �. More precisely, by (2.16)
and the assumption (1.5) there exists C¡∞ and +0¿0 such that

sup
�∈R

sup
�∈R:
|�|6+0

∣∣∣∣∣�
2
�+�

�2
�

∣∣∣∣∣6C: (3.21)

When x satis1es |x − �|6 k logN then |� − �x|6 k (logN )=(N − 1) and taking N
suDciently large we can use (3.21) to arrive at

sup
�∈R

sup
x∈R:

|x−�|6k log N

∫
dy gN−1;�x(y):x; (��B=4) log N (y)6C′N−B=C′

6C′N−3=2;

with some constant C′ ¡∞ and B suDciently large. Repeating the argument with x
and y interchanged we arrive at (3.15). This completes the proof of the lemma.

We are now able to 1nish the proof of Theorem 3.1. Let us go back to (3.5) and
split the integral there as

〈f;Kf〉=
∫ ∫

dx dy gN;�(x)gN;�(y)QN;�(x; y)f(x)f(y)1B�(x; y)

+
∫ ∫

dx dygN;�(x)gN;�(y)QN;�(x; y)f(x)f(y)1Bc
�
(x; y): (3.22)

The second term here can be estimated from above by the sum∫ ∫
dx dy g̃N;�(x; y)|f(x)| |f(y)|1Bc

�
(x; y)

+
∫ ∫

dx dy gN;�(x)gN;�(y)|f(x)| |f(y)|1Bc
�
(x; y):

By Lemma 3.4 we control the 1rst part in the above sum. The second part is simply
estimated with Schwarz’ inequality by

〈f;f〉
(∫ ∫

dx dy gN;�(x)gN;�(y)1Bc
�
(x; y)

)1=2

6CN−3=2 〈f;f〉;

where the last estimate follows from (3.14) and (2.15) provided B is suDciently large.
The 1rst term in (3.22) can be written as

−
∫ ∫

dx dy gN;�(x)gN;�(y)
.�(x).�(y)

�2
�N

f(x)f(y)1B�(x; y)

+
∫ ∫

dx dy gN;�(x)gN;�(y)
[
QN;�(x; y) +

.�(x).�(y)
�2
�N

]
f(x)f(y)1B�(x; y):
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A Scwharz inequality and Lemma 3.2 imply that the second term above is bounded
by C N−3=2〈f;f〉. Since by assumption 〈f; .�〉 = 0 we rewrite the 1rst term above as∫ ∫

dx dygN;�(x)gN;�(y)
.�(x).�(y)

�2
�N

f(x)f(y)1Bc
�
(x; y):

We estimate the absolute value of this expression by

〈f;f〉 1
�2
�N

∫
dx gN;�(x).�(x)21{|.�|¿(B=2)�� log N}(x):

This last integral can be estimated using (3.14), (2.15) and the bound of Lemma 2.2:∫
dx gN;�(x).�(x)21{|.�|¿(B=2)�� log N}(x)

6C
√
m4;�

(∫
dx h�(x − �) 1{|.�|¿(B=2)�� log N}(x)

)1=2

6C�2
�N

−1=2:

We have obtained∣∣∣∣
∫ ∫

dx dy gN;�(x)gN;�(y)QN;�(x; y)f(x)f(y)1B�(x; y)
∣∣∣∣6CN−3=2〈f;f〉:

This 1nishes the proof of Theorem 3.1.

4. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the recursive inequality presented in the
theorem below. Recall de1nition (1.3) of the Poincar!e constant 
(N; �), and set


(N ) = sup
�∈R


(N; �): (4.1)

Theorem 4.1. There exist constants C ¡∞ and N0 ∈N such that for every N ¿N0


(N )6 [1 + CN−3=2]
(N − 1): (4.2)

Proof. Take an arbitrary real smooth function F on RN . For simplicity we drop all
subscripts and simply write Var(F) for Var	N; �(F) and E(F) for EN;�(F). Let Fk

denote the �-algebra generated by the one-site variables �k , k = 1; : : : ; N . Var(F |Fk)
denotes the Fk -measurable random variable 	N;�(F2 |Fk)− 	N;�(F |Fk)2. We use the
notation

E(k)(F) =
∑
i:i 
=k

	N;�((@iF)2):

Note that
N∑

k=1

E(k)(F) = (N − 1)E(F):
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For any F one has the decomposition

Var(F) =
1
N

N∑
k=1

	(Var(F |Fk)) +
1
N

N∑
k=1

Var(	(F |Fk)): (4.3)

Observe that Var(F |Fk)(�) = Var	N−1; ��k
(F), cf. (3.18). By de1nition (4.1), for each

k we then have

	(Var(F |Fk))6 
(N − 1)E(k)(F):

Summing over k gives

1
N

N∑
k=1

	(Var(F |Fk))6
N − 1
N


(N − 1)E(F): (4.4)

We turn to estimate the second term in (4.3). Here comes the idea of Carlen et al.
(2001). Namely assume without loss of generality that 	(F)=0 and write the quadratic
form

1
N

N∑
k=1

Var(	(F |Fk)) = 	(FPF);

where the stochastic operator P : L2(	) → L2(	) is de1ned by

PF =
1
N

N∑
k=1

	(F |Fk):

In this way (4.3) and (4.4) give

	(F(1−P)F)6
N − 1
N


(N − 1)E(F): (4.5)

We need a spectral gap estimate for the generator 1−P. We are going to prove

	(F(1−P)F)¿
N − 1
N

[1 − CN−3=2]	(F2); (4.6)

for all real F ∈L2(	) such that 	(F) = 0 with a uniform constant C ¡∞ independent
of the density �. Together with (4.5) this will complete the proof of the theorem.

Recalling the notation introduced in the previous section we de1ne the closed sub-
space ; of L2(	) consisting of sums of mean-zero functions of a single variable:

; =

{
F ∈L2(	): F =

N∑
k=1

fk ◦  k ; f1; : : : ; fN ∈H0;

}
: (4.7)

Since PF ∈; for every F ∈L2(	) with 	(F) = 0, we may restrict to F ∈; to prove
(4.6). For F ∈;, F =

∑
k fk ◦  k , we de1ne �F =

∑
k fk , a function in H0. Taking

any real F ∈;, a simple computation shows that

	(F2) = 〈�F;K�F〉 +
∑
k

〈fk; (1−K)fk〉; (4.8)
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where K is the operator de1ned in (3.1). Similarly, for every k one computes

	(F	(F |Fk)) = 2〈�F;K(1−K)fk〉 + 〈fk; (1−K)2fk〉 + 〈�F;K2�F〉:
Averaging over k and rearranging terms we then have

	(F(1−P)F) =
N − 2
N

〈�F;K(1−K)�F〉

+
1
N

∑
k

〈fk; (1−K)[(N − 1)1+ K]fk〉: (4.9)

Consider now the subspace S ⊂ ; of symmetric functions:

S =

{
F ∈L2(	): F =

N∑
k=1

f ◦  k ; f∈H0

}
: (4.10)

Since S is invariant for P, i.e. PS ⊂ S we may consider separately the cases F ∈S
and F ∈S⊥, with S⊥ denoting the orthogonal complement in ;. When F ∈S we
have �F = Nf and rearranging terms in (4.8) and (4.9) we obtain

	(F2) = N (N − 1)
〈
f;
[
K +

1
N − 1

]
f
〉

; (4.11)

	(F(1−P)F) = (N − 1)2
〈
f; [1−K]

[
K +

1
N − 1

]
f
〉

: (4.12)

By Theorem 3.1 we see that K + 1=(N − 1) is non-negative on the whole subspace
H0, for all N suDciently large. Moreover by (3.2) and (4.11) we see that 	(F2) = 0
when f is a multiple of .�. We may then restrict to the case 〈f; .�〉 = 0. Writing
f̃ = [K + 1=(N − 1)]1=2f and observing that 〈f̃〉 = 0 and 〈f̃; .�〉 = 0, Theorem 3.1
yields the estimate

	(F(1−P)F)¿ (N − 1)2[1 − CN−3=2]〈f̃; f̃〉

=
N − 1
N

[1 − CN−3=2]	(F2); F ∈S: (4.13)

We turn to study the case F ∈S⊥. Let us 1rst observe that in the de1nition (4.7)
of ; one can assume without loss of generality that

∑
k〈fk; .�〉 = 0. Indeed if c =

(N 〈.�; .�〉)−1∑
k〈fk; .�〉 and gk =fk − c.�, we have

∑
k gk ◦ k =

∑
k fk ◦ k in L2(	)

since by the conservation law
∑

k .� ◦  k = 0. Therefore 〈�F; .�〉= 0 may be assumed
from the start. Now, for every G ∈S, G =

∑
k g ◦  k , with g∈H0 one has

	(FG) = (N − 1)
〈
�F;

[
K +

1
N − 1

]
g
〉

:

Thus F ∈S⊥ implies that [K + 1=(N − 1)]�F is a constant in H. Since 〈�F〉 = 0
and 〈�F; .�〉=0, Theorem 3.1 implies �F =0. Writing f̂ k =(1−K)1=2fk , then (4.8)



P. Caputo / Stochastic Processes and their Applications 106 (2003) 223–244 241

and (4.9) imply

	(F2) =
∑
k

〈f̂ k ; f̂ k〉; (4.14)

	(F(1−P)F) =
1
N

∑
k

〈f̂ k ; [(N − 1)1+ K]f̂ k〉: (4.15)

Since 〈f̂ k〉 = 0 for all k we may use Theorem 3.1 to estimate

〈f̂ k ;Kf̂ k〉¿− 1
N − 1

〈f̂ k ; f̂ k〉:

From (4.14) and (4.15) we obtain

	(F(1−P)F)¿
N − 2
N − 1

	(F2) =
N − 1
N

[
1 − 1

(N − 1)2

]
	(F2):

This ends the proof of claim (4.6).

Once we have Theorem 4.1 the conclusion of Theorem 1.1 is straightforward. Indeed,
∞∏

N=N0+1

[1 + CN−3=2]6C′ (4.16)

for some uniform constant C′ and Theorem 4.1 yields


(N )6C′
(N0); N¿N0 + 1:

The uniform Poincar!e inequality of Theorem 1.1 then follows from the fact that 
(N0)
is indeed 1nite.

Lemma 4.2. For every N0¿ 2

sup
�∈R


(N0; �)¡∞: (4.17)

Proof. Let 	̃N;� denote the canonical measure obtained in (1.2), where the potential
V is replaced by its convex component ’. Let also 
̃(N; �) denote the correspond-
ing Poincar!e constant. Since ’′′¿ �¿ 0 one can use the Brascamp–Lieb inequality
(Brascamp and Lieb, 1976) to prove 
̃(N; �)6 �−1, uniformly in N and �, see also
Caputo (2001). A standard argument (as in the proof of Lemma 2.2) on the other hand
gives 
(N; �)6 e4N | |∞ 
̃(N; �), for every N ∈N and �∈R. This gives, uniformly in �


(N; �)6 �−1e4N | |∞ :

5. Ginzburg–Landau processes

We consider the discrete lattice Zd, with d¿ 1 an integer. Given a 1nite subset
< ⊂ Zd, we denote by <∗ the set of oriented bonds b contained in <, i.e. the couples
b=(x; y), x; y∈< with x=y+e, e a unit vector in Zd. Denoting <L={1; 2; : : : ; L}d, the



242 P. Caputo / Stochastic Processes and their Applications 106 (2003) 223–244

L-hypercube in Zd, we de1ne the product measure �<L;� as the usual grand canonical
measure �N;� with N =Ld. Then 	<L;� stands for the probability measure obtained from
�<L;� by conditioning on L−d∑

x∈<L
�x =�. The Ginzburg–Landau dynamics is de1ned

by the Dirichlet form

DL;�(F) =
1
2

∑
b∈<∗

L

	<L;�[(∇bF)2]; (5.1)

where we used the notation

∇bF = @yF − @xF; b = (x; y):

The inverse of the spectral gap associated to DL;� is given by

:(L; �) = sup
F

Var	<L;�
(F)

DL;�(F)
(5.2)

with the supremum ranging over all real smooth functions on RL . As already observed
in Caputo (2001) we have a simple upper bound on :(L; �) in terms of 
(N; �) with
N = Ld.

Lemma 5.1. There exists a constant C only depending on d such that

:(L; �)6CL2
(Ld; �): (5.3)

Proof. We 1rst make some observations about paths in <L. We denote Cxy(L) the set
of all paths 
xy connecting sites x; y∈<L, which use only bonds in <∗

L. The length of
a path, denoted |
xy| is the number of bonds composing it. Given x; y∈<L we need
a rule to select a single path 
xy from Cxy(L). We may choose 
xy as follows. Fix
x; y∈<L and de1ne points x(i), i = 0; : : : ; d, such that x(0) = x, x(d) = y, and when
i = 1; : : : ; d− 1

x(i)
j =

{
yj j = 1; : : : ; i;

xj j = i + 1; : : : ; d:

Call 
(i), i = 1; : : : ; d, the straight line parallel to the ith axis joining sites x(i−1) and
x(i). The path 
xy is given by 
(1) ∪ · · · ∪ 
(d). It is not diDcult to prove the following
properties: there exists a 1nite constant k only depending on d such that

• for every x; y∈<L, |
xy|6 kL, and
• for every b∈<∗

L,
∑

x;y∈<L
1{b∈
xy}6 kLd+1.

When we write 
xy below we always assume that this path has been chosen according
to the above rule.

Given �∈R<L , y∈<L we write �(y) for the con1guration

�(y)
x =




�x; x �= y;

�Ld −
∑
z 
=y

�z; x = y:
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For F : R<L → R, we denote Fy(�) the function � → F(�(y)). Clearly, for any y∈<L

we have

Var	<L;�
(F) = Var	<L;�

(Fy): (5.4)

It is then suDcient to show

L−d
∑
y∈<L

∑
x∈<L

	<L;�[(@xFy)2]6CL2DL;�(F): (5.5)

For any x; y∈<L we have

@xFy = (@xF)y − (@yF)y

and therefore

	<L;�[(@xFy)2] = 	<L;�[(@xF − @yF)2]:

We write

@xF − @yF =
∑
b∈
yx

∇bF:

Since |
yx|6 kL, Schwarz’ inequality gives

(@xF − @yF)26 kL
∑
b∈<∗

L

(∇bF)21{b∈
yx}: (5.6)

From the second property of our paths we see that (5.5) with C = k2 follows from
(5.6) when summing over x; y and dividing by Ld.

Corollary 5.2. Assume V = ’ +  with ’∈� and  ∈�. Then there exists C ¡∞
such that for every �∈R and L∈N

Var	<L;�
(F)6CL2DL;�(F) (5.7)

holds for every smooth function F on R<L .
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