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Abstract

The following theorem is proved.

Theorem. Suppose M = (ai,j ) be a k × k matrix with positive entries and ai,j ai+1,j+1 >

4cos2 �
k+1 ai,j+1ai+1,j (1 � i � k − 1, 1�j�k − 1). Then det M > 0.

The constant 4 cos2 �
k+1 in this theorem is sharp. A few other results concerning totally positive and

multiply positive matrices are obtained.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

This paper is inspired by the work [5] in which some useful and easily verified conditions
of strict total positivity of a matrix are obtained. We recall that a matrix A is said to be k-times
positive, if all minors of A of order not greater than k are non-negative. A matrix A is said to be
multiply positive if it is k-times positive for some k ∈ N. A matrix A is said to be totally positive, if
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all minors of A are non-negative. For more information about these notions and their applications
we refer the reader to [3,12]. According to [12] we will denote the class of all k-times positive
matrices by TPk and the class of all totally positive matrices by TP. By STP we will denote the
class of matrices with all minors being strictly positive and by STPk the class of matrices with all
minors of order not greater than k being strictly positive.

In [5] the following theorem was proved

Theorem A. Denote by c̃ the unique real root of x3 − 5x2 + 4x − 1 = 0 (c̃ ≈ 4.0796). Let M =
(ai,j ) be an n × n matrix with the property that

(a) ai,j > 0 (1 � i, j � n) and
(b) ai,j ai+1,j+1 � c̃ ai,j+1ai+1,j (1 � i, j � n − 1).

Then M is strictly totally positive.

Note that the verification of total positivity is, in general, a very difficult problem. Surely, it
is not difficult to calculate the determinant of a given matrix with numerical entries. But if the
order of a matrix or the entries of a matrix depend on some parameters then the testing of multiple
positivity is complicated. Theorem A provides a convenient sufficient condition for total positivity
of a matrix.

For c � 1 we will denote by TP2(c) the class of all matrices M = (ai,j ) with positive entries
which satisfy the condition

ai,j ai+1,j+1 � c ai,j+1ai+1,j for all i, j. (1)

For c � 1 we will denote by STP2(c) the class of all matrices M = (ai,j ) with positive entries
which satisfy the condition

ai,j ai+1,j+1 > c ai,j+1ai+1,j for all i, j. (2)

It is easy to verify that STP2 = STP2(1). Theorem A states that TP2(c̃) ⊂ STP. Denote by

ck := 4 cos2 �

k + 1
, k = 2, 3, 4, . . .

The main result of this paper is the following:

Theorem 1. Suppose M = (ai,j ) be a k × k matrix with positive entries.

(i) if M ∈ TP2(ck) then det M � 0;
(ii) if M ∈ STP2(ck) then det M > 0.

In the proof of Theorem 1 we will show that if M ∈ TP2(c) then every submatrix of M belongs
to TP2(c). Therefore the following theorem is the simple consequence of Theorem 1.

Theorem 2. For every c � ck we have

(i) if M ∈ TP2(c) then M ∈ TPk;
(ii) if M ∈ STP2(c) then M ∈ STPk.

The following fact is a simple consequence of this theorem.
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Theorem 3. For every c � 4 we have if M ∈ TP2(c) then M ∈ STP.

The following statement demonstrates that the constants in Theorems 1 and 3 are unimprovable
not only in the class of matrices with positive entries but in the classes of Toeplitz matrices and
of Hankel matrices. We recall that a matrix M is a Toeplitz matrix if it is of the form M = (aj−i )

and a matrix M is a Hankel matrix if it is of the form M = (aj+i ).

Theorem 4

(i) For every 1 � c < ck there exists a k × k Toeplitz matrix M ∈ TP2(c) with det M < 0;
(ii) for every 1 � c < ck there exists a k × k Hankel matrix M ∈ TP2(c) with det M < 0.

A simple consequence of Theorem 4 is the following fact.

Corollary of Theorem 4

(i) For every 1 � c < 4 there exists a Toeplitz matrix M ∈ TP2(c) but M /∈ TP;
(ii) for every 1 � c < 4 there exists a Hankel matrix M ∈ TP2(c) but M /∈ TP.

The following theorem shows that Theorem 1 remains valid for some special classes of matrices
with non-negative elements.

Theorem 5. Let M = (ai,j ) be a k × k matrix. Suppose that ∃s, l ∈ Z : −(k − 1) � s < l � k −
1 such that ai,j > 0 for s � j − i � l and ai,j = 0 for j − i < s or j − i > l. If ai,j ai+1,j+1 �
ck ai,j+1ai+1,j (1 � i < m, 1 � j < n) then det M � 0.

We will show how to prove Theorem 5 in the section “Proof of Theorem 4”.
A variation of Theorem 3 for the class of Toeplitz matrices was proved by Hutchinson in [11].

To formulate his result we need some notions.
The class of m-times positive sequences consists of the sequences {ak}∞k=0 such that all minors

of the infinite matrix∥∥∥∥∥∥∥∥∥∥∥

a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
0 0 0 a0 · · ·
...

...
...

...
. . .

∥∥∥∥∥∥∥∥∥∥∥
(3)

of order not greater than m are non-negative. The class of m-times positive sequences is denoted
by PFm. A sequence is called a multiply positive sequence if it is m-times positive for some m ∈ N
(see [16]). A sequence {ak}∞k=0 such that all minors of the infinite matrix (3) are non-negative is
called a totally positive sequence. The class of totally positive sequences is denoted by PF∞. The
corresponding classes of generating functions

f (z) =
∞∑

k=0

akz
k

are also denoted by PFm and PF∞.
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The multiply positive sequences (also called Pólya frequency sequences) were introduced by
Fekete and Pólya in 1912 see [7] in connection with the problem of exact calculation of the number
of positive zeros of a real polynomial.

The class PF∞ was completely described by Aissen et al. in [1] (see also [12, p. 412]):

Theorem ASWE. A function f ∈ PF∞ iff

f (z) = Czneγ z
∞∏

k=1

(1 + αkz)/(1 − βkz),

where C � 0, n ∈ Z, γ � 0, αk � 0, βk � 0,
∑

(αk + βk) < ∞.

By Theorem ASWE a polynomial p(z) = ∑n
k=0 akz

k , ak � 0, has only real zeros if and only
if the sequence (a0, a1, . . . , an, 0, 0, . . .) ∈ PF∞.

In 1926, Hutchinson [11, p. 327] extended the work of Petrovitch [15] and Hardy [9] or [10,
pp. 95–100] and proved the following theorem.

Theorem B. Let f (z) = ∑∞
k=0 akz

k, ak > 0, ∀k. Inequality

a2
n � 4an−1an+1, ∀n � 1 (4)

holds if and only if the following two properties hold:

(i) the zeros of f(x) are all real, simple and negative and
(ii) the zeros of any polynomial

∑n
k=m akz

k, formed by taking any number of consecutive terms
of f (x), are all real and non-positive.

It is easy to see that (4) implies

an � a1

4n(n−1)/2

(
a1

a0

)n−1

, n � 2,

that is f is an entire function of the order 0. So by the Hadamard theorem (see, for example, [14,
p. 24])

f (z) = Czn
∞∏

k=1

(1 + αkz),

where C � 0, n ∈ N ∪ {0}, αk � 0,
∑

(αk) < ∞.
Using ASWE Theorem we obtain from Theorem B that

a2
n � 4 an−1an+1, ∀n � 1 ⇒ {an}∞n=0 ∈ PF∞. (5)

In [13] it was proved that the constant 4 in (5) is sharp.
Thus, Theorem B provides a simple sufficient condition for deducing when a sequence is a

totally positive sequence. Theorem 5 provides the following simple sufficient condition of multiple
positivity for a sequence.

Corollary of Theorem 5. Let {an}∞n=0 be a sequence of non-negative numbers. Then

a2
n � cman−1an+1, ∀n � 1 ⇒ {an}∞n=0 ∈ PFm.
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Our results are applicable also to the moment problem. Recall that a sequence of positive
numbers {sk}∞k=0 is said to be the moment sequence of a non-decreasing function F : R → R
if

sk =
∫ ∞

−∞
tk dF(t).

A sequence of positive numbers is called a Hamburger moment sequence if it is a moment
sequence of a function F having infinitely many points of growth. The following famous theorem
gives the description of Hamburger moment sequences.

Theorem C ([8], see also [2, Chapter 2]). A sequence of positive numbers {sk}∞k=0 is a Hamburger
moment sequence if and only if

det




s0 s1 · · · sk

s1 s2 · · · sk+1

...
... · · · ...

sk sk+1 · · · s2k


 > 0, k = 0, 1, 2, . . . (6)

The following statement is proved in [4].

Theorem D. Let d be the positive solution of
∑∞

n=1 d−n2 = 1/4 (d ≈ 4.06). Then any positive
sequence {sk}∞k=0 satisfying

sn−1sn+1 � ds2
n, n = 0, 1, 2, . . .

is a Hamburger moment sequence.

Theorem 3 implies the following statement.

Corollary of Theorem 3. Any positive sequence {sk}∞k=0 satisfying

sn−1sn+1 � 4s2
n, n = 0, 1, 2, . . .

is a Hamburger moment sequence.

The constant 4 in the corollary above cannot be improved.

2. Proof of Theorem 1

We need the following sequence of functions:

Fm(c) =
�m/2�∑
j=0

(
m − j

j

)
(−1)j

1

cj
, m = 0, 1, 2, . . . , c � 1, (7)

where by �x� we denote the integral part of x.
The following lemma provides some properties for this sequence of functions.
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Lemma 1

(i) The following identities hold

F0(c) = F1(c) = 1,

Fm(c) = Fm−1(c) − 1

c
Fm−2(c), m = 2, 3, 4, . . . (8)

(ii) For c = 4 cos2 φ we have

Fm(c) = sin(m + 1)φ

cm/2 sin φ
. (9)

(iii) For ck = 4 cos2 �
k+1 we have

Fj−1(ck) − 1

c2
k

Fj−2(ck) − 1

c
j
k

� Fj (ck), k � 3, j = 2, 3, . . . , k − 1. (10)

Proof. Formula (8) follows directly from (7). Formula (9) is a simple consequence of the well-
known trigonometric identity (see, for example, [17, p. 696])

sin(m + 1)φ

sin φ
=

�m/2�∑
j=0

(
m − j

j

)
(−1)j (2 cos φ)m−2j .

Using the identity 4 cos2 φ − 1 = sin(3φ)
sin φ

we have

Fj−1(ck) − 1

c2
k

Fj−2(ck) − 1

c
j
k

− Fj (ck)

=
(

1

ck

− 1

c2
k

)
Fj−2(ck) − 1

c
j
k

= 1

c
(j+2)/2
k


 sin

(
3 �

k+1

)
sin �

k+1

·
sin
(
(j − 1) �

k+1

)
sin �

k+1

− 1(
2 cos �

k+1

)j−2




� 1

c
(j+2)/2
k


 sin

(
3 �

k+1

)
sin �

k+1

·
sin
(
(j − 1) �

k+1

)
sin �

k+1

− 1


 � 0,

for k � 3 and j = 2, 3, . . . , k − 1. Inequality (10) is proved.
Lemma 1 is proved. �

The following lemma was proved in [5].

Lemma A. Let M = (ai,j ), 1 � i � m, 1 � j � n and M ∈ TP2(c), c � 1. Then

ai,j ak,l � c(l−j)(k−i)ai,lak,j for all i < k, j < l.
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A simple consequence of Lemma A is the fact that if M ∈ TP2(c) then any submatrix of M

also belongs to TP2(c). Analogously if M ∈ STP2(c) then any submatrix of M also belongs to
STP2(c).

For a matrix M = (ai,j ) we will denote by M
(

i1,i2,...,ik
j1,j2,...,jk

)
the following submatrix of M:

M
(

i1,i2,...,ik
j1,j2,...,jk

)
=




ai1,j1 ai1,j2 · · · ai1,jk

ai2,j1 ai2,j2 · · · ai2,jk

...
... · · · ...

aik,j1 aik,j2 · · · aik,jk


 .

We now prove the following claim (which consists of three parts) by induction on n. Let M =
(ai,j ) be an n × n matrix and M ∈ TP2(c), where c � 4 cos2 �

n+1 . Then the following inequalities
hold:

det M � 0, (11)

det M � a1,1 det M
(

2,3,...,n
2,3,...,n

)
− a1,2a2,1 det M

(
3,4,...,n
3,4,...,n

)
, (12)

det M � a1,1 det M
(

2,3,...,n
2,3,...,n

)
. (13)

Since M ∈ TP2(c) then hypothesis (11)–(13) are true for n = 2. The proof below is based on
the following lemma.

Lemma 2. Let c0 � 1, M = (ai,j ) ∈ TP2(c0) be an n × n matrix satisfying the following condi-
tions:

(i) ∀i = 2, 3, . . . , n det M
(

i,i+1,...,n
i,i+1,...,n

)
� 0;

(ii) ∀i = 1, 2, . . . , n − 2

det M
(

i,i+1,...,n
i,i+1,...,n

)
� ai,i det M

(
i+1,i+2,...,n
i+1,i+2,...,n

)
− ai,i+1ai+1,i det M

(
i+2,i+3,...,n
i+2,i+3,...,n

)
.

Then for all c, 1 � c � c0 the following inequalities are valid:

det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)

� am+1,m+1

(
det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)
− 1

c
am+2,m+2 det M

(
m+3,m+4,...,n
m+3,m+4,...,n

))
,

m = 0, 1, . . . , n − 3. (14)

det M � a1,1a2,2 · · · am,m

(
Fm(c) det M

(
m+1,m+2,...,n
m+1,m+2,...,n

)

−1

c
Fm−1(c)am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

))
, m = 1, 2, . . . , n − 2. (15)

Fm(c) det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)
− 1

c
Fm−1(c)am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)
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� am+1,m+1

(
Fm+1(c) det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)

−1

c
Fm(c)am+2,m+2 det M

(
m+3,m+4,...,n
m+3,m+4,...,n

))
, m = 1, 2, . . . , n − 3. (16)

Fm(c) det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)
− 1

c
Fm−1(c)am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)
� am+1,m+1am+2,m+2 · · · an,nFn(c), m = 1, 2, . . . , n − 2. (17)

Proof. First we prove (14). Since M ∈ TP2(c) and by (ii) we have

det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)
� am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)
− am+1,m+2am+2,m+1 det M

(
m+3,m+4,...,n
m+3,m+4,...,n

)
� am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)
− 1

c
am+1,m+1am+2,m+2 det M

(
m+3,m+4,...,n
m+3,m+4,...,n

)
,

m = 0, 1, . . . , n − 3.

Inequality (14) is proved.
Let us prove (16). Multiplying (14) by Fm(c) we have

Fm(c) det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)
− 1

c
Fm−1(c)am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)

� am+1,m+1

((
Fm(c) − 1

c
Fm−1(c)

)
det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)

−1

c
Fm(c)am+2,m+2 det M

(
m+3,m+4,...,n
m+3,m+4,...,n

))
, m = 1, 2, . . . , n − 3,

and, using (8) we obtain (16).
To prove (17) we apply (16) (n − 2 − m) times. We derive

Fm(c) det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)
− 1

c
Fm−1(c)am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)

� am+1,m+1am+2,m+2· · ·an−2,n−2

(
Fn−2(c) det M

(
n−1,n
n−1,n

)
− 1

c
Fn−3(c)an−1,n−1an,n

)
.

Since M ∈ TP2(c0) the following inequality holds for all c, 1 � c � c0,

det M
(

n−1,n
n−1,n

)
�
(

1 − 1

c

)
an−1,n−1an,n, (18)

so by (8) we obtain

Fm(c) det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)
− 1

c
Fm−1(c)am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)

� am+1,m+1am+2,m+2 · · · an,n

((
Fn−2(c) − 1

c
Fn−3(c)

)
− 1

c
Fn−2(c)

)
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= am+1,m+1am+2,m+2 · · · an,n

(
Fn−1(c) − 1

c
Fn−2(c)

)
= am+1,m+1am+2,m+2···an,nFn(c).

Inequality (17) is proved.
By (8) we rewrite inequality (14) for m = 0 in the following form:

det M � a1,1

(
F1(c) det M

(
2,3,...,n
2,3,...,n

)
− 1

c
F0(c)a2,2 det M

(
3,4,...,n
3,4,...,n

))
.

To prove (15) we apply (16) (m − 1) times.
Lemma 2 is proved. �

Remark. If a matrix M satisfies the conditions of Lemma 2 and, moreover, an−1,n−1an,n >

c0an−1,nan,n−1, then inequality (18) is strict, hence (17) is strict, i.e.,

Fm(c) det M
(

m+1,m+2,...,n
m+1,m+2,...,n

)
− 1

c
Fm−1(c)am+1,m+1 det M

(
m+2,m+3,...,n
m+2,m+3,...,n

)
> am+1,m+1am+2,m+2 · · · an,nFn(c), m = 1, 2, . . . , n − 2. (19)

In particular, for all matrices M ∈ STP(c0) inequality (19) is valid for all c, 1 � c � c0.
Assume that conditions (11)–(13) hold for all matrices of sizes smaller than k. Let us prove

these conditions for n = k.

Lemma 3. Let M = (ai,j ) be a k × k matrix, M ∈ TP2(c), c � ck := 4 cos2 �
k+1 . For all j =

2, 3, . . . , k − 1 the following inequality holds:

a1,j det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
− a1,j+1 det M

(
2,3,...,k
1,2,...,j,j+2,...,k

)
� 0.

Proof. Since m ∈ TP2(c), M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
∈ TP2(c) and M

(
2,3,...,k
1,2,...,j,j+2,...,k

)
∈ TP2(c).

Since 4 cos2 �
n+1 � 4 cos2 �

k+1 for n = 2, 3, . . . , k − 1 we can apply the induction hypothesis to

the matrices M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
, M

(
2,3,...,k
1,2,...,j,j+2,...,k

)
and to all their square submatrices. We

apply inequality (13) j times and obtain

det M
(

2,3,...,k
1,2,...,j,j+2,...,k

)
� a2,1a3,2 · · · aj+1,j det M

(
j+2,j+3,...,k

j+2,j+3,...,k

)
.

From Lemma A and from the fact a1,j+1aj+1,j � 1
c
j
k

a1,j aj+1,j+1 now we conclude

a1,j+1 det M
(

2,3,...,k
1,2,...,j,j+2,...,k

)
� 1

c
j
k

a1,j a2,1a3,2 · · · aj,j−1aj+1,j+1 det M
(

j+2,j+3,...,k

j+2,j+3,...,k

)
.

(20)

By the induction hypothesis the matrix M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
satisfies the assumptions of

Lemma 2. Applying to this matrix (15) with m = j − 2 we obtain

det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
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� a2,1a3,2 · · · aj−1,j−2

(
Fj−2(ck) det M

(
j,j+1,j+2,...,k

j−1,j+1,j+2,...,k

)

− 1

ck

Fj−3(ck)aj,j−1 det M
(

j+1,j+2,...,k

j+1,j+2,...,k

))
.

Applying (12) to the matrix M
(

j,j+1,j+2,...,k

j−1,j+1,j+2,...,k

)
and plugging the result into the last formula we

have

det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)

� a2,1a3,2 · · · aj−1,j−2

(
aj,j−1(Fj−2(ck) − 1

ck

Fj−3(ck)) det M
(

j+1,j+2,...,k

j+1,j+2,...,k

)

−aj,j+1aj+1,j−1Fj−2(ck) det M
(

j+2,j+3,...,k

j+2,j+3,...,k

))
,

whence, by Lemma A and (8) we obtain

det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)

� a2,1a3,2 · · · aj−1,j−2aj,j−1

(
Fj−1(ck) det M

(
j+1,j+2,...,k

j+1,j+2,...,k

)

− 1

c2
k

aj+1,j+1Fj−2(ck) det M
(

j+2,j+3,...,k

j+2,j+3,...,k

))
.

Further applying (14) to the matrix M
(

j+1,j+2,...,k

j+1,j+2,...,k

)
we have

det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
� a2,1a3,2 · · · aj,j−1aj+1,j+1

(
det M

(
j+2,j+3,...,k

j+2,j+3,...,k

)(
Fj−1(ck)

− 1

c2
k

Fj−2(ck)

)
− 1

ck

aj+2,j+2Fj−1(ck) det M
(

j+3,j+4,...,k

j+3,j+4,...,k

))
. (21)

By (20) and (21) we derive

a1,j det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
− a1,j+1 det M

(
2,3,...,k
1,2,...,j,j+2,...,k

)

� a1,j a2,1a3,2 · · · aj,j−1aj+1,j+1

((
Fj−1(ck) − 1

c2
k

Fj−2(ck) − 1

c
j
k

)

× det M
(

j+2,j+3,...,k

j+2,j+3,...,k

)
− 1

ck

aj+2,j+2Fj−1(ck) det M
(

j+3,j+4,...,k

j+3,j+4,...,k

))
. (22)

It follows from (22), (10) and (17) that

a1,j det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
− a1,j+1 det M

(
2,3,...,k
1,2,...,j,j+2,...,k

)
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� a1,j a2,1a3,2 · · · aj,j−1aj+1,j+1

(
Fj (ck) det M

(
j+2,j+3,...,k

j+2,j+3...,k

)

− 1

ck

aj+2,j+2Fj−1(ck) det M
(

j+3,j+4,...,k

j+3,j+4,...,k

))
� a1,j a2,1a3,2 · · · aj,j−1aj+1,j+1aj+2,j+2 · · · ak,kFk−1(ck).

Hence by Lemma 1 and (9) with m = k − 1 we conclude that

a1,j det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
− a1,j+1 det M

(
2,3,...,k
1,2,...,j,j+2,...,k

)

� a1,j a2,1a3,2 · · · aj,j−1aj+1,j+1aj+2,j+2 · · · ak,k

sin(k �
k+1 )

c
(k−1)/2
k sin �

k+1

� 0.

Lemma 3 is proved. �

Now we will prove (12). Using Lemma 3 we have

det M
(

1,2,...,k
1,2,...,k

)
=

k∑
j=1

(−1)j+1a1,j det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)

� a1,1 det M
(

2,3,...,k
2,3,...,k

)
− a1,2 det M

(
2,3,...,k
1,3,4,...,k

)
.

We apply the induction hypothesis (13) to the matrix M
(

2,3,...,k
1,3,4,...,k

)
. We have

det M
(

1,2,...,k
1,2,...,k

)
� a1,1 det M

(
2,3,...,k
2,3,...,k

)
− a1,2a2,1 det M

(
3,4,...,k
3,4,...,k

)
.

The inequality (12) is proved.
By Lemma 3

det M
(

1,2,...,k
1,2,...,k

)
=

k∑
j=1

(−1)j+1a1,j det M
(

2,3,...,k
1,2,...,j−1,j+1,...,k

)
� a1,1 det M

(
2,3,...,k
2,3,...,k

)
.

The inequality (13) is proved.
To prove (11) we note that by (12) and induction hypothesis the matrix M satisfies the assump-

tions of Lemma 2. It follows from (15), (17) and Lemma 1 that

det M � a1,1a2,2 · · · ak,kFk(ck) = a1,1a2,2 · · · ak,k

sin �

c
k/2
k sin �

k+1

= 0.

Hence the statement (i) in Theorem 1 is proved.
Now we will prove the statement (ii) in Theorem 4. If M ∈ STPk(ck) then by (19) we can

rewrite the last inequality in the following form:

det M > a1,1a2,2 · · · ak,kFk(ck) = a1,1a2,2 · · · ak,k

sin �

c
k/2
k sin �

k+1

= 0.

Hence the statement (ii) in Theorem 1 is proved, which completes the proof of Theorem 1. �
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In fact, we have proved a slightly stronger theorem, which may be of independent interest.

Theorem 6. Suppose c � 4 cos2 �
k+1 . Let M = (ai,j ) ∈ TP2(c) be a k × k matrix. Then

det M � a1,1a2,2 · · · ak,kFk(c).

3. Proof of Theorem 4

Note that TP2(c1) ⊂ TP2(c2) for c1 � c2. Thus it is sufficient to prove Theorem 4 with c ∈
(ck − ε, ck) for ε > 0 being small enough.

Consider the following n × n symmetrical Toeplitz matrix.

Mn(φ) :=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2 cos φ 1 0 0 · · · 0 0

1 2 cos φ 1 0 · · · 0 0

0 1 2 cos φ 1 0 · · · 0
...

...
...

... · · · ...
...

0 0 · · · 0 1 2 cos φ 1

0 0 0 · · · 0 1 2 cos φ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (23)

where 0 � φ < �/2. Obviously, Mn(φ) ∈ TP2(4 cos2 φ). The matrix Mn(φ) satisfies the follow-
ing recursion relation det Mn(φ) = 2 cos φ det Mn−1(φ) − det Mn−2(φ) and M1(φ) = 2 cos φ,

M2(φ) = 4 cos2 φ − 1. It is easy to verify that det Mn(φ) = sin(n+1)φ
sin φ

. So for all φ ∈
(

�
n+1 , 2�

n+1

)
we have det Mn(φ) < 0. For φ ∈

(
�

n+1 , 2�
n+1

)
consider the following n × n symmetrical Toeplitz

matrix

Tn(φ, ε1, . . . , εn−2)

:=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2 cos φ 1 ε1 ε2 · · · εn−3 εn−2

1 2 cos φ 1 ε1 · · · εn−4 εn−3

ε1 1 2 cos φ 1 ε1 · · · εn−4

...
...

...
... · · · ...

...

εn−3 εn−4 · · · ε1 1 2 cos φ 1

εn−2 εn−3 εn−4 · · · ε1 1 2 cos φ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
, (24)

where ε1 > ε2 > · · · > εn−2 > 0 and ε1 is chosen to satisfy the inequality 1 � 4 cos2 φ · 2 cos φ ·
ε1, then ε2 is chosen to satisfy the inequality ε2

1 � 4 cos2 φ · ε2, then ε3 is chosen to satisfy the
inequality ε2

2 � 4 cos2 φ · ε1 · ε3, . . . and then εn−2 is chosen to satisfy the inequality ε2
n−3 �

4 cos2 φ · εn−4 · εn−2. Under these conditions we haveTn(φ, ε1, . . . , εn−2) ∈ TP2(4 cos2 φ). Since

Tn(φ, 0, 0, . . . , 0) = Mn(φ) we obtain det Tn(φ, 0, 0, . . . , 0) < 0 for φ ∈
(

�
n+1 , 2�

n+1

)
. Therefore

we have det Tn(φ, ε1, . . . , εn−2) < 0 for φ ∈
(

�
n+1 , 2�

n+1

)
if ε1 is small enough.

Thus, for every c ∈ (4 cos2 2�
n+1 , cn) the statement (i) of Theorem 4 is proved. Since TP2(c1) ⊂

TP2(c2) for c1 � c2 the statement (i) of Theorem 4 follows.
We use the same method to obtain the proof of Theorem 5.



O.M. Katkova, A.M. Vishnyakova / Linear Algebra and its Applications 416 (2006) 1083–1097 1095

To prove the statement (ii) we consider the following Hankel matrix Dn(p, q) with p � 1,

q � 1.

Dn(p, q) :=
(
p�(i+j−2)/2��(i+j−1)/2�q�(i+j−3)/2��(i+j−2)/2�) , 1 � i, j � n, (25)

or,

Dn(p, q) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 1 p p2q · · · ∗ ∗
1 p p2q p4q2 · · · ∗ ∗
p p2q p4q2 p6q4 · · · ∗ ∗
...

...
...

... · · · ...
...

∗ ∗ ∗ ∗ · · · p(n−2)2
q(n−2)(n−3) p(n−1)(n−2)q(n−2)2

∗ ∗ ∗ ∗ · · · p(n−1)(n−2)q(n−2)2
p(n−1)2

q(n−1)(n−2)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

(26)

By direct calculation we obtain Dn(p, q) ∈ TP2(min(p, q)).

Lemma 4. For all n � 3 we have

det Dn(p, q) = pβnqαnFn(p) + Qαn−1(p, q), (27)

where αn = n(n−1)(n−2)
3 , βn = n(n−1)(2n−1)

6 and Qαn−1(p, q) is a polynomial in p, q such that
degq Qαn−1(p, q) � αn − 1. (Here and further by degq Q(p, q) we will denote the degree of
Q(p, q) with respect to q.)

Proof. We will prove this lemma by induction in n. For n = 3 the statement is true as can be
verified directly. The expansion of det Dn(p, q) along column n gives

det Dn(p, q)

= Rαn−1(p, q)

+ det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 1 p p2q · · · ∗ 0

1 p p2q p4q2 · · · ∗ 0

p p2q p4q2 p6q4 · · · ∗ 0
...

...
...

... · · · ...
...

∗ ∗ ∗ ∗ · · · ∗ 0

∗ ∗ ∗ ∗ · · · p(n−2)2
q(n−2)(n−3) p(n−1)(n−2)q(n−2)2

∗ ∗ ∗ ∗ · · · p(n−1)(n−2)q(n−2)2
p(n−1)2

q(n−1)(n−2)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,

(28)

where Rαn−1(p, q) is a polynomial in p, q and degq Rαn−1(p, q) � αn − 1.
The expansion of the determinant on the right-hand side of the last equation along row n gives

det Dn(p, q)

= Sαn−1(p, q)
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+ det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 1 p p2q · · · ∗ 0
1 p p2q p4q2 · · · ∗ 0
p p2q p4q2 p6q4 · · · ∗ 0
...

...
...

... · · · ...
...

∗ ∗ ∗ ∗ · · · ∗ 0

∗ ∗ ∗ ∗ · · · p(n−2)2
q(n−2)(n−3) p(n−1)(n−2)q(n−2)2

0 0 0 · · · 0 p(n−1)(n−2)q(n−2)2
p(n−1)2

q(n−1)(n−2)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

,

(29)

where Sαn−1(p, q) is a polynomial in p, q and degq Sαn−1(p, q) � αn − 1.
The last equation provides the following recursion relation:

Dn(p, q) = p(n−1)2
q(n−1)(n−2)Dn−1(p, q) − p2(n−1)(n−2)q2(n−2)2

Dn−2(p, q)

+ Tαn−1(p, q),

where Tαn−1(p, q) is a polynomial in p, q and degq Tαn−1(p, q) � αn − 1.
Using the induction hypothesis and formula (8) we obtain the statement of Lemma 4.
Lemma 4 is proved. �

Note that p�n/2�Fn(p) is a polynomial in p of degree �n/2�. By (9) it has the following �n/2�
roots:

4 cos2 �

n + 1
, 4 cos2 2�

n + 1
, . . . , 4 cos2 �n/2��

n + 1
.

Obviously, 4 cos2 �
n+1 is the largest root of this polynomial. Hence forp∈

(
4 cos2 2�

n+1 , 4 cos2 �
n+1

)
we have Fn(p) < 0.

Let us fix an arbitrary p0 ∈ (4 cos2 2�
n+1 , 4 cos2 �

n+1 ). Since

det Dn(p0, q) = qαn(p
βn

0 Fn(p0) + q−αnQαn−1(p0, q)),

where Qαn−1(p0, q) is a polynomial in q and deg Qαn−1(p0, q) � αn − 1, for q being large
enough (and q > p0) we obtain Dn(p0, q) ∈ TP2(p0) but det Dn(p0, q) < 0.

Thus, for everyp ∈
(

4 cos2 2�
n+1 , cn

)
the statement (ii) of Theorem 4 is proved. Since TP2(c1) ⊂

TP2(c2) for c1 � c2 the statement (ii) of Theorem 4 follows.
Theorem 4 is proved. �

Remark. This is a revised version of the paper originally submitted to the journal “Linear Algebra
and its Applications” in summer 2004. Recently in the paper [6] the authors formulated a conjecture
which coincides with the statement proved in our Theorem 1.
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