On sufficient conditions for the total positivity and for the multiple positivity of matrices

Olga M. Katkova, Anna M. Vishnyakova*
Department of Mathematics, Kharkov National University, Svobody sq., 4, 61077 Kharkov, Ukraine
Received 17 June 2004; accepted 18 January 2006
Available online 9 March 2006
Submitted by V. Mehrmann

Abstract

The following theorem is proved. Theorem. Suppose $M=\left(a_{i, j}\right)$ be a $k \times k$ matrix with positive entries and $a_{i, j} a_{i+1, j+1}>$ $4 \cos ^{2} \frac{\pi}{k+1} a_{i, j+1} a_{i+1, j} \quad(1 \leqslant i \leqslant k-1,1 \leqslant j \leqslant k-1)$. Then $\operatorname{det} M>0$.

The constant $4 \cos ^{2} \frac{\pi}{k+1}$ in this theorem is sharp. A few other results concerning totally positive and multiply positive matrices are obtained.
© 2006 Elsevier Inc. All rights reserved.
AMS classification: 15A48; 15A57; 15A15
Keywords: Multiply positive matrix; Totally positive matrix; Strictly totally positive matrix; Toeplitz matrix; Hankel matrix; Pólya frequency sequence

1. Introduction and statement of results

This paper is inspired by the work [5] in which some useful and easily verified conditions of strict total positivity of a matrix are obtained. We recall that a matrix A is said to be k-times positive, if all minors of A of order not greater than k are non-negative. A matrix A is said to be multiply positive if it is k-times positive for some $k \in \mathbf{N}$. A matrix A is said to be totally positive, if

[^0]all minors of A are non-negative. For more information about these notions and their applications we refer the reader to [3,12]. According to [12] we will denote the class of all k-times positive matrices by $T P_{k}$ and the class of all totally positive matrices by $T P$. By $S T P$ we will denote the class of matrices with all minors being strictly positive and by $S T P_{k}$ the class of matrices with all minors of order not greater than k being strictly positive.

In [5] the following theorem was proved
Theorem A. Denote by \tilde{c} the unique real root of $x^{3}-5 x^{2}+4 x-1=0(\tilde{c} \approx 4.0796)$. Let $M=$ $\left(a_{i, j}\right)$ be an $n \times n$ matrix with the property that
(a) $a_{i, j}>0(1 \leqslant i, j \leqslant n)$ and
(b) $a_{i, j} a_{i+1, j+1} \geqslant \tilde{c} a_{i, j+1} a_{i+1, j}(1 \leqslant i, j \leqslant n-1)$.

Then M is strictly totally positive.
Note that the verification of total positivity is, in general, a very difficult problem. Surely, it is not difficult to calculate the determinant of a given matrix with numerical entries. But if the order of a matrix or the entries of a matrix depend on some parameters then the testing of multiple positivity is complicated. Theorem A provides a convenient sufficient condition for total positivity of a matrix.

For $c \geqslant 1$ we will denote by $T P_{2}(c)$ the class of all matrices $M=\left(a_{i, j}\right)$ with positive entries which satisfy the condition

$$
\begin{equation*}
a_{i, j} a_{i+1, j+1} \geqslant c a_{i, j+1} a_{i+1, j} \quad \text { for all } i, j . \tag{1}
\end{equation*}
$$

For $c \geqslant 1$ we will denote by $S T P_{2}(c)$ the class of all matrices $M=\left(a_{i, j}\right)$ with positive entries which satisfy the condition

$$
\begin{equation*}
a_{i, j} a_{i+1, j+1}>c a_{i, j+1} a_{i+1, j} \quad \text { for all } i, j \tag{2}
\end{equation*}
$$

It is easy to verify that $S T P_{2}=S T P_{2}(1)$. Theorem A states that $T P_{2}(\tilde{c}) \subset S T P$. Denote by

$$
c_{k}:=4 \cos ^{2} \frac{\pi}{k+1}, \quad k=2,3,4, \ldots
$$

The main result of this paper is the following:
Theorem 1. Suppose $M=\left(a_{i, j}\right)$ be a $k \times k$ matrix with positive entries.
(i) if $M \in T P_{2}\left(c_{k}\right)$ then $\operatorname{det} M \geqslant 0$;
(ii) if $M \in S T P_{2}\left(c_{k}\right)$ then $\operatorname{det} M>0$.

In the proof of Theorem 1 we will show that if $M \in T P_{2}(c)$ then every submatrix of M belongs to $T P_{2}(c)$. Therefore the following theorem is the simple consequence of Theorem 1.

Theorem 2. For every $c \geqslant c_{k}$ we have
(i) if $M \in T P_{2}$ (c) then $M \in T P_{k}$;
(ii) if $M \in S T P_{2}(c)$ then $M \in S T P_{k}$.

The following fact is a simple consequence of this theorem.

Theorem 3. For every $c \geqslant 4$ we have if $M \in T P_{2}(c)$ then $M \in S T P$.
The following statement demonstrates that the constants in Theorems 1 and 3 are unimprovable not only in the class of matrices with positive entries but in the classes of Toeplitz matrices and of Hankel matrices. We recall that a matrix M is a Toeplitz matrix if it is of the form $M=\left(a_{j-i}\right)$ and a matrix M is a Hankel matrix if it is of the form $M=\left(a_{j+i}\right)$.

Theorem 4

(i) For every $1 \leqslant c<c_{k}$ there exists a $k \times k$ Toeplitz matrix $M \in T P_{2}(c)$ with $\operatorname{det} M<0$;
(ii) for every $1 \leqslant c<c_{k}$ there exists a $k \times k$ Hankel matrix $M \in T P_{2}(c)$ with $\operatorname{det} M<0$.

A simple consequence of Theorem 4 is the following fact.

Corollary of Theorem 4

(i) For every $1 \leqslant c<4$ there exists a Toeplitz matrix $M \in T P_{2}(c)$ but $M \notin T P$;
(ii) for every $1 \leqslant c<4$ there exists a Hankel matrix $M \in T P_{2}(c)$ but $M \notin T P$.

The following theorem shows that Theorem 1 remains valid for some special classes of matrices with non-negative elements.

Theorem 5. Let $M=\left(a_{i, j}\right)$ be a $k \times k$ matrix. Suppose that $\exists s, l \in \mathbf{Z}:-(k-1) \leqslant s<l \leqslant k-$ 1 such that $a_{i, j}>0$ for $s \leqslant j-i \leqslant l$ and $a_{i, j}=0$ for $j-i<s$ or $j-i>l$. If $a_{i, j} a_{i+1, j+1} \geqslant$ $c_{k} a_{i, j+1} a_{i+1, j}(1 \leqslant i<m, 1 \leqslant j<n)$ then $\operatorname{det} M \geqslant 0$.

We will show how to prove Theorem 5 in the section "Proof of Theorem 4".
A variation of Theorem 3 for the class of Toeplitz matrices was proved by Hutchinson in [11]. To formulate his result we need some notions.

The class of m-times positive sequences consists of the sequences $\left\{a_{k}\right\}_{k=0}^{\infty}$ such that all minors of the infinite matrix

$$
\left\|\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \tag{3}\\
0 & a_{0} & a_{1} & a_{2} & \cdots \\
0 & 0 & a_{0} & a_{1} & \cdots \\
0 & 0 & 0 & a_{0} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right\|
$$

of order not greater than m are non-negative. The class of m-times positive sequences is denoted by $P F_{m}$. A sequence is called a multiply positive sequence if it is m-times positive for some $m \in \mathbf{N}$ (see [16]). A sequence $\left\{a_{k}\right\}_{k=0}^{\infty}$ such that all minors of the infinite matrix (3) are non-negative is called a totally positive sequence. The class of totally positive sequences is denoted by $P F_{\infty}$. The corresponding classes of generating functions

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

are also denoted by $P F_{m}$ and $P F_{\infty}$.

The multiply positive sequences (also called Pólya frequency sequences) were introduced by Fekete and Pólya in 1912 see [7] in connection with the problem of exact calculation of the number of positive zeros of a real polynomial.

The class $P F_{\infty}$ was completely described by Aissen et al. in [1] (see also [12, p. 412]):
Theorem ASWE. A function $f \in P F_{\infty}$ iff

$$
f(z)=C z^{n} \mathrm{e}^{\gamma z} \prod_{k=1}^{\infty}\left(1+\alpha_{k} z\right) /\left(1-\beta_{k} z\right)
$$

where $C \geqslant 0, n \in \mathbf{Z}, \gamma \geqslant 0, \alpha_{k} \geqslant 0, \beta_{k} \geqslant 0, \sum\left(\alpha_{k}+\beta_{k}\right)<\infty$.
By Theorem ASWE a polynomial $p(z)=\sum_{k=0}^{n} a_{k} z^{k}, a_{k} \geqslant 0$, has only real zeros if and only if the sequence $\left(a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots\right) \in P F_{\infty}$.

In 1926, Hutchinson [11, p. 327] extended the work of Petrovitch [15] and Hardy [9] or [10, pp. 95-100] and proved the following theorem.

Theorem B. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{k}>0, \forall k$. Inequality

$$
\begin{equation*}
a_{n}^{2} \geqslant 4 a_{n-1} a_{n+1}, \quad \forall n \geqslant 1 \tag{4}
\end{equation*}
$$

holds if and only if the following two properties hold:
(i) the zeros of $f(x)$ are all real, simple and negative and
(ii) the zeros of any polynomial $\sum_{k=m}^{n} a_{k} z^{k}$, formed by taking any number of consecutive terms of $f(x)$, are all real and non-positive.

It is easy to see that (4) implies

$$
a_{n} \leqslant \frac{a_{1}}{4^{n(n-1) / 2}}\left(\frac{a_{1}}{a_{0}}\right)^{n-1}, \quad n \geqslant 2,
$$

that is f is an entire function of the order 0 . So by the Hadamard theorem (see, for example, [14, p. 24])

$$
f(z)=C z^{n} \prod_{k=1}^{\infty}\left(1+\alpha_{k} z\right)
$$

where $C \geqslant 0, n \in \mathbf{N} \cup\{\mathbf{0}\}, \alpha_{k} \geqslant 0, \sum\left(\alpha_{k}\right)<\infty$.
Using ASWE Theorem we obtain from Theorem B that

$$
\begin{equation*}
a_{n}^{2} \geqslant 4 a_{n-1} a_{n+1}, \forall n \geqslant 1 \Rightarrow\left\{a_{n}\right\}_{n=0}^{\infty} \in P F_{\infty} \tag{5}
\end{equation*}
$$

In [13] it was proved that the constant 4 in (5) is sharp.
Thus, Theorem B provides a simple sufficient condition for deducing when a sequence is a totally positive sequence. Theorem 5 provides the following simple sufficient condition of multiple positivity for a sequence.

Corollary of Theorem 5. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of non-negative numbers. Then

$$
a_{n}^{2} \geqslant c_{m} a_{n-1} a_{n+1}, \quad \forall n \geqslant 1 \Rightarrow\left\{a_{n}\right\}_{n=0}^{\infty} \in P F_{m}
$$

Our results are applicable also to the moment problem. Recall that a sequence of positive numbers $\left\{s_{k}\right\}_{k=0}^{\infty}$ is said to be the moment sequence of a non-decreasing function $F: \mathbf{R} \rightarrow \mathbf{R}$ if

$$
s_{k}=\int_{-\infty}^{\infty} t^{k} \mathrm{~d} F(t) .
$$

A sequence of positive numbers is called a Hamburger moment sequence if it is a moment sequence of a function F having infinitely many points of growth. The following famous theorem gives the description of Hamburger moment sequences.

Theorem C ([8], see also [2, Chapter 2]). A sequence of positive numbers $\left\{s_{k}\right\}_{k=0}^{\infty}$ is a Hamburger moment sequence if and only if

$$
\operatorname{det}\left(\begin{array}{cccc}
s_{0} & s_{1} & \cdots & s_{k} \tag{6}\\
s_{1} & s_{2} & \cdots & s_{k+1} \\
\vdots & \vdots & \cdots & \vdots \\
s_{k} & s_{k+1} & \cdots & s_{2 k}
\end{array}\right)>0, \quad k=0,1,2, \ldots
$$

The following statement is proved in [4].
Theorem D. Let d be the positive solution of $\sum_{n=1}^{\infty} d^{-n^{2}}=1 / 4(d \approx 4.06)$. Then any positive sequence $\left\{s_{k}\right\}_{k=0}^{\infty}$ satisfying

$$
s_{n-1} s_{n+1} \geqslant d s_{n}^{2}, \quad n=0,1,2, \ldots
$$

is a Hamburger moment sequence.
Theorem 3 implies the following statement.
Corollary of Theorem 3. Any positive sequence $\left\{s_{k}\right\}_{k=0}^{\infty}$ satisfying

$$
s_{n-1} s_{n+1} \geqslant 4 s_{n}^{2}, \quad n=0,1,2, \ldots
$$

is a Hamburger moment sequence.
The constant 4 in the corollary above cannot be improved.

2. Proof of Theorem 1

We need the following sequence of functions:

$$
\begin{equation*}
F_{m}(c)=\sum_{j=0}^{\lfloor m / 2\rfloor}\binom{m-j}{j}(-1)^{j} \frac{1}{c^{j}}, \quad m=0,1,2, \ldots, c \geqslant 1, \tag{7}
\end{equation*}
$$

where by $\lfloor x\rfloor$ we denote the integral part of x.
The following lemma provides some properties for this sequence of functions.

Lemma 1

(i) The following identities hold

$$
\begin{align*}
& F_{0}(c)=F_{1}(c)=1 \\
& F_{m}(c)=F_{m-1}(c)-\frac{1}{c} F_{m-2}(c), \quad m=2,3,4, \ldots \tag{8}
\end{align*}
$$

(ii) For $c=4 \cos ^{2} \phi$ we have

$$
\begin{equation*}
F_{m}(c)=\frac{\sin (m+1) \phi}{c^{m / 2} \sin \phi} . \tag{9}
\end{equation*}
$$

(iii) For $c_{k}=4 \cos ^{2} \frac{\pi}{k+1}$ we have

$$
\begin{equation*}
F_{j-1}\left(c_{k}\right)-\frac{1}{c_{k}^{2}} F_{j-2}\left(c_{k}\right)-\frac{1}{c_{k}^{j}} \geqslant F_{j}\left(c_{k}\right), \quad k \geqslant 3, \quad j=2,3, \ldots, k-1 \tag{10}
\end{equation*}
$$

Proof. Formula (8) follows directly from (7). Formula (9) is a simple consequence of the wellknown trigonometric identity (see, for example, [17, p. 696])

$$
\frac{\sin (m+1) \phi}{\sin \phi}=\sum_{j=0}^{\lfloor m / 2\rfloor}\binom{m-j}{j}(-1)^{j}(2 \cos \phi)^{m-2 j}
$$

Using the identity $4 \cos ^{2} \phi-1=\frac{\sin (3 \phi)}{\sin \phi}$ we have

$$
\begin{aligned}
& F_{j-1}\left(c_{k}\right)-\frac{1}{c_{k}^{2}} F_{j-2}\left(c_{k}\right)-\frac{1}{c_{k}^{j}}-F_{j}\left(c_{k}\right) \\
& \quad=\left(\frac{1}{c_{k}}-\frac{1}{c_{k}^{2}}\right) F_{j-2}\left(c_{k}\right)-\frac{1}{c_{k}^{j}} \\
& \quad=\frac{1}{c_{k}^{(j+2) / 2}}\left(\frac{\sin \left(3 \frac{\pi}{k+1}\right)}{\sin \frac{\pi}{k+1}} \cdot \frac{\sin \left((j-1) \frac{\pi}{k+1}\right)}{\sin \frac{\pi}{k+1}}-\frac{1}{\left(2 \cos \frac{\pi}{k+1}\right)^{j-2}}\right) \\
& \quad \geqslant \frac{1}{c_{k}^{(j+2) / 2}}\left(\frac{\sin \left(3 \frac{\pi}{k+1}\right)}{\sin \frac{\pi}{k+1}} \cdot \frac{\sin \left((j-1) \frac{\pi}{k+1}\right)}{\sin \frac{\pi}{k+1}}-1\right) \geqslant 0,
\end{aligned}
$$

for $k \geqslant 3$ and $j=2,3, \ldots, k-1$. Inequality (10) is proved.
Lemma 1 is proved.
The following lemma was proved in [5].
Lemma A. Let $M=\left(a_{i, j}\right), 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$ and $M \in T P_{2}(c), c \geqslant 1$. Then $a_{i, j} a_{k, l} \geqslant c^{(l-j)(k-i)} a_{i, l} a_{k, j} \quad$ for all $i<k, j<l$.

A simple consequence of Lemma A is the fact that if $M \in T P_{2}(c)$ then any submatrix of M also belongs to $T P_{2}(c)$. Analogously if $M \in S T P_{2}(c)$ then any submatrix of M also belongs to $S T P_{2}(c)$.

For a matrix $M=\left(a_{i, j}\right)$ we will denote by $M\binom{i_{1}, i_{2}, \ldots, i_{k}}{j_{1}, j_{2}, \ldots, j_{k}}$ the following submatrix of M :

$$
M\binom{i_{1}, i_{2}, \ldots, i_{k}}{j_{1}, j_{2}, \ldots, j_{k}}=\left(\begin{array}{cccc}
a_{i_{1}, j_{1}} & a_{i_{1}, j_{2}} & \cdots & a_{i_{1}, j_{k}} \\
a_{1}, j_{1} & a_{i_{2}, j_{2}} & \cdots & a_{i_{2}, j_{k}} \\
\vdots & \vdots & \cdots & \vdots \\
a_{i_{k}, j_{1}} & a_{i_{k}, j_{2}} & \cdots & a_{i_{k}, j_{k}}
\end{array}\right)
$$

We now prove the following claim (which consists of three parts) by induction on n. Let $M=$ $\left(a_{i, j}\right)$ be an $n \times n$ matrix and $M \in T P_{2}(c)$, where $c \geqslant 4 \cos ^{2} \frac{\pi}{n+1}$. Then the following inequalities hold:

$$
\begin{align*}
& \operatorname{det} M \geqslant 0, \tag{11}\\
& \operatorname{det} M \geqslant a_{1,1} \operatorname{det} M\binom{2,3, \ldots, n}{2,3, \ldots, n}-a_{1,2} a_{2,1} \operatorname{det} M\binom{3,4, \ldots, n}{3,4, \ldots, n}, \tag{12}\\
& \operatorname{det} M \leqslant a_{1,1} \operatorname{det} M\binom{2,3, \ldots, n}{2,3, \ldots, n} . \tag{13}
\end{align*}
$$

Since $M \in T P_{2}(c)$ then hypothesis (11)-(13) are true for $n=2$. The proof below is based on the following lemma.

Lemma 2. Let $c_{0} \geqslant 1, M=\left(a_{i, j}\right) \in T P_{2}\left(c_{0}\right)$ be an $n \times n$ matrix satisfying the following conditions:
(i) $\forall i=2,3, \ldots, n \quad \operatorname{det} M\binom{i, i+1, \ldots, n}{i, i+1, \ldots, n} \geqslant 0$;
(ii) $\forall i=1,2, \ldots, n-2$

$$
\operatorname{det} M\binom{i, i+1, \ldots, n}{i, i+1, \ldots, n} \geqslant a_{i, i} \operatorname{det} M\binom{i+1, i+2, \ldots, n}{i+1, i+2, \ldots, n}-a_{i, i+1} a_{i+1, i} \operatorname{det} M\binom{i+2, i+3, \ldots, n}{i+2, i+3, \ldots, n}
$$

Then for all $c, 1 \leqslant c \leqslant c_{0}$ the following inequalities are valid:

$$
\begin{align*}
& \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n} \\
& \qquad \geqslant a_{m+1, m+1}\left(\operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n}-\frac{1}{c} a_{m+2, m+2} \operatorname{det} M\binom{m+3, m+4, \ldots, n}{m+3, m+4, \ldots, n}\right), \\
& \quad m=0,1, \ldots, n-3 . \tag{14}\\
& \begin{aligned}
& \operatorname{det} M \geqslant a_{1,1} a_{2,2} \ldots a_{m, m}\left(F_{m}(c) \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n}\right. \\
& \quad\left.\quad-\frac{1}{c} F_{m-1}(c) a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n}\right), \quad m=1,2, \ldots, n-2 . \\
& F_{m}(c) \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n}-\frac{1}{c} F_{m-1}(c) a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n}
\end{aligned}
\end{align*}
$$

$$
\begin{align*}
& \geqslant a_{m+1, m+1}\left(F_{m+1}(c) \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n}\right. \\
&\left.\quad-\frac{1}{c} F_{m}(c) a_{m+2, m+2} \operatorname{det} M\binom{m+3, m+4, \ldots, n}{m+3, m+4, \ldots, n}\right), \quad m=1,2, \ldots, n-3 . \tag{16}\\
& F_{m}(c) \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n}-\frac{1}{c} F_{m-1}(c) a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n} \\
& \geqslant a_{m+1, m+1} a_{m+2, m+2} \cdots a_{n, n} F_{n}(c), \quad m=1,2, \ldots, n-2 . \tag{17}
\end{align*}
$$

Proof. First we prove (14). Since $M \in T P_{2}(c)$ and by (ii) we have

$$
\begin{aligned}
& \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n} \\
& \quad \geqslant a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n}-a_{m+1, m+2} a_{m+2, m+1} \operatorname{det} M\binom{m+3, m+4, \ldots, n}{m+3, m+4, \ldots, n} \\
& \geqslant a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n}-\frac{1}{c} a_{m+1, m+1} a_{m+2, m+2} \operatorname{det} M\binom{m+3, m+4, \ldots, n}{m+3, m+4, \ldots, n}, \\
& \quad m=0,1, \ldots, n-3 .
\end{aligned}
$$

Inequality (14) is proved.
Let us prove (16). Multiplying (14) by $F_{m}(c)$ we have

$$
\begin{aligned}
& F_{m}(c) \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n}-\frac{1}{c} F_{m-1}(c) a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n} \\
& \geqslant \\
& \quad a_{m+1, m+1}\left(\left(F_{m}(c)-\frac{1}{c} F_{m-1}(c)\right) \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n}\right. \\
& \left.\quad-\frac{1}{c} F_{m}(c) a_{m+2, m+2} \operatorname{det} M\binom{m+3, m+4, \ldots, n}{m+3, m+4, \ldots, n}\right), \quad m=1,2, \ldots, n-3,
\end{aligned}
$$

and, using (8) we obtain (16).
To prove (17) we apply (16) $(n-2-m)$ times. We derive

$$
\begin{aligned}
& F_{m}(c) \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n}-\frac{1}{c} F_{m-1}(c) a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n} \\
& \quad \geqslant a_{m+1, m+1} a_{m+2, m+2} \cdots a_{n-2, n-2}\left(F_{n-2}(c) \operatorname{det} M\binom{n-1, n}{n-1, n}-\frac{1}{c} F_{n-3}(c) a_{n-1, n-1} a_{n, n}\right) .
\end{aligned}
$$

Since $M \in T P_{2}\left(c_{0}\right)$ the following inequality holds for all $c, 1 \leqslant c \leqslant c_{0}$,

$$
\begin{equation*}
\operatorname{det} M\binom{n-1, n}{n-1, n} \geqslant\left(1-\frac{1}{c}\right) a_{n-1, n-1} a_{n, n} \tag{18}
\end{equation*}
$$

so by (8) we obtain

$$
\begin{aligned}
& F_{m}(c) \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n}-\frac{1}{c} F_{m-1}(c) a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n} \\
& \geqslant a_{m+1, m+1} a_{m+2, m+2} \cdots a_{n, n}\left(\left(F_{n-2}(c)-\frac{1}{c} F_{n-3}(c)\right)-\frac{1}{c} F_{n-2}(c)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =a_{m+1, m+1} a_{m+2, m+2} \cdots a_{n, n}\left(F_{n-1}(c)-\frac{1}{c} F_{n-2}(c)\right) \\
& =a_{m+1, m+1} a_{m+2, m+2 \cdots a_{n, n}} F_{n}(c) .
\end{aligned}
$$

Inequality (17) is proved.
By (8) we rewrite inequality (14) for $m=0$ in the following form:

$$
\operatorname{det} M \geqslant a_{1,1}\left(F_{1}(c) \operatorname{det} M\binom{2,3, \ldots, n}{2,3, \ldots, n}-\frac{1}{c} F_{0}(c) a_{2,2} \operatorname{det} M\binom{3,4, \ldots, n}{3,4, \ldots, n}\right) .
$$

To prove (15) we apply (16) $(m-1)$ times.
Lemma 2 is proved.
Remark. If a matrix M satisfies the conditions of Lemma 2 and, moreover, $a_{n-1, n-1} a_{n, n}>$ $c_{0} a_{n-1, n} a_{n, n-1}$, then inequality (18) is strict, hence (17) is strict, i.e.,

$$
\begin{align*}
& F_{m}(c) \operatorname{det} M\binom{m+1, m+2, \ldots, n}{m+1, m+2, \ldots, n}-\frac{1}{c} F_{m-1}(c) a_{m+1, m+1} \operatorname{det} M\binom{m+2, m+3, \ldots, n}{m+2, m+3, \ldots, n} \\
& \quad>a_{m+1, m+1} a_{m+2, m+2} \cdots a_{n, n} F_{n}(c), \quad m=1,2, \ldots, n-2 . \tag{19}
\end{align*}
$$

In particular, for all matrices $M \in S T P\left(c_{0}\right)$ inequality (19) is valid for all $c, 1 \leqslant c \leqslant c_{0}$.
Assume that conditions (11)-(13) hold for all matrices of sizes smaller than k. Let us prove these conditions for $n=k$.

Lemma 3. Let $M=\left(a_{i, j}\right)$ be a $k \times k$ matrix, $M \in T P_{2}(c), c \geqslant c_{k}:=4 \cos ^{2} \frac{\pi}{k+1}$. For all $j=$ $2,3, \ldots, k-1$ the following inequality holds:

$$
a_{1, j} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k}-a_{1, j+1} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k} \geqslant 0
$$

Proof. Since $m \in T P_{2}(c), M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k} \in T P_{2}(c)$ and $M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k} \in T P_{2}(c)$. Since $4 \cos ^{2} \frac{\pi}{n+1} \leqslant 4 \cos ^{2} \frac{\pi}{k+1}$ for $n=2,3, \ldots, k-1$ we can apply the induction hypothesis to the matrices $M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k}, M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k}$ and to all their square submatrices. We apply inequality (13) j times and obtain

$$
\operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k} \leqslant a_{2,1} a_{3,2} \cdots a_{j+1, j} \operatorname{det} M\binom{j+2, j+3, \ldots, k}{j+2, j+3, \ldots, k} .
$$

From Lemma A and from the fact $a_{1, j+1} a_{j+1, j} \leqslant \frac{1}{c_{k}^{j}} a_{1, j} a_{j+1, j+1}$ now we conclude

$$
\begin{equation*}
a_{1, j+1} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k} \leqslant \frac{1}{c_{k}^{j}} a_{1, j} a_{2,1} a_{3,2} \cdots a_{j, j-1} a_{j+1, j+1} \operatorname{det} M\binom{j+2, j+3, \ldots, k}{j+2, j+3, \ldots, k} . \tag{20}
\end{equation*}
$$

By the induction hypothesis the matrix $M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k}$ satisfies the assumptions of Lemma 2. Applying to this matrix (15) with $m=j-2$ we obtain

$$
\operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k}
$$

$$
\begin{aligned}
\geqslant & a_{2,1} a_{3,2} \cdots a_{j-1, j-2}\left(F_{j-2}\left(c_{k}\right) \operatorname{det} M\binom{j, j+1, j+2, \ldots, k}{j-1, j+1, j+2, \ldots, k}\right. \\
& \left.-\frac{1}{c_{k}} F_{j-3}\left(c_{k}\right) a_{j, j-1} \operatorname{det} M\binom{j+1, j+2, \ldots, k}{j+1, j+2, \ldots, k}\right)
\end{aligned}
$$

Applying (12) to the matrix $M\binom{j, j+1, j+2, \ldots, k}{j-1, j+1, j+2, \ldots, k}$ and plugging the result into the last formula we have

$$
\begin{aligned}
& \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k} \\
& \qquad \begin{array}{l}
2,1 \\
a_{3,2} \cdots a_{j-1, j-2}\left(a_{j, j-1}\left(F_{j-2}\left(c_{k}\right)-\frac{1}{c_{k}} F_{j-3}\left(c_{k}\right)\right) \operatorname{det} M\binom{j+1, j+2, \ldots, k}{j+1, j+2, \ldots, k}\right. \\
\\
\left.\quad-a_{j, j+1} a_{j+1, j-1} F_{j-2}\left(c_{k}\right) \operatorname{det} M\binom{j+2, j+3, \ldots, k}{j+2, j+3, \ldots, k}\right)
\end{array}
\end{aligned}
$$

whence, by Lemma A and (8) we obtain

$$
\begin{aligned}
& \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k} \\
& \qquad a_{2,1} a_{3,2} \cdots a_{j-1, j-2} a_{j, j-1}\left(F_{j-1}\left(c_{k}\right) \operatorname{det} M\binom{j+1, j+2, \ldots, k}{j+1, j+2, \ldots, k}\right. \\
& \\
& \left.\quad-\frac{1}{c_{k}^{2}} a_{j+1, j+1} F_{j-2}\left(c_{k}\right) \operatorname{det} M\binom{j+2, j+3, \ldots, k}{j+2, j+3, \ldots, k}\right)
\end{aligned}
$$

Further applying (14) to the matrix $M\binom{j+1, j+2, \ldots, k}{j+1, j+2, \ldots, k}$ we have

$$
\begin{align*}
& \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k} \\
& \qquad a_{2,1} a_{3,2} \cdots a_{j, j-1} a_{j+1, j+1}\left(\operatorname { d e t } M (\begin{array} { l }
{ j + 2 , j + 3 , \ldots , k } \\
{ j + 2 , j + 3 , \ldots , k }
\end{array}) \left(F_{j-1}\left(c_{k}\right)\right.\right. \\
& \tag{21}\\
& \left.\left.\quad-\frac{1}{c_{k}^{2}} F_{j-2}\left(c_{k}\right)\right)-\frac{1}{c_{k}} a_{j+2, j+2} F_{j-1}\left(c_{k}\right) \operatorname{det} M\binom{j+3, j+4, \ldots, k}{j+3, j+4, \ldots, k}\right)
\end{align*}
$$

By (20) and (21) we derive

$$
\begin{align*}
& a_{1, j} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k}-a_{1, j+1} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k} \\
& \quad \geqslant a_{1, j} a_{2,1} a_{3,2} \cdots a_{j, j-1} a_{j+1, j+1}\left(\left(F_{j-1}\left(c_{k}\right)-\frac{1}{c_{k}^{2}} F_{j-2}\left(c_{k}\right)-\frac{1}{c_{k}^{j}}\right)\right. \\
& \left.\quad \times \operatorname{det} M\binom{j+2, j+3, \ldots, k}{j+2, j+3, \ldots, k}-\frac{1}{c_{k}} a_{j+2, j+2} F_{j-1}\left(c_{k}\right) \operatorname{det} M\binom{j+3, j+4, \ldots, k}{j+3, j+4, \ldots, k}\right) \tag{22}
\end{align*}
$$

It follows from (22), (10) and (17) that

$$
a_{1, j} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k}-a_{1, j+1} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k}
$$

$$
\begin{aligned}
\geqslant & a_{1, j} a_{2,1} a_{3,2} \cdots a_{j, j-1} a_{j+1, j+1}\left(F_{j}\left(c_{k}\right) \operatorname{det} M\binom{j+2, j+3, \ldots, k}{j+2, j+3 \ldots, k}\right. \\
& \left.-\frac{1}{c_{k}} a_{j+2, j+2} F_{j-1}\left(c_{k}\right) \operatorname{det} M\binom{j+3, j+4, \ldots, k}{j+3, j+4, \ldots, k}\right) \\
\geqslant & a_{1, j} a_{2,1} a_{3,2} \cdots a_{j, j-1} a_{j+1, j+1} a_{j+2, j+2} \cdots a_{k, k} F_{k-1}\left(c_{k}\right) .
\end{aligned}
$$

Hence by Lemma 1 and (9) with $m=k-1$ we conclude that

$$
\begin{aligned}
& a_{1, j} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k}-a_{1, j+1} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j, j+2, \ldots, k} \\
& \quad \geqslant a_{1, j} a_{2,1} a_{3,2} \cdots a_{j, j-1} a_{j+1, j+1} a_{j+2, j+2} \cdots a_{k, k} \frac{\sin \left(k \frac{\pi}{k+1}\right)}{c_{k}^{(k-1) / 2} \sin \frac{\pi}{k+1}} \geqslant 0
\end{aligned}
$$

Lemma 3 is proved.
Now we will prove (12). Using Lemma 3 we have

$$
\begin{aligned}
\operatorname{det} M\binom{1,2, \ldots, k}{1,2, \ldots, k} & =\sum_{j=1}^{k}(-1)^{j+1} a_{1, j} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k} \\
& \geqslant a_{1,1} \operatorname{det} M\binom{2,3, \ldots, k}{2,3, \ldots, k}-a_{1,2} \operatorname{det} M\binom{2,3, \ldots, k}{1,3,4, \ldots, k}
\end{aligned}
$$

We apply the induction hypothesis (13) to the matrix $M\binom{2,3, \ldots, k}{1,3,4, \ldots, k}$. We have

$$
\operatorname{det} M\binom{1,2, \ldots, k}{1,2, \ldots, k} \geqslant a_{1,1} \operatorname{det} M\binom{2,3, \ldots, k}{2,3, \ldots, k}-a_{1,2} a_{2,1} \operatorname{det} M\binom{3,4, \ldots, k}{3,4, \ldots, k} .
$$

The inequality (12) is proved.
By Lemma 3

$$
\operatorname{det} M\binom{1,2, \ldots, k}{1,2, \ldots, k}=\sum_{j=1}^{k}(-1)^{j+1} a_{1, j} \operatorname{det} M\binom{2,3, \ldots, k}{1,2, \ldots, j-1, j+1, \ldots, k} \leqslant a_{1,1} \operatorname{det} M\binom{2,3, \ldots, k}{2,3, \ldots, k} .
$$

The inequality (13) is proved.
To prove (11) we note that by (12) and induction hypothesis the matrix M satisfies the assumptions of Lemma 2. It follows from (15), (17) and Lemma 1 that

$$
\operatorname{det} M \geqslant a_{1,1} a_{2,2} \cdots a_{k, k} F_{k}\left(c_{k}\right)=a_{1,1} a_{2,2} \cdots a_{k, k} \frac{\sin \pi}{c_{k}^{k / 2} \sin \frac{\pi}{k+1}}=0
$$

Hence the statement (i) in Theorem 1 is proved.
Now we will prove the statement (ii) in Theorem 4. If $M \in S T P_{k}\left(c_{k}\right)$ then by (19) we can rewrite the last inequality in the following form:

$$
\operatorname{det} M>a_{1,1} a_{2,2} \cdots a_{k, k} F_{k}\left(c_{k}\right)=a_{1,1} a_{2,2} \cdots a_{k, k} \frac{\sin \pi}{c_{k}^{k / 2} \sin \frac{\pi}{k+1}}=0
$$

Hence the statement (ii) in Theorem 1 is proved, which completes the proof of Theorem 1.

In fact, we have proved a slightly stronger theorem, which may be of independent interest.
Theorem 6. Suppose $c \geqslant 4 \cos ^{2} \frac{\pi}{k+1}$. Let $M=\left(a_{i, j}\right) \in T P_{2}(c)$ be a $k \times k$ matrix. Then $\operatorname{det} M \geqslant a_{1,1} a_{2,2} \cdots a_{k, k} F_{k}(c)$.

3. Proof of Theorem 4

Note that $T P_{2}\left(c_{1}\right) \subset T P_{2}\left(c_{2}\right)$ for $c_{1} \geqslant c_{2}$. Thus it is sufficient to prove Theorem 4 with $c \in$ $\left(c_{k}-\varepsilon, c_{k}\right)$ for $\varepsilon>0$ being small enough.

Consider the following $n \times n$ symmetrical Toeplitz matrix.

$$
M_{n}(\phi):\left\|\begin{array}{ccccccc}
2 \cos \phi & 1 & 0 & 0 & \cdots & 0 & 0 \tag{23}\\
1 & 2 \cos \phi & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 2 \cos \phi & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 2 \cos \phi & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 2 \cos \phi
\end{array}\right\|
$$

where $0 \leqslant \phi<\pi / 2$. Obviously, $M_{n}(\phi) \in T P_{2}\left(4 \cos ^{2} \phi\right)$. The matrix $M_{n}(\phi)$ satisfies the following recursion relation $\operatorname{det} M_{n}(\phi)=2 \cos \phi \operatorname{det} M_{n-1}(\phi)-\operatorname{det} M_{n-2}(\phi)$ and $M_{1}(\phi)=2 \cos \phi$, $M_{2}(\phi)=4 \cos ^{2} \phi-1$. It is easy to verify that det $M_{n}(\phi)=\frac{\sin (n+1) \phi}{\sin \phi}$. So for all $\phi \in\left(\frac{\pi}{n+1}, \frac{2 \pi}{n+1}\right)$ we have $\operatorname{det} M_{n}(\phi)<0$. For $\phi \in\left(\frac{\pi}{n+1}, \frac{2 \pi}{n+1}\right)$ consider the following $n \times n$ symmetrical Toeplitz matrix

$$
\begin{align*}
& T_{n}\left(\phi, \varepsilon_{1}, \ldots, \varepsilon_{n-2}\right) \\
& \quad:=\left\|\begin{array}{|lcccccc}
2 \cos \phi & 1 & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{n-3} & \varepsilon_{n-2} \\
1 & 2 \cos \phi & 1 & \varepsilon_{1} & \cdots & \varepsilon_{n-4} & \varepsilon_{n-3} \\
\varepsilon_{1} & 1 & 2 \cos \phi & 1 & \varepsilon_{1} & \cdots & \varepsilon_{n-4} \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
\varepsilon_{n-3} & \varepsilon_{n-4} & \cdots & \varepsilon_{1} & 1 & 2 \cos \phi & 1 \\
\varepsilon_{n-2} & \varepsilon_{n-3} & \varepsilon_{n-4} & \cdots & \varepsilon_{1} & 1 & 2 \cos \phi
\end{array}\right\| \text {, } \tag{24}
\end{align*}
$$

where $\varepsilon_{1}>\varepsilon_{2}>\cdots>\varepsilon_{n-2}>0$ and ε_{1} is chosen to satisfy the inequality $1 \geqslant 4 \cos ^{2} \phi \cdot 2 \cos \phi$. ε_{1}, then ε_{2} is chosen to satisfy the inequality $\varepsilon_{1}^{2} \geqslant 4 \cos ^{2} \phi \cdot \varepsilon_{2}$, then ε_{3} is chosen to satisfy the inequality $\varepsilon_{2}^{2} \geqslant 4 \cos ^{2} \phi \cdot \varepsilon_{1} \cdot \varepsilon_{3}, \ldots$ and then ε_{n-2} is chosen to satisfy the inequality $\varepsilon_{n-3}^{2} \geqslant$ $4 \cos ^{2} \phi \cdot \varepsilon_{n-4} \cdot \varepsilon_{n-2}$. Under these conditions we have $T_{n}\left(\phi, \varepsilon_{1}, \ldots, \varepsilon_{n-2}\right) \in T P_{2}\left(4 \cos ^{2} \phi\right)$. Since $T_{n}(\phi, 0,0, \ldots, 0)=M_{n}(\phi)$ we obtain det $T_{n}(\phi, 0,0, \ldots, 0)<0$ for $\phi \in\left(\frac{\pi}{n+1}, \frac{2 \pi}{n+1}\right)$. Therefore we have $\operatorname{det} T_{n}\left(\phi, \varepsilon_{1}, \ldots, \varepsilon_{n-2}\right)<0$ for $\phi \in\left(\frac{\pi}{n+1}, \frac{2 \pi}{n+1}\right)$ if ε_{1} is small enough.

Thus, for every $c \in\left(4 \cos ^{2} \frac{2 \pi}{n+1}, c_{n}\right)$ the statement (i) of Theorem 4 is proved. Since $T P_{2}\left(c_{1}\right) \subset$ $T P_{2}\left(c_{2}\right)$ for $c_{1} \geqslant c_{2}$ the statement (i) of Theorem 4 follows.

We use the same method to obtain the proof of Theorem 5.

To prove the statement (ii) we consider the following Hankel matrix $D_{n}(p, q)$ with $p \geqslant 1$, $q \geqslant 1$.

$$
\begin{equation*}
D_{n}(p, q):=\left(p^{\lfloor(i+j-2) / 2\rfloor\lfloor(i+j-1) / 2\rfloor} q^{\lfloor(i+j-3) / 2\rfloor\lfloor(i+j-2) / 2\rfloor}\right), \quad 1 \leqslant i, j \leqslant n, \tag{25}
\end{equation*}
$$

or,

$$
D_{n}(p, q)=\left\|\begin{array}{ccccccc}
1 & 1 & p & p^{2} q & \cdots & * & * \tag{26}\\
1 & p & p^{2} q & p^{4} q^{2} & \cdots & * & * \\
p & p^{2} q & p^{4} q^{2} & p^{6} q^{4} & \cdots & * & * \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
* & * & * & * & \cdots & p^{(n-2)^{2}} q^{(n-2)(n-3)} & p^{(n-1)(n-2)} q^{(n-2)^{2}} \\
* & * & * & * & \cdots & p^{(n-1)(n-2)} q^{(n-2)^{2}} & p^{(n-1)^{2}} q^{(n-1)(n-2)}
\end{array}\right\| .
$$

By direct calculation we obtain $D_{n}(p, q) \in T P_{2}(\min (p, q))$.
Lemma 4. For all $n \geqslant 3$ we have

$$
\begin{equation*}
\operatorname{det} D_{n}(p, q)=p^{\beta_{n}} q^{\alpha_{n}} F_{n}(p)+Q_{\alpha_{n}-1}(p, q) \tag{27}
\end{equation*}
$$

where $\alpha_{n}=\frac{n(n-1)(n-2)}{3}, \beta_{n}=\frac{n(n-1)(2 n-1)}{6}$ and $Q_{\alpha_{n}-1}(p, q)$ is a polynomial in p, q such that $\operatorname{deg}_{q} Q_{\alpha_{n}-1}(p, q) \leqslant \alpha_{n}-1$. (Here and further by $\operatorname{deg}_{q} Q(p, q)$ we will denote the degree of $Q(p, q)$ with respect to q.)

Proof. We will prove this lemma by induction in n. For $n=3$ the statement is true as can be verified directly. The expansion of det $D_{n}(p, q)$ along column n gives

$$
\begin{align*}
& \operatorname{det} D_{n}(p, q) \\
& \quad=R_{\alpha_{n}-1}(p, q) \\
& \qquad\left\|\begin{array}{lcccccc}
\\
& \| & 1 & p & p^{2} q & \cdots & * \\
1 & p & p^{2} q & p^{4} q^{2} & \cdots & * & 0 \\
p & p^{2} q & p^{4} q^{2} & p^{6} q^{4} & \cdots & * & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & 0 \\
* & * & * & * & \cdots & * & \vdots \\
* & * & * & * & \cdots & p^{(n-2)^{2}} q^{(n-2)(n-3)} & p^{(n-1)(n-2)} q^{(n-2)^{2}} \\
* & * & * & * & \cdots & p^{(n-1)(n-2)} q^{(n-2)^{2}} & p^{(n-1)^{2}} q^{(n-1)(n-2)}
\end{array}\right\| \text {, } \tag{28}
\end{align*}
$$

where $R_{\alpha_{n}-1}(p, q)$ is a polynomial in p, q and $\operatorname{deg}_{q} R_{\alpha_{n}-1}(p, q) \leqslant \alpha_{n}-1$.
The expansion of the determinant on the right-hand side of the last equation along row n gives

$$
\begin{aligned}
& \operatorname{det} D_{n}(p, q) \\
& \quad=S_{\alpha_{n}-1}(p, q)
\end{aligned}
$$

$$
\begin{array}{||ccccccc}
1 & 1 & p & p^{2} q & \cdots & * & 0 \tag{29}\\
1 & p & p^{2} q & p^{4} q^{2} & \cdots & * & 0 \\
p & p^{2} q & p^{4} q^{2} & p^{6} q^{4} & \cdots & * & 0 \\
+\operatorname{det} & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
* & * & * & * & \cdots & * & 0 \\
* & * & * & * & \cdots & p^{(n-2)^{2}} q^{(n-2)(n-3)} & p^{(n-1)(n-2)} q^{(n-2)^{2}} \\
0 & 0 & 0 & \cdots & 0 & p^{(n-1)(n-2)} q^{(n-2)^{2}} & p^{(n-1)^{2}} q^{(n-1)(n-2)}
\end{array} \|
$$

where $S_{\alpha_{n}-1}(p, q)$ is a polynomial in p, q and $\operatorname{deg}_{q} S_{\alpha_{n}-1}(p, q) \leqslant \alpha_{n}-1$.
The last equation provides the following recursion relation:

$$
\begin{aligned}
D_{n}(p, q)= & p^{(n-1)^{2}} q^{(n-1)(n-2)} D_{n-1}(p, q)-p^{2(n-1)(n-2)} q^{2(n-2)^{2}} D_{n-2}(p, q) \\
& +T_{\alpha_{n}-1}(p, q)
\end{aligned}
$$

where $T_{\alpha_{n}-1}(p, q)$ is a polynomial in p, q and $\operatorname{deg}_{q} T_{\alpha_{n}-1}(p, q) \leqslant \alpha_{n}-1$.
Using the induction hypothesis and formula (8) we obtain the statement of Lemma 4.
Lemma 4 is proved.
Note that $p^{\lfloor n / 2\rfloor} F_{n}(p)$ is a polynomial in p of degree $\lfloor n / 2\rfloor$. By (9) it has the following $\lfloor n / 2\rfloor$ roots:

$$
4 \cos ^{2} \frac{\pi}{n+1}, 4 \cos ^{2} \frac{2 \pi}{n+1}, \ldots, 4 \cos ^{2} \frac{\lfloor n / 2\rfloor \pi}{n+1} .
$$

Obviously, $4 \cos ^{2} \frac{\pi}{n+1}$ is the largest root of this polynomial. Hence for $p \in\left(4 \cos ^{2} \frac{2 \pi}{n+1}, 4 \cos ^{2} \frac{\pi}{n+1}\right)$ we have $F_{n}(p)<0$.

Let us fix an arbitrary $p_{0} \in\left(4 \cos ^{2} \frac{2 \pi}{n+1}, 4 \cos ^{2} \frac{\pi}{n+1}\right)$. Since

$$
\operatorname{det} D_{n}\left(p_{0}, q\right)=q^{\alpha_{n}}\left(p_{0}^{\beta_{n}} F_{n}\left(p_{0}\right)+q^{-\alpha_{n}} Q_{\alpha_{n}-1}\left(p_{0}, q\right)\right)
$$

where $Q_{\alpha_{n}-1}\left(p_{0}, q\right)$ is a polynomial in q and $\operatorname{deg} Q_{\alpha_{n}-1}\left(p_{0}, q\right) \leqslant \alpha_{n}-1$, for q being large enough (and $\left.q>p_{0}\right)$ we obtain $D_{n}\left(p_{0}, q\right) \in T P_{2}\left(p_{0}\right)$ but $\operatorname{det} D_{n}\left(p_{0}, q\right)<0$.

Thus, for every $p \in\left(4 \cos ^{2} \frac{2 \pi}{n+1}, c_{n}\right)$ the statement (ii) of Theorem 4 is proved. Since $T P_{2}\left(c_{1}\right) \subset$ $T P_{2}\left(c_{2}\right)$ for $c_{1} \geqslant c_{2}$ the statement (ii) of Theorem 4 follows.

Theorem 4 is proved.
Remark. This is a revised version of the paper originally submitted to the journal "Linear Algebra and its Applications" in summer 2004. Recently in the paper [6] the authors formulated a conjecture which coincides with the statement proved in our Theorem 1.

Acknowledgements

The authors are deeply grateful to Professor V.M. Kadets for valuable suggestions. We also thank the referees for important comments and advice.

References

[1] M. Aissen, A. Edrei, I.J. Schoenberg, A. Whitney, On the generating functions of totally positive sequences, J. Anal. Math. 2 (1952) 93-109.
[2] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing Co., New York, 1965 (Trans. N. Kemmer).
[3] T. Ando, Totally positive matrices, Linear Algebra Appl. 90 (1987) 165-219.
[4] T.M. Bisgaard, Z. Sasvari, On the positive definiteness of certain functions, Math. Machr. 186 (1997) 81-99.
[5] T. Craven, G. Csordas, A sufficient condition for strict total positivity of a matrix, Linear and Multilinear Algebra 45 (1998) 19-34.
[6] D.K. Dimitrov, J.M. Pena, Almost strict total positivity and a class of Hurwitz polynomials, J. Approx. Theory 132 (2005) 212-223.
[7] M. Fekete, G. Pólya, Über ein problem von laguerre, Rend. Circ. Mat. Palermo 34 (1912) 89-120.
[8] H. Hamburger, Über eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 81 (1920);
H. Hamburger, Über eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 82 (1921).
[9] G.H. Hardy, On the zeros of a class of integral functions, Messenger of Math. 34 (1904) 97-101.
[10] G.H. Hardy, Collected Papers of G.H. Hardy, vol. IV, Oxford Clarendon Press, 1969.
[11] J.I. Hutchinson, On a remarkable class of entire functions, Trans. Amer. Math. Soc. 25 (1923) 325-332.
[12] S. Karlin, Total Positivity, Stanford University Press, California, 1968.
[13] O.M. Katkova, T. Lobova, A.M. Vishnyakova, On power series having sections with only real zeros, Computation Methods and Functional Theory 3 (2) (2003) 425-441.
[14] B.Ja. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Mono., vol. 5, revised ed. 1980, Amer. Math. Soc., Providence, RI, 1964.
[15] Petrovitch, Une classe remarquable de séries entiéres, Atti del IV Congresso Internationale dei Matematici, Rome (Ser. 1) 2 (1908), 36-43.
[16] I.J. Schoenberg, On the zeros of the generating functions of multiply positive sequences and functions, Annals of Math. 62 (1955) 447-471.
[17] D. Zwillinger (Ed.), CRC Standard Mathematical Tables and Formulae, CRC Press, Boca Raton, FL, 1995.

[^0]: * Corresponding author.

 E-mail addresses: olga.m.katkova@univer.kharkov.ua (O.M. Katkova), anna.m.vishnyakova@univer.kharkov.ua (A.M. Vishnyakova).

