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Abstract Experimental investigation of aerodynamic control on a 35� swept flying wing by means

of nanosecond dielectric barrier discharge (NS-DBD) plasma was carried out at subsonic flow speed

of 20–40 m/s, corresponding to Reynolds number of 3.1 · 105–6.2 · 105. In control condition, the

plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag

coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control

for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift

coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag

ratio and an increase of 2� at stall angle of attack could be achieved compared with the baseline

case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated.

And the results revealed that control efficiency demonstrated strong dependence on pulsed fre-

quency. Moreover, the results of pitching moment coefficient indicated that the breakdown of lead-

ing edge vortices could be delayed by plasma actuator at low pulsed frequencies.
ª 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Compared with conventional wing configurations, the flying

wing shows promising prospect in aerodynamic efficiency
and environmental requirements in future, including high
lift-to-drag ratio, low drag and excellent stealth character.
However, there are also some challenging problems for flying
wing,1–4 including low lift at high angles of attack, low degree

of static instability in longitudinal channel and ineffectiveness
of the conventional surfaces.

For swept wings, leading edge vortices are dominantly

responsible for the lift generation.5 The vortices at the leading
edge can cause low static pressure regions, which will produce
suction forces and generate additional lift. At low angles of

attack, the vortices remain attached to the leeward surface.
As the angle of attack increases, the strength of the vortices
increases which will lead to a nonlinear increase in lift coeffi-
cient, and the vortex breakdown point moves forward. For
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supercritical angles, complete destruction of the leading edge
vortices happens and results in decrease in aerodynamic
performance. For flying wings, the flow is much more

complex, and experimental investigations have shown that
the outer wing begins to stall earlier than the inner wing, which
will lead the aerodynamic center to move much forward. And

this results in an obvious increase in pitching moment
coefficient.

Active flow control techniques have been developed to

improve the aerodynamic performance of airfoil and aircraft
over the recent years. Among these control techniques, the
dielectric barrier discharge (DBD) plasma actuator offers
tremendous potential as an active flow-control device due to

its no moving parts, a resurface adapting, low power require-
ment and a fast time response. It has been proved to be an effi-
cient means of aerodynamic control in many cases.6–9 The

dominant mechanism of this kind of DBD actuator has been
given by Wang et al.9 The alternating current dielectric barrier
discharge (AC-DBD) plasma actuator can induce wall jet in a

steady actuation mode to produce acceleration in boundary
layer and produce counter-rotating vortices in an unsteady
manner to aid mixture between the boundary layer and the

free-stream. The schematic diagram of this kind ofDBDplasma
actuator is shown in Fig. 1(a). In addition, recent advances in
plasma control have demonstrated that nanosecond DBD
(NS-DBD) plasma actuator is more effective in aerodynamic

control,10–12 which is based on fundamentally different mecha-
nisms. The discharge happens within few nanoseconds and
quickly heats up the air near the discharge, resulting in the rise

of pressure and the forming of a shock wave, which is shown in
Fig. 1(b).7

Plasma actuation has been widely studied to control aero-

dynamic coefficients of flying wings. Greenblatt et al.13 inves-
tigated the aerodynamic enhancement of a 60� swept flying
Fig. 1 Schematic diagram of DBD plasma actuator.
wing using AC-DBD plasma actuators at speeds below 10 m/
s. The results indicate that maximum lift enhancements were
observed at pulsed reduced frequency F+ = 1 when plasma

actuator was placed near the wing apex. Patel et al.14 consid-
ered the use of distributed AC-DBD plasma actuators at the
leading and trailing edges of a 1303 unmanned aerial vehicle

(UAV) at flow speed U1= 15 m/s. The test shows that
plasma actuators could provide the lift of flight control at high
angles of attack. Budovsky et al.15 investigated the flow con-

trol on a delta-wing using AC-DBD plasma actuators at low
speed. The result shows that plasma actuation could influence
the vortex breakdown position. And enhancement in aerody-
namic performance was observed when plasma actuator was

placed near the leading edge.
In the present tests, subsonic wind tunnel tests are per-

formed using a model of 35� swept flying wing with NS-

DBD plasma actuator, which is installed symmetrically on
the wing leading edge. Balance measurements were obtained
for the lift and drag coefficients, lift to drag ratio and pitching

moment coefficient in the range of angles of attack a = 4–30�.
Using these experimental methods, the effect of plasma actua-
tor for controlling the aerodynamic coefficients was investi-

gated for flow speed equal to 20, 30 and 40 m/s. The effects
of actuator amplitude and frequency and Reynolds number
were also investigated to estimate the control efficiency and
scaling effect. Moreover, the changes in pitching moment

coefficient with and without plasma control were also consid-
ered in this paper.

2. Experimental setup

2.1. Wind tunnel and model

The experiments were conducted in the FL-5 low-speed wind
tunnel at Aerodynamics Research Institute, Aviation

Industry Corporation of China. The facility is an open-return
wind tunnel with a 1.95 m long test section and a circular cross
section of 1.5 m diameter. The maximum air speed in the wind

tunnel is 53 m/s, and the turbulence intensity is less than 1%.
The photo of the test section of the wind tunnel is shown in
Fig. 2(a). The model used here is a typical flying wing with
sweep angle of 35� at the leading and trailing edges. It is made

from dielectric material and has a 0.953 m wing span length.
The model is mounted on the support sting of a six-component
force and moment balance. The photo of the model with

plasma actuator is shown in Fig. 2(b).

2.2. Plasma actuator

The DBD plasma actuator consists of two electrodes separated
by a dielectric layer. The electrodes are made from copper foil
tape; one is exposed to the air, and the other is covered by the

dielectric material. The dielectric layer is made from three lay-
ers of Kapton tapes and has thickness of 0.2 mm in total. A
schematic illustration of the actuator has been shown in
Fig. 1. In the present experiment, the actuator is placed sym-

metrically on leeward side near the leading edge of the model.
The exposed electrode is 3 mm in width and the covered one is
5 mm in width. They are overlapped by very small amount

which can generate uniform plasma along the leading edge.
The photo of the actuator installed on the model is shown in
Fig. 2(b).



Fig. 2 Test section of wind tunnel with flying wing model.

Fig. 3 Discharge character of NS-DBD plasma actuator.

Table 1 Range of angles of attack at different flow speeds.

Free flow speed U1 (m/s) Range of angles of attack a (�)

20 �4 to 30

30 �4 to 30

40 �4 to 22
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2.3. Measurements

The experiment was conducted at various angles of attack with
the DBD plasma actuator on and off. Free-stream velocities of

20, 30, and 40 m/s were tested in this experiment, correspond-
ing to the Reynolds number of 3.1 · 105–6.2 · 105.

High voltage generator was used to generate plasma

between the two electrodes of the actuator. The output voltage
and the frequency could be varied in ranges of 0–80 kV and
0.2–2.0 kHz, respectively. Discharge voltage and current were

measured by four-channel Tektronix DPO4104 oscilloscopes,
Tektronix P6015A high voltage probe and Tektronix
TCP312 and TCPA300 current probe. The pulsed voltage

and current are shown in Fig. 3(a). Fig. 3(b) shows the power
P in single discharge, and the peak power was about 9.7 kW.
According to the curve, it could be figured out that the energy
was about 1.5 mJ during one pulse time.

The aerodynamic force and moment coefficients were mea-
sured by a six-component force and moment balance. And a
stepper motor on the balance was used to drive the angular

of the support sting. In the present experiment, the angles of
attack were varied for different free-stream speeds and the
detailed description was shown in Table 1.

In the present experiment with control, the actual actuation
voltage ranged from 6 to 12 kV, and the actuation frequency
ranged from 0.2 to 1.8 kHz.

3. Experimental results and discussion

3.1. Baseline performance

The results of the baseline were obtained with the plasma
actuator turned off. Fig. 4 shows the lift and drag coefficients
versus angles of attack for the base flow and for different flow

speeds. The baseline lift coefficient increased with increasing
angle of attack. For a > 18�, the lift coefficient CL began to
decrease with angles of attack continuing to increase, and
the wing starting to stall. The drag coefficient CD increased sig-

nificantly for a > 15�. The reason might be that destruction of
the leading edge vortices happens and causes severe flow sep-
aration near the leading edge.

The influence of flow speeds on aerodynamic performance
was also researched. Fig. 4(b) shows that the drag coefficients
for different speeds were well coincided. An enhancement of the

lift coefficient was obtained with increasing flow speed, and
maximum lift coefficient was obtained for U1= 40 m/s. But
the basic form of the lift curves did not change. The result

was consistent with Greenblatt16 and indicated that the aerody-
namic performance was reasonably independent from Mach
number and Reynolds number due to the sharp leading edge
of the model.



Fig. 4 Lift and drag coefficients at different flow speeds.
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3.2. Effect of the pulsed voltage

The results from different pulsed voltages Up were presented in
Fig. 5, with free-stream speed of 40 m/s. The experiment was

conducted at consistent actuation frequency f= 1 kHz. It
could be seen that the plasma actuation resulted in changes
in lift and drag coefficients compared with the baseline. The lift

coefficients showed an increase in high angles of attack with
control. And the drag coefficients showed a decrease for a
broad range of angles of attack with plasma control. As the

pulsed voltage increased, more increase in aerodynamic perfor-
mance was obtained. However, the present experiment showed
that there is a minimum actuation voltage in order to control
Fig. 5 Aerodynamic characteristics with/without co
the lift coefficient, which was different from the change of drag
coefficient. Fig. 5(c) shows that the change of lift and drag
coefficients synthetically resulted in a significant increase in

lift-to-drag ratio for a broad range of angles of attack when
the pulsed amplitude was 12 kV.

The detailed changes in CL and CD were shown in Fig. 6 for

high angles of attack. The data revealed noticeable effects of
the plasma actuator for a > 14�. There was also a significant
difference between different actuator voltages. As shown in

Fig. 6(a), the values of dCL increased from angle of attack
a = 14� to a = 17�, when pulsed voltages varied from 8 kV
to 12 kV. And the values then decreased gradually for
a > 17�. As the pulsed voltage increased, the value of dCL

increased as well as the positive scope of dCL. As shown in
Fig. 6(b), the values of dCD decreased for all tested angles of
attack and showed opposite trends as dCL. When the actuation

voltages were higher, the values of dCD were smaller. But the
minimum value for all the tested voltages was obtained at
a = 15�, which was 2� lower than the stall angle.

3.3. Effect of actuation frequency

The effect of the actuation frequency on aerodynamic coeffi-

cients is shown in Fig. 7 for a range of frequencies from
0.2 kHz to 1.8 kHz. In the present experiment, the test was
conducted with a consistent voltage of 12 kV and free-stream
speed of 30 m/s. The results show that control efficiency

demonstrated strong dependence on actuation frequency. As
the actuation frequency decreased, more increase in lift coeffi-
cient could be obtained. Among these, obvious increase was

obtained for a broad range of angles of attack when the pulsed
frequency was lower than 0.6 kHz. Especially for f = 0.2 kHz,
the maximum lift coefficient could be increased by 14.5% and

the stall angle could also be delayed by 2�, which was not
found in other cases. Compared with the change in lift coeffi-
cient, the drag coefficient showed opposite trend at different

frequencies. Fig. 7(b) illustrates that the drag coefficient
decreased as the pulsed frequency increased for angles of
attack a < 22�. The lift to drag ratio had the same trend as
the drag coefficient, and larger increase could be obtained

for most angles of attack when the pulsed frequency was
higher than 0.8 kHz.

The details of the effects of pulsed frequency were shown in

Figs. 7(d)–7(f). The values of dCL showed visible difference
for different pulsed frequencies. When input frequency was
0.2 kHz, the value of dCL increased until a = 26�. As pulsed

frequency increased, the value of dCL decreased with two
ntrol at different pulsed voltages (U1= 40 m/s).



Fig. 6 Detailed change in CL and CD relative to baseline at

different actuation voltages.
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peaks. Fig. 7(d) also shows that the maximum value of dCL

was reached at relatively low angles of attack for high pulsed

frequency. The changes of dCD were approximately the same
for all of the pulsed frequencies, and the values decreased
firstly and then increased with the increasing angles of attack,

reaching maximum 34.2% decreases at the same angle of
attack a = 15�. But the values of dCD at higher angles of
attack were positive for low frequencies, which indicated
adverse effects of low pulsed frequency on decreasing drag.

Fig. 7(f) shows the detailed change in lift-to-drag ratio, the
value of dCL/CD increased with the increase of frequencies,
and the maximum lift-to-drag ratio could be increased by

22.4%. According to the curves, there were also two peaks,
which was due to the changes in lift and drag coefficients.

3.4. Effect of Reynolds number

As mentioned before, the free-stream speed or chord Reynolds
number had little effect on the aerodynamic performance of

the present model. But the scaling effect on lift and drag coeffi-
cients with control was not clear. This was important when
plasma control was used at flight-scale Reynolds number con-
ditions. Based on the previous studies, effects of the Reynolds

number on lift and drag coefficients were investigated at
0.2 kHz and 1.0 kHz, respectively. The free-stream speeds var-
ied from 20 m/s to 40 m/s, corresponding to chord Reynolds

number of 3.1 · 105–6.2 · 105.
Fig. 8(a) shows the effect of the Reynolds number on
detailed change in lift coefficient. As could be seen, there were
negligible differences between different Reynolds numbers.

Fig. 8(b) shows that the stall angle of attack could be delayed
by 2� for all the Reynolds numbers. As shown in Fig. 8(c), all
of the drag coefficients showed similarity and reached the

maximum values at a = 15�. So, the present study indicated
that the control efficiency was not dependent on chord
Reynolds number or free-stream speeds. However, this offered

tremendous potential when plasma control was used under the
flight conditions.

3.5. Effect on pitching moment coefficient

For flying wing, one of the aerodynamic problems was low
degree of static stability in longitudinal channel. In the present
experiment, this problem was investigated with and without

plasma control for a range of frequencies from 0.2 kHz to
1.8 kHz.

The pitching moment coefficient Cm versus angels of attack

is shown in Fig. 9. The value of the pitching moment coeffi-
cient without control was slightly negative at low angles of
attack, and then the value increased with increasing angles of

attack. The maximum value was obtained at a = 17�, which
was consistent with the stall angle of the wing model. This indi-
cated that complete separation happened on the leading edge.
As the angles of attack increased, the complex flow such as the

upwind effect on the trailing edge shifted the aerodynamic cen-
ter downstream again and resulted in a significant decrease in
pitching moment coefficient.

The values of pitching moment coefficient with plasma con-
trol were slightly lower than the baseline for a < 17�, which
indicated that the static stability in longitudinal channel could

be slightly improved by plasma actuator. When actuator fre-
quency was lower than 0.4 kHz, the value of pitching moment
could increase until a = 20�. In these cases, the separation on

leading edge might be delayed when plasma actuator activated.
And this might result in a considerable increase in lift coeffi-
cients at low actuator frequencies. Given high actuation fre-
quency, the value of the pitching moment coefficient was

lower than the baseline for all the tested angles of attack,
which also indicated enhancement in static stability in lon-
gitudinal channel.

3.6. Discussion

Considering the low momentum induced by a NS-DBD

plasma actuator,11,16 it has been acknowledged that the under-
lying mechanism of NS-DBD plasma actuator relies on ther-
mal mechanism.11,17 The discharge happens within a few

nanoseconds and quickly heats up the air near the discharge,
resulting in rising pressure and forming a shock wave. The
heated volume enhances the formation and propagation of
natural hydrodynamics instability into the flow field, affects

the natural stability of the flow and aids mixing between the
shear layer and separated flow.18

Lift enhancement was obtained at high angles of attack,

which indicated that the plasma actuator could effectively con-
trol the leading-edge separation. At these angles of attack, the
vortices broke down and strong shear layer formed on the

leading edge. The perturbations generated by the plasma



Fig. 7 Aerodynamic performance with/without control at different actuation frequencies (U1= 30 m/s).
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actuator could strongly affect the evolvement of the vortices
and shear layer. With the increase of the voltage amplitude,
the area actuated by the plasma is extended and the strength

of the perturbation is larger, resulting in more control effi-
ciency. The experiment also showed that tremendous enhance-
ment in lift coefficient was obtained at low actuation
frequencies. This might be because that the frequency was as

the same order of the natural shedding vortices of the wing
model, which could be assessed by F+. Given pulsed frequency
0.2 kHz and flow speed 30 m/s, the F+ is about 1.6. So, strong

coupling might exist between plasma actuation and free-stream
flow. This could enhance the energy transfer across down-
stream of the vortices and affect the instability of the wake
flow, which was very important in separation control. The

change in pitching moment also indicated the separation could
be delayed by plasma actuation. Given the high actuator fre-
quencies, obvious decrease in drag coefficient could be
obtained, which could result in increase in lift-to-drag ratio

for broad range of angles of attack. Some studies had demon-
strated that the pulse plasma excitations with the characteristic
frequencies could change the stability of the base flow struc-

tures.9,19 Given the lower actuation frequency, the large



Fig. 8 Effects of Reynolds numbers on lift and drag coefficients.

Fig. 9 Pitching moment coefficients at different discharge fre-

quencies (U1= 30 m/s).
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shedding vortex structure is affected as well as the larger vortex
structure in the wake. In this case, the lift is enhanced, and the
induced drag is also increased. When high actuation frequency

is applied, only the vortex structure in the shear layer is
affected. So, the induced drag, which is dominant in the total
drag, is also small.

The present results also show negligible dependence on
Reynolds number or Mach number. This might be attributed
to two aspects. On the one hand, what the plasma actuation

had effect on was the vortices or separation on the leading edge
which was depended on the sharp leading edge and aspect
ratio. On the other hand, the tested Reynolds number or
Mach number was too low to make significant changes in aero-

dynamic performance.

4. Conclusions

Experimental investigation of aerodynamic control on a model
of flying wing was carried out at subsonic flow speed with
Reynolds number of 3.1 · 105–6.2 · 105. Leading-edge NS-

DBD plasma actuator was used for aerodynamic control of
a moderately swept flying wing. Effects of discharge amplitude
and frequency, and chord Reynolds number were investigated

in present experiment. The results show that the DBD plasma
actuator offers tremendous potential as an active flow-control
device to enhance the aerodynamic performance of the present

model. Due to its no moving parts, a resurface adapting, low
power requirements, and a fast time response, the plasma
actuator could also improve the structural efficiency of an air-
craft compared to other control technologies. The present
experiment also indicates that control efficiency demonstrated
strong dependence on actuator frequency.

(1) Increase in lift coefficient is obtained at high angles of
attack and reaches a maximum value at f= 0.2 kHz. For these
angles of attack, it has been proved that the trailing-edge flaps

could not provide the lift for flight control effectively.14 In the
present experiment, plasma actuation is proved to be a useful
means of flight control for high angles of attack. And the

results also indicate that plasma actuation could be used under
other conditions, such as landing.

(2) Given the high actuator frequencies, decrease in drag
coefficient is obtained for a broad range of angles of attack,

resulting in a significant increase in lift-to-drag ratio. This indi-
cates that plasma actuation could enhance the take-off and
climbing performance of the flying wing at low angles of

attack. Synchronously, slight enhancement in the static stabil-
ity in longitudinal channel could also be achieved in these
cases.

(3) As the present experiment shows that control efficiency
is not dependent on Reynolds number or flow speed, plasma
actuation shows tremendous potential to improve the aerody-

namic performance of the flying wing at high speed or
Reynolds number.
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