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Abstract

In this paper we study smooth immersed non-characteristic submanifolds (with or without boundary) of k-step sub-Riemannian
Carnot groups, from a differential-geometric point of view. The methods of exterior differential forms and moving frames are
extensively used. Particular emphasis is given to the case of hypersurfaces. We state divergence-type theorems and integration by
parts formulas with respect to the intrinsic measure σn−1

H
on hypersurfaces. General formulas for the first and the second variation

of the measure σn−1
H

are proved.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article nous étudions les sous-variétés non caractéristiques (avec ou sans bord) immergées dans un groupe de Carnot
sous-riemannien, selon le point de vue de la géométrie différentielle classique, en utilisant la méthode du repère mobile et le
formalisme des formes différentielles. En particulier, nous étudions le cas des variétés de codimension 1 en établissant des formules
de type divergence et d’intégration par parties par rapport à la mesure intrinsèque σn−1

H
. Enfin, nous établissons des formules

générales pour les variations première et seconde de la mesure σn−1
H

.
© 2007 Elsevier Masson SAS. All rights reserved.

MSC: 49Q15; 46E35; 22E60

Keywords: Carnot groups; Sub-Riemannian geometry; Hypersurfaces; 1st & 2nd variation of the H -perimeter

1. Introduction

Over the last years considerable efforts have been devoted to extending the methods of Analysis, Calculus of Vari-
ations and Geometric Measure Theory to general metric spaces. This type of study, in some sense already contained
in the classical Federer book’s [15], has received new stimuli, among the others, by the works of Ambrosio and
Kirchheim [2,3], Cheeger [8], De Giorgi [14], Gromov [22,23], David and Semmes [13], Pansu [39,40].
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In this respect, the so-called sub-Riemannian or Carnot–Carathéodory geometries have become of great interest.
The setting of sub-Riemannian geometry is that of a smooth manifold N endowed with a smooth non-integrable
distribution H ⊂ T N of h-planes, or horizontal subbundle (h is a constant less than dimN ). Such a distribution is
endowed with a positive definite metric gH defined only on the subbundle H . The manifold N is said to be a Carnot–
Carathéodory space (abbreviated CC-space) when one considers the so-called CC-metric dH (see Definition 2.2).
With respect to this metric the only paths on the manifold which have finite length are tangent to the distribution H

and therefore called horizontal. Roughly speaking, for connecting two points we are only allowed to follow horizontal
paths joining them.

We would stress that sub-Riemannian geometry has many connections with many different areas of Mathematics
and Physics: Analysis, PDEs, Calculus of Variations, Control Theory, Mechanics, etc. For references, comments and
perspectives, we refer the reader to Montgomery’s book [38] and the surveys by Gromov [23], and Vershik and
Gershkovich [49]. We also mention, specifically for sub-Riemannian geometry [47], and the recent [42].

The geometric setting of this paper is that of Carnot groups. Roughly speaking, a Carnot group G is a nilpotent
and stratified Lie group endowed with a one-parameter family of dilations adapted to the stratification.

In sub-Riemannian geometry, Carnot groups are of special interest and one of the main reasons is that they consti-
tute a wide class of concrete examples of sub-Riemannian geometries.

Another reason comes from the fact that, by virtue of a theorem due to Mitchell (see [35,38]), the Gromov–
Hausdorff tangent cone at regular points of a sub-Riemannian manifold is a suitable Carnot group. This further justifies
the interest towards the study of Carnot groups, which play, for sub-Riemannian geometries, a similar role to that of
Euclidean spaces for Riemannian geometry.

The initial interest in developing Analysis and Geometric Measure Theory in this setting was the proof of the
existence of intrinsic isoperimetric inequalities, first proved in Pansu’s Thesis [39], for the case of the Heisenberg
group H

1. For a survey of results about isoperimetric inequalities on Lie groups, see [48]. More recently, a new
impulse in this direction has come from a Rectifiability Theorem for sets of finite H -perimeter, obtained by Franchi,
Serapioni and Serra Cassano in [16], first in the case of Heisenberg groups and then generalized to the case of 2-step
Carnot groups; see [18].

For recent results on these topics and for more detailed bibliographic references, we shall refer the reader, for
instance, to [1,5,16–19,30,31,36,37].

Object of the present paper is the differential geometry of immersed hypersurfaces in Carnot groups. In particular,
we shall prove some variational formulas concerning the “intrinsic volume” of hypersurfaces.

The point of view adopted here is that of the classical differential geometry. In this respect, we stress that we
will extensively use moving frames and differential forms as a tool. For a somewhat different, but still differential-
geometric, approach to sub-Riemannian geometry, we refer to the articles [23,44], and [41,42].

As is common in differential geometry, we will study smooth submanifolds. We would remark that, since Carnot
groups are naturally equipped with a left-invariant Riemannian metric, they can also be naturally equipped with the
Levi-Civita connection related to such a metric. We will also introduce a notion of partial connection or horizontal
connection (see Definition 2.8), to bring to light some typically sub-Riemannian features.

In Section 2.2 we introduce some basic notions about hypersurfaces and submanifolds.
We stress that the submanifolds we consider are supposed to be geometrically H -regular (see Definition 2.23)

with respect to the horizontal distribution H , and equipped with homogeneous measures with respect to the intrinsic
Carnot dilations. In the case of the hypersurfaces, such measure coincides with the H -perimeter measure, extensively
studied in recent literature; see [1,5,16,17,19,30]. The idea here is to look at the H -perimeter measure of sets having
regular boundary, like a measure associated to a suitable (n − 1)-differential form σn−1

H . In such a manner we can
use the formalism of differential forms to make computations. We then give some more general definitions for higher
codimensional submanifolds.

In Section 3, we introduce some geometrical basic notions aiming at studying non-characteristic hypersurfaces,
like for example the notion of sub-Riemannian horizontal IIa fundamental form and that of horizontal mean curvature
(see Definition 3.2).

In Section 3.2, we then illustrate and prove some integration by parts formulas on non-characteristic hypersurfaces
equipped with the measure σn−1

H .
Section 4 is entirely devoted to prove the formula for the 1st variation and that of the 2nd variation of σn−1

H . The
last one is, of course, the main result of this paper. For precise statements, we refer to Section 4.3. These results
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have many consequences. As an example, we will show in Corollary 4.5 that smooth isoperimetric sets in Carnot
groups must have constant horizontal mean curvature. Actually, these formulae are basic tools in many problems, as
for instance, in studying the sub-Riemannian minimal surfaces equation, that is the object of a great deal of recent
study; see [20,12,28,43,9].

We would like to stress that the methods used in this paper are general enough to be used also in at least two
different ways. Indeed we could use them not only to generalize our results to the case of higher codimensional
submanifolds of Carnot groups but also to study hypersurfaces and, more generally, submanifolds in the setting of
equiregular CC-spaces in the sense of Gromov’s definition; see [22] and [42].

2. Carnot groups, submanifolds and measures

2.1. Sub-Riemannian geometry of Carnot groups

In this section, we will introduce the definitions and the main features concerning the sub-Riemannian geometry
of Carnot groups. References for this subject are, for instance, [5,19,21–23,30,35,38–42,47].

First, let us consider a C∞-smooth connected n-dimensional manifold N and let H ⊂ T N be a h1-dimensional
smooth subbundle of T N . For any p ∈ N , let T k

p denote the vector subspace of TpN spanned by a local basis of
smooth vector fields X1(p), . . . ,Xh1(p) for the subbundle H around p, together with all commutators of these vector
fields of order � k. The subbundle H is called generic if for all p ∈ N dimT k

p is independent of the point p and
horizontal if T k

p = T N for some k ∈ N. The pair (N,H) is a k-step CC-space if is generic and horizontal and if
k := inf{r: T r

p = T N}. In this case, we have that

0 = T 0 ⊂ H = T 1 ⊂ T 2 ⊂ · · · ⊂ T k = T N (1)

is a strictly increasing filtration of subbundles of constant dimensions ni := dimT i (i = 1, . . . , k). Setting
(Hi)p := T i

p \ T i−1
p , then gr(TpN) := ⊕k

i=1(Hk)p is the associated graded Lie algebra, at the point p ∈ N ,
with Lie product induced by [·,·]. Moreover, we shall set hi := dimHi = ni − ni−1 (n0 = h0 = 0). The k-vector
h = (h1, . . . , hk) is called the growth vector of H . Notice that every Hi is a smooth subbundle of the tangent bundle
π :T N → N , i.e. πHi

:Hi → N , where πHi
= π |Hi

(i = 1, . . . , k).

Definition 2.1. We will call graded frame X = {X1, . . . ,Xn} for N , any frame for N such that, for any p ∈ N we have
that {Xij (p): nj−1 < ij � nj }, is a basis for Hjp (j = 1, . . . , k).

Definition 2.2. A sub-Riemannian metric gH = 〈·,·〉H on N is a symmetric positive bilinear form on H . If (N,H) is
a CC-space, then the CC-distance dH (p,q) between p,q ∈ N is

dH (p,q) := inf
∫ √〈γ̇ , γ̇ 〉H dt,

where the infimum is taken over all piecewise-smooth horizontal paths γ joining p to q .

In fact, Chow’s theorem (see [22,38]) implies that dH is actually a metric on N , since any two points can be joined
with (at least one) horizontal path; moreover the topology induced by the CC-metric turns out to be compatible with
the given topology of N .

The general setting introduced above is the starting point of sub-Riemannian geometry. A nice and very large class
of examples of these geometries is represented by Carnot groups which for many reasons play, in sub-Riemannian
geometry, an analogous role to that of Euclidean spaces in Riemannian geometry. Below we will introduce their
main features. For an introduction to the following topics, we suggest Helgason’s book [26], and the survey paper
by Milnor [33], regarding the geometry of Lie groups, and Gromov [22], Pansu [40,42], and Montgomery [38],
specifically for sub-Riemannian geometry.

A k-step Carnot group (G,•) is a n-dimensional, connected, simply connected, nilpotent and stratified Lie group
(w.r.t. the multiplication •) whose Lie algebra g(∼= Rn) satisfies:

g = H1 ⊕ · · · ⊕ Hk, [H1,Hi−1] = Hi (i = 2, . . . , k), Hk+1 = {0}. (2)
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We shall denote by 0 the identity on G so that g ∼= T0G. The smooth subbundle H1 of the tangent bundle T G is said
horizontal and henceforth denoted by H . We will set V := H2 ⊕ · · · ⊕ Hk and call V the vertical subbundle of T G.
As before, we will assume that dimHi = hi (i = 1, . . . , k) and that H is generated by some basis of left-invariant
horizontal vector fields XH := {X1, . . . ,Xh1}. This one can be completed to a global basis (frame) of left-invariant
sections of T G, X := {Xi : i = 1, . . . , n}, which is graded or adapted to the stratification. We set nl := h1 + · · · + hl

(n0 = h0 := 0, nk = n), and

Hl = spanR{Xi : nl−1 < i � nl}.
Note that the canonical basis {ei : i = 1, . . . , n} of R

n ∼= g can be relabeled in such a way that it turns out to be adapted
to the stratification. In this way, any vector field Xi of the frame X is given by Xip := Lp∗ei (i = 1, . . . , n).

Notation 2.3. In the sequel, we shall set IH := {1, . . . , h1}, IH2 := {h1 +1, . . . , n2(= h1 +h2)}, . . . , IHk
:= {nk−1 +1,

. . . , nk(= n)}, and IV := {h1 + 1, . . . , n}. Moreover, we will use Latin letters i, j, k, . . . , for indices belonging to IH

and Greek letters α,β, γ, . . . , for indices belonging to IV . Unless otherwise specified, capital Latin letters I, J,K, . . . ,
may denote any generic index. Finally, we define the function ord : {1, . . . , n} → {1, . . . , k} by ord(I ) := i if, and only
if, ni−1 < I � ni (i = 1, . . . , k).

If p ∈ G and X ∈ g we set γ X
p (t) := exp[tX](p) (t ∈ R), i.e. γ X

p is the integral curve of X starting from p and it is
a 1-parameter sub-group of G. The Lie group exponential map is then defined by:

exp :g �→ G, exp(X) := exp[X](1).

It turns out that exp is an analytic diffeomorphism between g and G whose inverse will be denoted by log. Moreover,
we have:

γ X
p (t) = p • exp(tX) ∀t ∈ R.

From now on we shall fix on G the so-called exponential coordinates of 1st kind, i.e. the coordinates associated to the
map log.

As for any nilpotent Lie group, the Baker–Campbell–Hausdorff formula (see [10]) uniquely determines the group
multiplication • of G, from the “structure” of its own Lie algebra g. In fact, one has,

exp(X) • exp(Y ) = exp(X � Y ) (X,Y ∈ g),

where � :g × g → g is the Baker–Campbell–Hausdorff product defined by:

X � Y = X + Y + 1

2
[X,Y ] + 1

12

[
X, [X,Y ]] − 1

12

[
Y, [X,Y ]] + brackets of length � 3. (3)

Using exponential coordinates, (3) implies that the group multiplication • of G is polynomial and explic-
itly computable (see [10]). Moreover, 0 = exp(0, . . . ,0) and the inverse of p ∈ G (p = exp(p1, . . . , pn)) is
p−1 = exp(−p1, . . . ,−pn).

When we endow the horizontal subbundle with a metric gH = 〈·,·〉H , we say that G has a sub-Riemannian struc-
ture. Is important to note that it is always possible to define a left-invariant Riemannian metric g = 〈·,·〉 in such a way
that the frame X turns out to be orthonormal and such that g|H = gH . For this, it is enough to choose a Euclidean
metric on g = T0G which can be left-translated to the whole tangent bundle. This way, the direct sum (2) becomes an
orthogonal direct sum.

Since for Carnot groups the hypotheses of Chow’s theorem trivially apply, the Carnot–Carathéodory distance dH

associated with gH can be defined as before, and dH makes G a complete metric space in which every couple of
points can be joined by (at least) one dH -geodesic.

We remark that Carnot groups are homogeneous groups (see [46]), i.e. they are equipped with a 1-parameter group
of automorphisms δt : G → G (t > 0). In exponential coordinates, we have:

δtp = exp

(∑
j,i

t jpij eij

)
,

j
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for all p = exp(
∑

j,ij
pij eij ) ∈ G.2 The homogeneous dimension of G is the integer Q := ∑k

i=1 ihi , coinciding with
the Hausdorff dimension of (G, dH ) as a metric space; see [35,38,22].

The introduction of a Riemannian metric will allow us to study Carnot groups in a Riemannian way. To this end,
we define the left-invariant co-frame ω := {ωI : I = 1, . . . , n} dual to X. In particular, the left-invariant 1-forms3 ωi

are uniquely determined by the condition

ωI (XJ ) = 〈XI ,XJ 〉 = δJ
I (Kronecker) (I, J = 1, . . . , n).

We remind that the structural constants of the Lie algebra g associated with the (left invariant) frame X are defined
by:

CgR
IJ := 〈[XI ,XJ ],XR

〉
(I, J,R = 1, . . . , n).

They satisfy the customary properties:

(i) CgR
IJ + CgR

JI = 0 (skew-symmetry),
(ii)

∑n
J=1 CgI

JLCgJ
RM + CgI

JMCgJ
LR + CgI

JRCgJ
ML = 0 (Jacobi’s identity).

The stratification hypothesis on the Lie algebra implies the following further property:

Xi ∈ Hl, Xj ∈ Hm 
⇒ [Xi,Xj ] ∈ Hl+m. (4)

Therefore, if i ∈ IHs and j ∈ IHr , one has:

Cgm
ij �= 0 
⇒ m ∈ IHs+r . (5)

Definition 2.4. Throughout this paper we shall make use of the following notation:

(i) Cα
H := [Cgα

ij ]i,j∈IH
∈ Mh1×h1(R) (α ∈ IH2);

(ii) Cα := [Cgα
IJ ]I,J=1,...,n ∈Mn×n(R) (α ∈ IV ).

The linear operators associated with these matrices will be denoted in the same manner.

Definition 2.5. The ith curvature of the distribution H (i = 1, . . . , k) is the (antisymmetric, bilinear) map,

ΩHi
:H ⊗ Hi → Hi+1, ΩHi

(X ⊗ Y) := [X,Y ] mod T i ∀X ∈ H, ∀Y ∈ Hi.

Obviously, we have that ΩHk
(·,·) = 0, by definition of k-step Carnot group.

Since the bracket map [·,·] :H ⊗ Hi → Hi+1 (i = 1, . . . , k) is surjective, this definition turns out to be well posed.
Notice that the 1st curvature ΩH (·,·) := ΩH1(·,·) of H is the customary curvature of a distribution; see [21,23,38].

Notation 2.6. If Y ∈ T G let us denote by Y = (Y1, . . . , Yk) its canonical decomposition with respect to the grading of
the tangent space, i.e. Y = ∑k

i=1 pHi
(Y ), where pHi

denotes the orthogonal projection onto Hi (i = 1, . . . , k). Then
we set ΩV (X,Y ) := ∑k−1

i=1 ΩHi
(X,Yi) for X ∈ H and Y ∈ T G.

Lemma 2.7. Let X ∈ H and Y,Z ∈ T G. Then we have:

(i) 〈ΩH (X,Y ),Z〉 = −∑
α∈IH2

zα〈Cα
H X,Y 〉;

(ii) 〈ΩV (X,Y ),Z〉 = −∑
α∈IV

zα〈CαX,Y 〉.

2 Here, j ∈ {1, . . . , k} and ij ∈ IHj
= {nj−1 + 1, . . . , nj }.

3 That is, L∗
pωI = ωI for every p ∈ G.
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Proof. The proof is an immediate consequence of Definitions 2.5 and 2.4. �
In the sequel, we will give a quite general definition of connection which recovers the definitions of Riemannian,

partial and non-holonomic connections. Classical notions of connection (linear, affine or Riemannian) and related
topics can be found in [26,27] and [45]. Partial connections was introduced by Z. Ge in [21]; see also [23]. Non-
holonomic connections were first used by É. Cartan in his studies on non-holonomic mechanics and then in a great
number of works of the Russian school; see the survey by Vershik and Gershkovich [49], and also [29].

Definition 2.8. Let N be a C∞ smooth manifold and let πE :E → N , πF :F → N be smooth subbundles of T N .
An E-connection ∇(E,F ) on F is a rule which assigns to each vector field X ∈ C∞(N,E) an R-linear transformation
∇(E,F )

X : C∞(N,F ) → C∞(N,F ) such that

(i) ∇(E,F )
f X+gY Z = f ∇(E,F )

X Z + g∇(E,F )
Y Z ∀X,Y ∈ C∞(N,E) ∀Z ∈ C∞(N,F ),

∀f,g ∈ C∞(N);
(ii) ∇(E,F )

X f Y = f ∇(E,F )
X Y + (Xf )Y ∀X,Y ∈ C∞(N,E) ∀f ∈ C∞(N).

If E = F we shall set ∇E := ∇(E,E) and call ∇E an E-connection. Any such connection will be called a partial
connection of T N . If E = T N , then ∇(T N,F ) is called a non-holonomic F -connection.4 If E has a positive definite
inner product gE , then an E-connection ∇E is said metric preserving if

(iii) ZgE(X,Y ) = gE(∇E
Z X,Y ) + gE(X,∇E

Z Y ) ∀X,Y,Z ∈ C∞(N,E).

The torsion TE associated to the E-connection ∇E is defined by:

TE(X,Y ) := ∇E
XY − ∇E

Y X − pE[X,Y ] ∀X,Y ∈ C∞(N,E),

where pE :T N → E denotes the orthogonal projection onto E. An E-connection is torsion free if TE(X,Y ) = 0 for
every X,Y ∈ C∞(N,E). We shall say that ∇E is the Levi-Civita E-connection on E if it is metric preserving and
torsion-free. Note that if E = T N , terminology and definitions adopted here are the customary ones and, in this case,
we will denote by ∇ the (univocally determined) Levi-Civita connection on T N with respect to the canonical metric g

on N .

We stress that the difference between the definitions of partial and non-holonomic connection is that the latter
allows us to covariantly differentiate along any curve of N whereas using the first one only curves that are tangent to
the subbundle E can be considered.

Definition 2.9. Henceforth, we shall denote by ∇ the (unique) left-invariant Levi-Civita connection on G associated
with g. Moreover, if X,Y ∈ C∞(G,H)(:= X(H)), we shall set ∇H

X Y := pH (∇XY). We stress that ∇H is an example
of partial connection, called horizontal H -connection. For notational convenience, in the sequel we will denote by the
same symbol the non-holonomic connection on G, i.e. ∇H = ∇(T G,H).

Remark 2.10. From Definition 2.9, using the properties of the structural constants of any Levi-Civita connection, we
get that the horizontal connection ∇H is flat, i.e.

∇H
Xi

Xj = 0 (i, j ∈ IH ).

Note that the horizontal connection ∇H is compatible with the sub-Riemannian metric gH , i.e.

X〈Y,Z〉H = 〈∇H
X Y,Z〉H + 〈Y,∇H

X Z〉H ∀X,Y,Z ∈ X(H).

This follows immediately from the very definition of ∇H , by using the analogous property of the Levi-Civita
connection ∇ on G. Furthermore, ∇H is torsion-free, i.e.

∇H
X Y − ∇H

Y X − pH [X,Y ] = 0 ∀X,Y ∈ X(H).

4 This definition recovers the usual one of “vector bundle connection” (see [34]) where instead of a generic vector bundle π :F → N we make
use of a subbundle of the tangent bundle.
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Definition 2.11. If ψ ∈ C∞(G) we define the horizontal gradient of ψ , gradH ψ , as the (unique) horizontal vector
field such that

〈gradH ψ,X〉H = dψ(X) = Xψ ∀X ∈ X(H).

We will call horizontal divergence of X ∈ X(H), divH X, the function given, at each point p ∈ G by:

divH X(p) := Trace(Y → ∇H
Y X)(p) (Y ∈ Hp).

Later on, we will denote by JH the Jacobian matrix of a vector-valued function, computed with respect to a given
orthonormal frame τH = {τ1, . . . , τh1} for H .

For what concerns the theory of connections on Lie group and left-invariant differential forms, see [26]. Moreover,
for many topics about the geometry of nilpotent Lie groups equipped with a left-invariant connection, see [33].

The Cartan’s structure equations for the left-invariant co-frame ω are given by:

(I) dωI =
n∑

J=1

ωIJ ∧ ωJ , (II) dωJK =
n∑

L=1

ωJL ∧ ωLK − ΩJK (I, J,K = 1, . . . , n),

where ωIJ (X) = 〈∇XXI ,XJ 〉 are the connection 1-forms for ω while ΩJK are the curvature 2-forms, defined by:

ΩJK(X,Y ) = ωK

(
R(X,Y )XJ

) (
X,Y ∈ X(G)

)
.

Here and in the sequel, R will denote the Riemannian curvature tensor, defined by:

R(X,Y )Z := ∇Y ∇XZ − ∇X∇Y Z − ∇[Y,X]Z
(
X,Y,Z ∈ X(G)

)
.

Both the connection 1-forms ωIJ and the curvature 2-forms ΩIJ are skew-symmetric in the lower indices. We explic-
itly remark that, with respect to the global frame X = {X1, . . . ,Xn} of left-invariant vector fields on G, it turns out
that (see, for instance, [33]):

∇XI
XJ = 1

2

n∑
R=1

(CgR
IJ − CgI

JR + CgJ
RI )XR (I, J = 1, . . . , n). (6)

In the sequel, by using this formula and condition (4), we will perform explicit computations in terms of the structural
constants. For instance, from (6) it follows that the 1st structure equation for the coframe ω, becomes:

dωR = −1

2

∑
1�I,J�ni−1

CgR
IJ ωI ∧ ωJ

(
R ∈ IHi

= {j : ni−1 < j � ni}, i = 1, . . . , k
)
. (7)

We end this section with some examples.

Example 2.12 (Heisenberg group H
n). Let hn := T0H

n = R
2n+1 denote the Lie algebra of the Heisenberg group H

n

that is an important example of 2-step Carnot group. Its Lie algebra hn is defined by the rules,

[ei , ei+n] = e2n+1 (i = 1, . . . , n),

and all other commutators are zero. We have hn = H ⊕ Re2n+1 where H = spanR{ei : i = 1, . . . ,2n}. In particular,
the 2nd layer of the grading Re2n+1 is the center of the Lie algebra hn. These conditions determine the group law •
via the Baker–Campbell–Hausdorff formula. More precisely, if p,q ∈ H

n, then

p • q = exp

(
p1 + q1, . . . , p2n + q2n,p2n+1 + q2n+1 + 1

2

n∑
i=1

(piqi+n − pi+nqi)

)
.

Example 2.13 (Engel group E
1). The Engel group is a simple but very important example of 3-step Carnot group;

see, for instance, [38]. Its Lie algebra e is 4-dimensional and is defined by the rules,

[e1, e2] = e3, [e1, e3] = [e2, e3] = e4,

and all other commutators vanish. We have e = H ⊕ Re3 ⊕ Re4, where H = spanR{e1, e2} and the center of the Lie
algebra e is Re4.
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2.2. Hypersurfaces, H -regular submanifolds and measures

Throughout this paper we shall use many properties of differential forms for which we refer the reader, for instance,
to [15,27,26,45].

In the sequel, Hm
cc and Sm

cc will denote, respectively, the usual and the spherical5 m-dimensional Hausdorff measures
on G associated with dH , while Hm

e will denote the (Euclidean) m-dimensional Hausdorff measure on R
n ∼= G.6

The (left-invariant) Riemannian volume form on G is defined as

σn
R := Λn

i=1ωi ∈ Λn(T G).

Remark 2.14. By integrating σn
R we obtain a measure volnR, which is the so-called Haar measure of G. Since

the determinant of Lp∗ is equal to 1, this measure equals the measure induced on G by the push-forward of the
n-dimensional Lebesgue measure Ln on R

n ∼= g. Moreover, up to a constant multiple, volnR equals the Q-dimensional

Hausdorff measure HQ
cc on G. This follows because they are both Haar measures for the group and therefore they are

equal, up to a constant; see [38]. Here we assume this constant equal to 1.

In this paper we are mainly interested to the study of codimension 1 immersed7 sub-manifolds (or hypersurfaces)
of Carnot groups. Note that any hypersurface S ⊂ R

n(∼= g) is identified, by means of the exponential map, with a
hypersurface of G, i.e. S ∼= expS. A hypersurface S is Cr -regular (r = 1, . . . ,∞), if S is Cr -regular as a Euclidean
submanifold of R

n.
In the study of hypersurfaces of Carnot groups we have to introduce the notion of characteristic point.

Definition 2.15. If S ⊂ G is a Cr -regular (r = 1, . . . ,∞) hypersurface, we say that S is characteristic at p ∈ S if
dimHp = dim(Hp ∩ TpS) or, equivalently, if Hp ⊂ TpS. The characteristic set of S is denoted by CS , i.e.

CS := {
p ∈ S: dimHp = dim(Hp ∩ TpS)

}
.

A hypersurface S ⊂ G, oriented by its unit normal vector ν, is non-characteristic if, and only if, the horizontal
subbundle H is transversal to S (H � T S). We have then,

Hp � TpS ⇐⇒ pH νp �= 0 ⇐⇒ ∃X ∈ X(H): 〈Xp,νp〉 �= 0,

for all p ∈ S, where pH :T G → H denotes the orthogonal projection onto H .

Remark 2.16. (Hausdorff measure of CS ; see [30].) If S ⊂ G is a C1-regular hypersurface, then the
(Q − 1)-dimensional Hausdorff measure associated with dH of the characteristic set CS is zero, i.e.

HQ−1
cc (CS) = 0.

5 We remind that

(i) Hm
cc(S) = limδ→0+ Hm

cc,δ(S) where, up to a constant multiple,

Hm
cc,δ(S) = inf

{∑
i

(
diamH (Ci)

)m: S ⊂
⋃
i

Ci ; diamH (Ci) < δ

}
,

and the infimum is taken with respect to any non-empty family of closed subsets {Ci }i ⊂ G;
(ii) Sm

cc(S) = limδ→0+ Sm
cc,δ(S) where, up to a constant multiple,

Sm
cc,δ(S) = inf

{∑
i

(
diamH (Bi)

)m: S ⊂
⋃
i

Bi ; diamH (Bi) < δ

}
,

and the infimum is taken with respect to closed dH -balls Bi .

6 Here and in the sequel, G is identified with R
n by means of the exponential map.

7 If Nn is a manifold, then an immersed m-submanifold of N is a subset Mm ⊂ N endowed with a m-manifold topology (not necessarily the
subspace topology) together with a smooth structure such that the inclusion ı :M → N is a smooth immersion (i.e. the push-forward ı∗ is injective
at each point, or equivalently, rank ı∗ = m).
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Remark 2.17 (Riemannian measure on hypersurfaces). Let S ⊂ G be a Cr -regular hypersurface and let ν denote the
unit normal vector along S. By definition, the (n − 1)-dimensional Riemannian measure along S is given by:

σn−1
R S := (ν σn

R)|S, (8)

where denotes the “contraction” (or interior product) of a differential form.8

Since we shall study regular hypersurfaces, instead of the usual definition of H -perimeter measure9 we now
introduce a (n − 1)-differential form which, by integration, coincides with the H -perimeter measure.

Definition 2.18 (σn−1
H -measure on hypersurfaces). Let S ⊂ G be a Cr -regular non-characteristic hypersurface and let

us denote by ν its unit normal vector. We will call H -normal along S, the normalized projection onto H of ν, i.e.

νH := pH ν

|pH ν| .

We then define the (n − 1)-dimensional measure σn−1
H along S to be the measure associated with the

(n − 1)-differential form σn−1
H ∈ Λn−1(T S) given by the contraction of the volume form σn

R of G with the hori-
zontal unit normal νH , i.e.

σn−1
H S := (νH σn

R)|S. (9)

If we allow S to have characteristic points we may trivially extend the definition of σn−1
H by setting σn−1

H CS = 0.
Notice also that σn−1

H S = |pH ν| · σn−1
R S.

From this definition, we obtain:

σn−1
H S =

∑
i∈IH

νi
H (Xi σn

R)|S =
∑
i∈IH

(−1)i+1νi
H (ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωn)|S,

where νi
H := 〈νH ,Xi〉 (i ∈ IH ). In the sequel, we will frequently use the next elementary lemma.

Lemma 2.19. If S ⊂ G be a smooth non-characteristic hypersurface, then for every X ∈ HS we have

(X σn
R)|S = 0.

Proof. Since X ∈ HS(⊂ T S), we have 〈X,ν〉 = 0 and (8) implies (X σn
R)|S = 〈X,ν〉σn−1

R |S = 0. �
The comparison among different notions of measures on submanifolds, is an interesting problem of the Geometric

Measure Theory of Carnot–Carathéodory spaces. In the case of smooth hypersurfaces in Carnot groups, the problem
is to compare the H -perimeter measure with the (Q − 1)-dimensional Hausdorff measure associated with either the
cc-distance dH or with some suitable homogeneous distance. In general, thanks to a remarkable density estimate
for σn−1

H proved in [1], we have the following:

8 The linear map :Λk(T G) → Λk−1(T G) is defined, for X ∈ T G and ωk ∈ Λk(T G), by (X ωk)(Y1, . . . , Yk−1) := ωk(X,Y1, . . . , Yk−1);
see [26,15].

9 Let U ⊆ G be open and f ∈ L1(U). Then f has H -bounded variation in U if

|∇H f |H (U) := sup

{∫
U

f divH Y dLn: Y ∈ C1
0(U,H), |Y |H � 1

}
< ∞.

Let HBV(U) denote the vector space of bounded H -variation in U . From Riesz’s theorem it follows that |∇H f |H is a Radon measure on U and
that there exists a horizontal |∇H f |H -measurable section νf such that |νf |H = 1 for |∇H f |H -a.e. p ∈ U and that∫

U

f divH Y dLn =
∫
U

〈Y, νf 〉H d|∇H f |H ∀Y ∈ C1
0(U,H).

We say that a measurable set E ⊂ G has finite H -perimeter in U if χE ∈ HBV(U). The H -perimeter of E in U is the Radon measure
|∂E|H (U) := |∇H χE |H (U). We call generalized unit H -normal along ∂E the Radon Rh1 -measure νE := −νχE

; see [1,5,16–19].
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Theorem 2.20. If S ⊂ G is a C1-regular hypersurface which is locally the boundary of an open set E having (locally)
finite H -perimeter (see footnote 9), then

|∂E|H (B) = k
Q−1(νH )SQ−1

cc (S ∩B) ∀B ∈ Bor(G), (10)

where k
Q−1 is a function depending on νH , called metric factor; see [30]. It is important to stress that

|∂E|H (B) = σn−1
H (S ∩B) because of the regularity of ∂E.

A proof of this theorem can be found in [30].

Remark 2.21. We would explicitly notice that

σn−1
H (S ∩ U) =

∫
S∩U

√
〈X1, ne〉2

Rn + · · · + 〈Xm1, ne〉2
Rn dHn−1

e , (11)

where ne denotes unit Euclidean normal along S,10 and that its unit H -normal is given by:

νH = (〈X1, ne〉Rn , . . . , 〈Xh1, ne〉Rn)√
〈X1, ne〉2

Rn + · · · + 〈Xh1, ne〉2
Rn

.

Here, the Euclidean normal ne along S and the vector fields Xi (i ∈ IH ) of the horizontal left-invariant frame XH , are
thought of as vectors in R

n ∼= G, endowed with its canonical inner product 〈·,·〉Rn . We note that the (Riemannian) unit
normal ν along S may be represented with respect to the global left-invariant frame X for G, in terms of the Euclidean
normal ne. More precisely, we have:

ν(p) = (Lp ◦ exp)∗ne(logp)

|(Lp ◦ exp)∗ne(logp)| (p ∈ S ⊂ G),

where Lp∗(q) = [X1(q), . . . ,Xn(q)] ∈ Mn×n(R) (p, q ∈ G).

Definition 2.22. If νH is the horizontal unit normal along S, at each regular point p ∈ S \ CS one has that
Hp = (νH )p ⊕ HpS, where we have set:

HpS := Hp ∩ TpS.

We call HpS the horizontal tangent space at p along S. Moreover, we define in the obvious way the associated
subbundles HS(⊂ T S) and νH S, called, respectively, horizontal tangent bundle and horizontal normal bundle of S.

If we consider an immersed submanifold Sn−i ⊂ G of codimension i � 1, the above construction can be general-
ized in the following way.

Definition 2.23. We say that a codimension i submanifold Sn−i of G is geometrically H -regular at p ∈ S if there
exist linearly independent vectors ν1

H , . . . , νi
H ∈ Hp transversal along S at p. Without loss of generality, we may also

suppose that these vectors be orthonormal at p. The horizontal tangent space at p is defined by:

HpS := Hp ∩ TpS.

If this condition is independent of the point p ∈ S, we say that S is geometrically H -regular. In such case we may de-
fine the associated vector bundles HS(⊂ T S) and νH S, called, respectively, horizontal tangent bundle and horizontal
normal bundle. Therefore, one has

Hp := HpS ⊕ Rν1
H ⊕ · · · ⊕ Rνi

H .

10 If S ⊂ R
n has a Cr -parametrization, Φ :B ⊂ R

n−1 → R
n, then we have:

ne
(
Φ(ξ)

) := ± Φξ1 ∧ · · · ∧ Φξn−1

|Φξ1 ∧ · · · ∧ Φξn−1 |Rn
.
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Definition 2.24 (Characteristic set of Sn−i ). The characteristic set CS of a C1-smooth i-codimensional submanifold
Sn−i ⊂ G is defined by

CS := {
p ∈ S: dimHp − dim(Hp ∩ TpS) � i − 1

}
.

Remark 2.25 (Hausdorff measure of CSn−i ). The above definition of CS has been used in [31], where it was shown
that every C1-smooth submanifold Sn−i ⊂ G has zero (Q − i)-dimensional Hausdorff measure, with respect to dH ,
i.e.

HQ−i
cc (CS) = 0.

Definition 2.26 (σn−i
H -measure on geometrically H -regular submanifolds). Let Sn−i ⊂ G be a geometrically

H -regular submanifold of codimension i. Let ν1
H , . . . , νi

H ∈ νH S and assume that they are everywhere orthonormal.
We set:

νH := ν1
H ∧ · · · ∧ νi

H ∈ Λi(T G),

and define the (n − i)-dimensional measure σn−i
H along S to be the measure associated with the (n − i)-differential

form σn−i
H ∈ Λn−i (T S) given by the interior product of the volume form of G with the i-vector νH , i.e.11

σn−i
H S := (νH σn

R)|S. (12)

Remark 2.27. The measure σn−i
H is homogeneous of degree Q − i with respect to Carnot dilations {δt }t>0,

i.e. δ∗
t σ n−i

H = tQ−iσ n−i
H . This fact easily follows from the definitions. Moreover, it can be proved that the mea-

sure σn−i
H restricted to any geometrically H -regular submanifold Sn−i equals, up to a normalization constant, the

(Q − i)-dimensional Hausdorff measure computed with respect to a some homogeneous distance on G. Here, instead
of proving the last statement, we shall refer the reader to the recent paper [32], where similar results are proved.

3. Geometry of HS and calculus on hypersurfaces

In this section we will study non-characteristic hypersurfaces, or equivalently, non-characteristic domains of a
given hypersurface S. Some of the notions that we shall develop has been recently studied in [4,9,20,43,28,11,12].

We remark that, if ∇T S denotes the induced connection on S from the Levi-Civita connection ∇ on G,12 then ∇T S

induces a partial connection ∇HS , associated with the subbundle HS of T S, defined as follows13:

∇HS
X Y := pHS(∇T S

X Y ) (X,Y ∈ HS).

Starting from the orthogonal decomposition H = HS ⊕ νH S (see Definition 2.22), we could also define ∇HS by
mimicking the usual definition of “induced connection” on submanifolds (see, for instance, [6]). Indeed, it turns out
that

∇HS
X Y = ∇H

X Y − 〈∇H
X Y, νH 〉H νH (X,Y ∈ HS).

Definition 3.1. We will call HS-gradient of ψ ∈ C∞(S) the unique horizontal tangent section of HS, gradHS ψ ,
satisfying

〈gradHS ψ,X〉HS = dψ(X) = Xψ ∀X ∈ HS.

We will denote by divHS the divergence operator on HS, i.e. if X ∈ HS and p ∈ S, then

divHS X(p) := Trace(Y → ∇HS
Y X)(p) (Y ∈ HpS).

11 For the general definition of the operation see [15], Chapter 1.
12 Therefore, ∇T S is the Levi-Civita connection on S (see [6]).
13 The map pHS :T S → HS denotes the orthogonal projection of T S onto HS.
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We will also denote by �HS the HS-Laplacian, i.e. the 2nd order differential operator given by:

�HSψ := divHS(gradHS ψ)
(
ψ ∈ C∞(S)

)
. (13)

Finally, we will denote by JHS the Jacobian matrix of any vector-valued function, computed with respect to any given
orthonormal frame τHS := {τ2, . . . , τh1} for the subbundle HS.

Definition 3.2. We will call sub-Riemannian horizontal IInd fundamental form of S the map BH : HS × HS → νH S

given by:

BH (X,Y ) := 〈∇H
X Y, νH 〉H νH (X,Y ∈ HS).

Moreover we will denote by HH ∈ νH S the horizontal mean curvature vector of S, defined as the trace of BH ,
i.e. HH = TrBH . The horizontal scalar mean curvature of S, denoted by Hsc

H , is defined by Hsc
H := 〈HH ,νH 〉H .

Finally, we shall set:

BH (X,Y ) := 〈∇H
X Y, νH 〉H (X,Y ∈ HS).

Note that, in the previous definition, the trace Tr is computed with respect to the 1st sub-Riemannian fundamental
form gHS = 〈·,·〉HS , which is the restriction to S of the metric gH , i.e. gHS := gH |HS = g|HS .

By arguing as in the Riemannian case, we may prove that BH (X,Y ) is a C∞(S)-bilinear form in X and Y . More
importantly, in general, BH is not symmetric. The reason is the following: symmetry of BH is easily seen to be
equivalent to the following condition:

X,Y ∈ HS 
⇒ pH [X,Y ] ∈ HS.

But this condition fails to be true, in general. As a matter of fact, this is trivially true in the case of the Heisenberg
group H1, being HS a 1-dimensional subbundle of T S, for any given non-characteristic surface S ⊂ H1. But, for
example, the condition fails to hold, in general, in the case of H

n (n > 1), as it can be easily proved, by using a
dimensional argument.

According with Definition 2.8, we may give the following:

Definition 3.3. We define the torsion THS of the partial HS-connection ∇HS by

THS(X,Y ) := ∇HS
X Y − ∇HS

Y X − pH [X,Y ] (X,Y ∈ HS).

From this definition, it follows immediately that for every X, Y ∈ X(HS) one has:

THS(X,Y ) = BH (Y,X) − BH (X,Y ) = 〈
pH [Y,X], νH

〉
H

νH .

Note also that the mapping HS � X �→ ∇H
X νH is, in fact, the sub-Riemannian analogous of the usual Weingarten

map; see [27], Chapter 2. In the case of hypersurfaces, using the compatibility of ∇H with the metric gH , we get that
(∇H

X νH )p ∈ HpS. Indeed, by differentiating the identity |νH |2 = 1, we obtain:

X〈νH , νH 〉H = 2〈∇H
X νH , νH 〉H = 0.

In the sequel, if U ⊂ G is open, we will set U := U ∩ S. Moreover we will assume that U is non-characteristic.
We now introduce the notion of adapted frame, that will be used extensively throughout this paper. Roughly speaking,
we shall “adapt” in the usual Riemannian way (see [45]) an orthonormal frame to the horizontal tangent space of a
hypersurface.

Definition 3.4. We will call adapted frame to U on U any orthonormal frame on U τ := (τ1, . . . , τn) such that

(i) τ1|U := νH ; (ii) HpU = span
{
(τ2)p, . . . , (τh1)p

}
(p ∈ U); (iii) τα := Xα.

Remark 3.5. Let GL(Ri ) be the general linear group acting on R
i (i = 1, . . . , k) which we identify with the i-th

layer Hi of g = gr(T G) ∼= R
n. We stress that any graded frame for G is naturally identified with an element of the
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subgroup14 GLh :=×k

i=1 GL(Rhi ) of GL(Rn). Using matrix notation, any element A ∈ GLh(Rn) is then a block
diagonal matrix, i.e. Ah = diag[Ah1 , . . . ,Ahk

]. Furthermore, any graded orthonormal basis of g may be identified with

an element of the subgroup Oh(R
n) :=×k

i=1 O(Rhi ) of O(Rn); see Definition 2.1.

Every adapted orthonormal frame to a hypersurface is a graded frame. In particular, given an adapted frame τ for U
on U , then at every p ∈ U ⊂ S, there exists an orthogonal matrix,

Ah(p) = [
AJ

I (p)
]
I,J

∈ On(R) (I, J = 1, . . . , n),

expressing the linear change of coordinates from the fixed left-invariant orthonormal frame X to the adapted one τ

such that

τI (p) =
n∑

J=1

AJ
I (p)XJ (I = 1, . . . , n).

Given an adapted frame τ , we will denote by φ := (φ1, . . . , φn), its dual co-frame. This means that

φI (τJ ) = δJ
I (Kronecker) (I, J = 1, . . . , n).

Clearly, φ satisfies its own Cartan’s structural equations:

(I) dφI =
n∑

J=1

φIJ ∧ φJ , (II) dφJK =
n∑

L=1

φJL ∧ φLK − ΦJK (I, J,K = 1, . . . , n),

where φIJ (X) := 〈∇XτJ , τI 〉 are the connection 1-forms for the co-frame φ and ΦJK denote its curvature 2-forms,
defined by:

ΦJK(X,Y ) := φK

(
R(X,Y )τJ

) (
X,Y ∈ X(G)

)
.

We have a basic identity between connection 1-forms and structural constants of τ , i.e.

CK
IJ = φJK(τI ) − φIK(τJ ) (I, J,K = 1, . . . , n). (14)

This can easily be proved using the fact that ∇ is torsion-free.

Notation 3.6. In the sequel, we shall frequently use the following notations:

(i) �α := να|pH ν| (α ∈ IV );

(ii) � := ∑
α∈IV

�ατα ;

(iii) CH := ∑
α∈IH2

�αCα
H ;

(iv) C := ∑
α∈IV

�αCα .

Moreover, for any α ∈ IH2 , we shall set Cα
HS := Cα

H |HS to stress the fact that the linear operator Cα
HS only acts on

horizontal tangent vectors, i.e. (Cα
HS)ij := 〈Cα

H τj , τi〉 for i, j ∈ IHS . Consequently, we set CHS := ∑
α∈IH2

�αCα
HS .

Remark 3.7. The horizontal mean curvature vector HH can equivalently be written as follows:

HH = −
∑

j∈IHS

〈∇H
τj

νH , τj 〉HSνH = −
∑

j∈IHS

φ1j (τj )νH = Hsc
H νH .

We note that the symmetry of the sub-Riemannian horizontal IIa fundamental form would be equivalent to the
symmetry of the connection 1-forms, i.e. φ1j (τi) = φ1i (τj ) (i, j ∈ IHS). As already said, this is false, in general.

14 The symbol “×” means direct product of groups.
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Indeed, using the symmetry of the Riemannian IIa fundamental form and writing the unit normal vector along S w.r.t.
τ , i.e. ν = ν1τ1 + ∑

α∈IV
νατα , we see that

φ1i (τj ) = φ1j (τi) +
∑

α∈IH2

�α〈Cα
HSτi, τj 〉HS = φ1j (τi) + 〈CHSτi, τj 〉HS (i, j ∈ IHS).

Therefore BH can be seen as a sum of two matrices, one symmetric and the other skew-symmetric, i.e.
BH = SH + AH , where the skew-symmetric matrix AH is explicitly given by AH = 1

2CHS .

3.1. Some preliminaries

The following lemma will be a useful tool in proving the second variation formula of σn−1
H .

Lemma 3.8. Let S ⊂ G be an immersed hypersurface and let U ⊂ G be an open set having non-empty intersection
with S and such that U := U ∩S is non-characteristic. Moreover, let us choose an adapted orthonormal moving frame
τ = {τ1, . . . , τn} on U for U and fix p0 ∈ U . Then we claim that it is always possible to choose τ so that the connection
1-forms of its dual co-frame φ = {φ1, . . . , φn} satisfy φij (p0) = 0 whenever i, j ∈ IHS = {2, . . . , h1}.

Proof. Consider a Riemannian orthonormal moving frame on U adapted to U = U ∩ S. This means that we have an
orthonormal frame ξ = {ξ1, . . . , ξn} on U , satisfying ξ1(p) = ν(p) and such that

ξS = spanR

{
ξ2(p), . . . , ξn(p)

} = TpS

for every p ∈ U ⊂ S. Moreover let us denote by ε = {ε1, . . . , εn} its dual co-frame.

Claim 3.9. It is always possible to choose another Riemannian orthonormal moving frame ξ̃ for U adapted to U
satisfying:

(i) ξ̃ (p0) = ξ(p0);

(ii) The connection 1-forms ε̃IJ = 〈∇ ξ̃I , ξ̃J 〉 (I, J = 1, . . . , n) for ξ̃ satisfies ε̃ij (p0) = 0 for every i, j = 2, . . . , n.

Here again, ξ̃ S = {ξ̃2, . . . , ξ̃n} is a tangent orthonormal frame for U . We stress that the proof of this claim is standard
and it can be found, for instance, in [45], pp. 517–519, Eq. (17). Therefore, from this fact the thesis easily follows by
assuming that at p0 the frame ξ satisfy ξi(p0) = τi(p0) for every i ∈ IHS , i.e. the set of vectors {ξ2(p0), . . . , ξh1(p0)}
is an orthonormal basis of the horizontal tangent space Hp0S at p0, coinciding with that given at the beginning. In this
case we get, in particular, that

ε̃ij (p0) = 〈∇Xp0
ξ̃i , ξ̃j 〉(p0) = 0 for every i, j ∈ IHS.

By extending the orthonormal frame {ξ̃2, . . . , ξ̃h1} for the horizontal tangent space to a full adapted frame τ in the
sense of Definition 3.4 we get our initial claim. �
Definition 3.10. From now on we shall set:

τS
α := τα − να

|pH ν|νH (α ∈ IV ).

Note that HS⊥ = spanR{τS
α : α ∈ IV }, where HS⊥ denotes the orthogonal complement of HS in T S,

i.e. T S = HS ⊕ HS⊥.

Remark 3.11. If X ∈ X(G) we shall set XV := pV (X). It is readily seen that15∑
α∈IV

τ S
α (xα) = div(XV ) − 〈

JH (XV )νH ,�
〉 = div(XV ) − 〈JH (XV )νH , νV 〉

|pH ν| . (15)

15 Here and in the sequel νV := pV ν, where pV :T G → V denotes the orthogonal projection onto V .
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If X = XHS + X⊥
HS ∈ X(S),16 by differentiating the identity 〈X,ν〉 = x1ν1 + ∑

α∈IV
xανα = 0, we get:∑

α∈IV

τ S
α (xα) = x1Hsc

H + div(X⊥
HS) +

∑
α∈IV

xα

∂�α

∂νH

;

note also that div(X⊥
HS) = −x1Hsc

H + ∂x1
∂νH

+ ∑
α∈IV

τα(xα).

In the following two lemmas we collect some useful identities for the sequel.

Lemma 3.12. The following identities hold:

(i) φ1i (τj ) = φ1j (τi) + 〈CHSτi, τj 〉H (i, j ∈ IHS);
(ii) φ1i (τ

S
α ) = τi(�α) + 1

2 〈Cα
H τ1, τi〉H − 〈CτS

α , τi〉H (i ∈ IH , α ∈ IV );

(iii) φiα(τj ) = φjα(τi) + 〈Cα
HSτi, τj 〉H (i, j ∈ IH , α ∈ IV );

(iv) τS
α (�β) − τS

β (�α) = 〈CτS
β , τS

α 〉 (α,β ∈ IV ).

Proof. The proof is an elementary exercise based on the definitions and on the fact that the bracket of tangent vec-
tors at regular points of S is again a tangent vector to S. For instance, to prove (i) it is enough to use the identity
〈[τi, τj ], ν〉 = 0 (i, j ∈ IHS). Moreover, (ii), (iv) follow from the identity 〈[τi, τ

S
α ], ν〉 = 0 (i ∈ IHS , α ∈ IV ) and

〈[τS
α , τS

β ], ν〉 = 0 (α,β ∈ IV ), respectively. Finally, (iii) is just a reformulation of the fact that ∇ is torsion free. Note

also that (i) says that the partial connection ∇HS has, in general, non-zero torsion. �
Lemma 3.13. For every i, j ∈ IH and every α ∈ IV , the following identities hold:

(i) φiα(τα) = 0;
(ii) φαi(τi) = 0;

(iii) φiα(τj ) = 1
2 〈Cα

H τi, τj 〉.

Proof. Set τI = ∑
J AJ

I XJ where at each p ∈ U we have set A(p) = [AJ
I (p)] ∈ On(R). We first prove (i). We have:

φiα(τα) = 〈∇τα τi, τα〉 =
∑
l∈IH

Al
i〈∇XαXl,Xα〉 = 1

2

∑
l∈IH

Al
i(C

gα
αl − Cgα

lα + Cgα
αl) = 0 (α ∈ IV ),

by (6) and (5) of Section 2.1. To prove (ii), we use again (6) and (5) of Section 2.1. We have:

φαi(τi) = 〈∇τi
τα, τi〉 =

∑
l,m∈IH

Al
iA

m
i 〈∇Xl

Xα,Xm〉 = 1

2

∑
l,m∈IH

Al
iA

m
i (Cgm

lα − Cgl
αm + Cgα

ml)

= 1

2

∑
l,m∈IH

Al
iA

m
i Cgα

ml = 1

2
〈Cατi, τi〉 = 0

(
by skew-symmetry of any Cα (α ∈ IV )

)
.

Clearly, the identity (iii) can be proved in the same way. More precisely, we have:

φiα(τj ) = 〈∇τj
τi , τα〉 =

∑
l,m∈IH

Al
jA

m
i 〈∇Xl

Xm,Xα〉

= 1

2

∑
l,m∈IH

Al
jA

m
i (Cgα

lm − Cgl
mα + Cgm

αl) = 1

2
〈Cα

H τi, τj 〉. �

16 Note that T S � X = ∑n xiτi = x1τ1 + ∑
i∈I xiτi + ∑

α∈I xατα = XHS + ∑
α∈I xατS

α .
i=1 HS V V
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Here below we make some computations involving the (Riemannian) curvature 2-forms ΦIJ associated with the
orthonormal co-frame φ (dual of τ ). More precisely, we are interested in computing the quantity:∑

j∈IHS

Φ1j (X, τj ) =
∑

j∈IHS

〈
R(X, τj )τ1, τj

〉
H

.

Note that for X ∈ νH S this is nothing but the Ricci curvature for the partial HS-connection ∇HS .

Lemma 3.14. We have:

(i) 〈R(τi, τj )τh, τk〉H = − 3
4

∑
α∈IH2

〈Cα
H τi, τj 〉H 〈Cα

H τh, τk〉H (i, j, h, k ∈ IH );

(ii) 〈R(τβ, τi)τj , τk〉H = − 1
4

∑
α∈IH2

〈Cα
H τj , τk〉H 〈Cβτα, τi〉H (i, j, k ∈ IH , β ∈ IH3).

Proof. By linearity of the curvature tensor, we may compute these quantities with respect to the fixed frame X of
left-invariant vector fields. More precisely, to prove (i), we first compute:

Rabcd := 〈
R(Xa,Xb)Xc,Xd

〉
H

(a, b, c, d ∈ IH ),

and then we deduce the result by observing that, if τi = ∑
a∈IH

Aa
i Xa (i ∈ IH ), one has:〈

R(τi, τj )τh, τk

〉
H

=
∑

a,b,c,d∈IH

Aa
i A

b
jA

c
hA

d
k

〈
R(Xa,Xb)Xc,Xd

〉
H

.

Now we claim that 〈
R(Xa,Xb)Xc,Xd

〉
H

=
∑

β∈IH2

(
1

4
Cgβ

acC
gβ

db − 1

4
Cgβ

bcC
gβ

da − 1

2
Cgβ

baC
gβ

dc

)
.

This formula can be proved directly from the definition of R, by using (5) and (6) of Section 2.1. The com-
putation of (ii) can be done analogously, by linearity, but we need to compute preliminarily the quantity
Rβabc := 〈R(Xβ,Xa)Xb,Xc〉H (β ∈ I3, a, b, c ∈ IH ). It can be easily shown that

Rβabc = −1

4

∑
α∈IH2

(Cgβ
bαCgα

ca + Cgα
abC

gβ
cα).

By (5) of Section 2.1, this quantity is different from zero only if β ∈ I3. �
Proposition 3.15. For every X(= xνH ) ∈ X(νH S), we have:

RicHS(X) :=
∑

j∈IHS

〈
R(X, τj )νH , τj

〉
HS

= −3

4
x

∑
α∈IH2

|Cα
H νH |2HS.

Moreover, for every X(= XH + XV ) ∈ X(G), X � S, one has:∑
j∈IHS

Φ1j (X, τj ) = −3

4

∑
α∈IH2

〈Cα
H νH ,Cα

H XH 〉HS − 1

4

∑
α∈IH2

∑
β∈IH3

xβ〈Cα
H νH ,Cβτα〉HS.

Proof. Use Lemma 3.14. �
3.2. Integration by parts on hypersurfaces

The aim of this section is to write down explicit integration by parts formulas for non-characteristic hypersurfaces
of any Carnot group, endowed with the measure σn−1

H .
If X ∈ X(S), by the very definition of σn−1 using the Riemannian Divergence Formula (see [45]), we get:
H
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d(X σn−1
H )|U = d

(|pH ν|X σn−1) = divT S

(|pH ν|X)
σn−1

=
(

divT S X +
〈
X,

gradT S |pH ν|
|pH ν|

〉)
σn−1

H U,

where gradT S e divT S are, respectively, the (Riemannian) tangential gradient and the tangential divergence operator
on U ⊂ S. However this formula is not so “explicit”, from a sub-Riemannian point of view. The notion of adapted
frame has been introduced so far to bypass this inconvenience.

So let τ be an adapted frame to U ⊂ S on the open set U and let us denote by φ := {φ1, . . . , φn} its dual co-frame,

obtained by means of the metric g. It is immediate to see that the H -perimeter σn−1
H on U is given by:

σn−1
H U = (νH σn)|U = (τ1 φ1 ∧ · · · ∧ φn)|U = (φ2 ∧ · · · ∧ φn)|U

= (−1)α+1((�α)−1φ1 ∧ · · · ∧ φ̂α ∧ · · · ∧ φn

)∣∣
U (α ∈ IV ),

where the last identity makes sense only if να �= 0.17 By direct computations based on the 1st structure equation of φ,
we will obtain divergence-type formulas and some easy but useful corollaries.

Remark 3.16 (Measure on the boundary ∂U ). Before stating these results we have to make a preliminary comment
on the topological boundary ∂U of U . We first assume, as in the Riemannian case that ∂U is a (n − 2)-dimensional
Riemannian manifold, oriented by the unit normal vector η. Let us denote by σn−2

R the usual Riemannian measure
on ∂U , which can be written as

σn−2
R ∂U = (η σn−1

R )|∂U .

This means that if X ∈ X(T U), then

(X σn−1
H )|∂U = 〈X,η〉|pH ν|σn−2

R ∂U .

Now suppose that ∂U is geometrically H -regular. As it can be easily seen, this is equivalent to require that the
projection onto HS of the unit (Riemannian) normal η along ∂U is non-singular, i.e. |pHS(ηp)| �= 0, for every
p ∈ ∂U . In the sequel, we shall denote by C∂U the characteristic set of ∂U , which turns out to be given by
C∂U = {p ∈ ∂U : |pHS(ηp)| = 0}. From Definition 2.26 it follows that

σn−2
H ∂U =

(
pHSη

|pHSη| σn−1
H

)∣∣∣∣
∂U

,

or, equivalently, that σn−2
H ∂U = |pH ν| · |pHSη|σn−2

R ∂U . Setting ηHS := pHSη
|pHSη| , we will call ηHS the unit hori-

zontal normal along ∂U . We then get:

(X σn−1
H )|∂U = 〈X,ηHS〉σn−2

H ∂U ∀X ∈ C∞(S,HS).

We now state the main results of this section.

Theorem 3.17 (Horizontal Divergence Theorem). Let G be a k-step Carnot group. Let S ⊂ G be an immersed
hypersurface and U ⊂ S \ CS be a non-characteristic relatively compact open set. Assume that ∂U is C∞-regular,
(n − 2)-dimensional manifold oriented by its unit normal vector η. Then, for every X ∈ C∞(S,HS) one has∫

U

(
divHS X + 〈CH νH ,X〉HS

)
σn−1

H =
∫

∂U\C∂U

〈X,ηHS〉HSσn−2
H .

If ∂U is geometrically H -regular we have that C∂U = {∅}.

From this formula we obtain the following Green’s type-formulas:

17 We remind that, w.r.t. the adapted frame τ , the Riemannian unit normal νH is given by ν = ν1τ1 + ∑
α∈IV

νατα and that τ1 := νH and
ν1 := |pH ν|.
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Theorem 3.18 (Horizontal Green’s formulas). Under the hypotheses of Theorem 3.17, let us assume that φ1, φ2 ∈
C∞(S) and that at least one of them be compactly supported on U . Then∫
U

{
φ1�HSφ2 + 〈gradHS φ1,gradHS φ2〉HS + φ1〈CH νH ,gradHS φ2〉HS

}
σn−1

H =
∫

∂U\C∂U

φ1〈gradHS φ2, ηHS〉HSσn−2
H .

Moreover, we have:∫
U

{
(φ1�HSφ2 − φ2�HSφ1) + 〈

CH νH , (φ1 gradHS φ2 − φ2 gradHS φ1)
〉
HS

}
σn−1

H = 0.

Proof. Use Theorem 3.17 with X = φ1 gradHS φ2 for the first claim. Analogously, the second claim follows since
φ1�HSφ2 − φ2�HSφ1 = divHS(φ1 gradHS φ2) − divHS(φ2 gradHS φ1). �
Corollary 3.19 (Horizontal integration by parts). Under the hypotheses Theorem 3.17, for any X ∈ X(H) we have:∫

U

(
divHS X + 〈CH νH ,X〉HS

)
σn−1

H = −
∫
U

〈X,HH 〉H σn−1
H +

∫
∂U\C∂U

〈X,ηHS〉HSσn−2
H .

Proof. It follows by Theorem 3.17 and Definition 3.2. �
Theorem 3.20 (Divergence Theorem). Let G be a k-step Carnot group. Let S ⊂ G be an immersed hypersurface and
U ⊂ S \ CS be a non-characteristic relatively compact open set. Assume that ∂U is C∞-regular, (n − 2)-dimensional
manifold oriented by its unit normal vector η. Set � = pV ν

|pH ν| and choose X ∈ X(S), X = XHS + XHS⊥ . Then we
have: ∫

U

{
divHS(XHS) + div(XHS⊥) − ∂〈X,νH 〉

∂νH

+ 〈[X,νH ],� 〉}
σn−1

H =
∫
∂U

〈X,η〉|pH ν|σn−2
R .

We remark that the previous formula can also be written as follows:∫
U

{
divHS(XHS) − 〈HH ,X〉 + 〈CνH ,X〉 +

∑
α∈IV

τ S
α (xα)

}
σn−1

H =
∫
∂U

〈X,η〉|pH ν|σn−2
R ,

where X = 〈X,νH 〉νH + XHS + ∑
α∈IV

xατα and τS
α = τα − �ανH (α ∈ IV ); see Eq. (24) below.

We stress that denoting by Div
σn−1

H
(X) the Lie divergence of X with respect to σn−1

H (X ∈ X(G)), i.e.

Div
σn−1

H
(X)σn−1

H := LXσn−1
H ,

one could shortly rewrite the previous divergence-type theorems; see, for instance, [6], p. 139.

3.3. Divergence-type theorems: proofs

Proof. For X ∈ C∞(S,HS), we have to compute the exterior derivative of the contraction by X of σn−1
H , i.e.

d(X σn−1
H )|S . So if X = ∑n

J=1 xJ τJ , then

d(X σn−1
H )|S =

n∑
J=1

d(xJ τJ σn−1
H )|S =

n∑
J=1

d(xJ τJ φ2 ∧ · · · ∧ φn)|S

=
n∑(

τJ (xJ )σn−1
H |S − τ1(xJ )(τJ σn

R)|S + xJ d(τJ σn−1
H )|S

)

J=2
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=
n∑

J=2

(
τJ (xJ )σn−1

H |S − τ1(xJ )(τJ σn
R)|S

)
︸ ︷︷ ︸

:=I

+
∑

i∈IHS

xi d(τi σ n−1
H )|S

+
∑
α∈IV

xαd(τα σn−1
H )|S. (16)

Notice that, using Lemma 2.19, we get:

I =
( ∑

i∈IHS

τi(xi) +
∑
α∈IV

(
τα(xα) − �ατ1(xα)

))
σn−1

H |S

=
( ∑

i∈IHS

τi(xi) +
∑
α∈IV

τ S
α (xα)

)
σn−1

H |S. (17)

Claim 3.21. We claim that

d(τi σ n−1
H )|S =

( ∑
j∈IHS

φij (τj ) +
∑

β∈IH2

�β〈Cβ
H τ1, τi〉H

)
σn−1

H |S. (18)

Proof. Since d(τi σ n−1
H )|S = (−1)i d(φ2 ∧ · · · ∧ φ̂i ∧ · · · ∧ φn)|S , without loss of generality we assume that i = 2.

We have:

I : = d(φ3 ∧ · · · ∧ φn) =
n∑

J=3

(−1)J+1φ3 ∧ · · · ∧ dφJ ∧ · · · ∧ φn

=
n∑

J=3

(−1)J+1φ3 ∧ · · · ∧
(

n∑
I=1

φI ∧ φIJ

)
︸ ︷︷ ︸

J th place

∧· · · ∧ φn

= −
n∑

J=3

(−1)J+1

(
2∑

I=1

φIJ ∧ φI

)
∧ φ̂2 ∧ · · · ∧ φ̂J ∧ · · · ∧ · · · ∧ φn

= −
n∑

J=3

(−1)J+1(φ1J ∧ φ1) ∧ φ̂2 ∧ φ3 ∧ · · · ∧ φ̂J ∧ · · · ∧ · · · ∧ φn︸ ︷︷ ︸
:=II

−
n∑

J=3

(−1)J+1(φ2J ∧ φ2) ∧ φ̂2 ∧ φ3 ∧ · · · ∧ φ̂J ∧ · · · ∧ . . . ∧ φn︸ ︷︷ ︸
:=III

. (19)

Here above, we have used the first structure equation of the adapted coframe φ. The generic term of II is given by:

(φ1J ∧ φ1) ∧ φ̂2 ∧ · · · ∧ φ̂J ∧ · · · ∧ φn = (
φ1J (τ2)φ2 + φ1J (τJ )φJ

) ∧ φ1 ∧ φ̂2 ∧ · · · ∧ φ̂J ∧ · · · ∧ φn

= −φ1J (τ2)φ1 ∧ · · · ∧ φ̂J ∧ · · · ∧ φn

+ (−1)J φ1J (τJ )φ1 ∧ φ̂2 ∧ · · · ∧ φn. (20)

Now, if J ∈ IHS , Lemma 2.19 says that (φ1 ∧ · · · ∧ φ̂J ∧ · · · ∧ φn)|S is zero and that it is different from zero only
if J ∈ IV . Furthermore, Lemma 2.19 says that the second addend is zero, when restricted to S. Analogously, for the
generic term of III, we have:

(φ2J ∧ φ2) ∧ φ̂2 ∧ · · · ∧ φ̂J ∧ · · · ∧ φn = (
φ2J (τ1)φ1 + φ2J (τJ )φJ

) ∧ φ2 ∧ · · · ∧ φ̂J ∧ · · · ∧ φn

= φ2J (τ1)φ1 ∧ · · · ∧ φ̂J ∧ · · ·φn + (−1)J φ2J (τJ )φ2 ∧ · · · ∧ φn. (21)
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Arguing as above, by using again Lemma 2.19, we get that the first term of (21) is different from zero only if
J ∈ IV , while the second one is different from zero only if J ∈ IH , because φiα(τα) = 0. From (19), (20) and (21) we
get:

I =
n∑

J=3

φ2J (τJ )(φ2 ∧ · · · ∧ φn)|S +
∑
β∈IV

(−1)β+1(φ1β(τ2) − φ2β(τ1)
)
(φ1 ∧ · · · ∧ · · · φ̂β ∧ · · · ∧ φn)|S

=
n∑

J=3

φ2J (τJ )(σ n−1
H )|S +

∑
β∈I2

(
φ1β(τ2) − φ2β(τ1)

)
(τβ σn

R)|S

=
( ∑

j∈IHS

φ2j (τj ) +
∑
β∈I2

�β

(
φ1β(τ2) − φ2β(τ1)

))
σn−1

H |S.

Since φ1β(τ2) − φ2β(τ1) = −C
β

12, we get our initial claim, by using Definition 2.4. �
Claim 3.22. We claim that

d(τα σn−1
H )|S = −

( ∑
γ∈IV
γ>α

�γ C
γ

1α + �α

∑
j∈IHS

φ1j (τj )

)
σn−1

H |S (α ∈ IV ), (22)

where CK
IJ = 〈[τI , τJ ], τK 〉 (I, J,K = 1, . . . , n) are the structural constants of the adapted frame τ .

Proof. We have d(τα σn−1
H ) = (−1)α d(φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ φn) and so

d(φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ φn) =
∑

j∈IHS

(−1)jφ2 ∧ · · · ∧ dφj ∧ · · · ∧ φ̂α ∧ · · · ∧ φn︸ ︷︷ ︸
:=I

+
∑
γ∈IV
γ<α

(−1)γ φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ dφγ ∧ φn

︸ ︷︷ ︸
:=II

+
∑
γ∈IV
γ>α

(−1)γ+1φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ dφγ ∧ φn

︸ ︷︷ ︸
:=III

.

As above, we shall make use of the 1st structure equation for the co-frame φ and of Lemma 2.19. For the first
summation, since dφj = ∑

K �=j φK ∧ φKj (K = 1, . . . , n), we get:

I =
∑

j∈IHS

(−1)jφ2 ∧ · · · ∧ dφj ∧ · · · ∧ φ̂α ∧ · · · ∧ φn

=
∑

j∈IHS

∑
K �=j

(−1)jφ2 ∧ · · · ∧ (φK ∧ φKj )︸ ︷︷ ︸
j th place

∧· · · ∧ φ̂α ∧ · · · ∧ φn

=
∑

j∈IHS

(−1)jφ2 ∧ · · · ∧ (φ1 ∧ φ1j + φα ∧ φαj )︸ ︷︷ ︸
j th place

∧· · · ∧ φ̂α ∧ · · · ∧ φn.

Using this expression, Lemma 2.19 and the fact that φαj (τj ) = 0 (see Section 3.1), we obtain:

I =
∑

j∈IHS

(−1)jφ2 ∧ · · · ∧ (φ1 ∧ φ1j ) ∧ · · · ∧ φ̂α ∧ · · · ∧ φn

=
∑

j∈IHS

(−1)j (−1)j−2φ1j (τj )φ1 ∧ φ2 ∧ · · · ∧ φj ∧ · · · ∧ φ̂α ∧ · · · ∧ φn

= (−1)α+1
∑

φ1j (τj )(τα σn
R)|S = (−1)α+1�α

∑
φ1j (τj )σ

n−1
H |S.
j∈IHS j∈IHS
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Moreover the second and the third summations can be computed as follows. First, we note that, using the 1st structural
equation for the coframe φ and Lemma 2.19, the term φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ dφγ ∧ φn is given, up to sign, by:

±φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ dφγ ∧ φn = ±
∑
L�=γ

φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ (φL ∧ φLγ )︸ ︷︷ ︸
γ th place

∧· · · ∧ φn

= ±φ2 ∧ · · · ∧ φ̂α ∧ · · · ∧ (φ1 ∧ φ1γ + φα ∧ φαγ )︸ ︷︷ ︸
γ th place

∧· · · ∧ φn

= ±(
φ1γ (τα) − φαγ (τ1)

)
φ1 ∧ · · · ∧ φ̂γ ∧ · · · ∧ dφγ ∧ φn = ±〈[τ1, τα], τγ

〉
(τγ σn

R)|S.

Using this fact, by an easy computation of the signs and the fact that C
γ

1α = 〈[τ1, τα], τγ 〉, we see that

II + III =
∑
γ∈IV
γ<α

(−1)γ+αC
γ

1αφ1 ∧ · · · ∧ φ̂γ ∧ · · · ∧ φn +
∑
γ∈IV
γ>α

(−1)γ+α−1C
γ

1αφ1 ∧ · · · ∧ φ̂γ ∧ · · · ∧ φn

=
[
(−1)α+1

∑
γ∈IV
γ<α

C
γ

1α − (−1)α
∑
γ∈IV
γ>α

C
γ

1α

]
(τγ σn

R)|S = (−1)α+1
∑
γ∈IV
γ>α

�γ C
γ

1ασn−1
H |S,

where we have used the identity18 C
γ

1α = 0 if ord(γ ) � ord(α). Putting all together we obtain (22).

At this point we may achieve the proof, using (16), (17) and the previous claims. We have:

d(X σn−1
H )|S =

{ ∑
i∈IHS

[
τi(xi) + xi

( ∑
j∈IHS

φij (τj ) +
∑

β∈IH2

�β〈Cβ
H τ1, τi〉

)]

+
∑
α∈IV

[
τS
α (xα) − xα

( ∑
γ∈IV
γ>α

�γ C
γ

1α + �α

∑
j∈IHS

φ1j (τj )

)]}
σn−1

H |S. (23)

Claim 3.23. Let X = XHS + X⊥
HS(= XHS + ∑

α∈IV
xατS

α ). Then, we have:

(i) the HS-divergence of XHS(= pHSX) turns out to be given by:

divHS XHS =
∑

i∈IHS

(
τi(xi) + xi

∑
j∈IHS

φij (τj )

)
;

(ii) if X ∈ T S, then x1ν1 + ∑
α∈IV

xανα = 0, and x1 = −∑
α∈IV

�αxα . By differentiating this identity, we get that

−∑
α∈IV

�ατ1(xα) = τ1(x1) + x1τ1(ν1)
ν1

+ ∑
α∈IV

xατ1(να)
ν1

;
(iii) 〈[X,τ1],� 〉 = 〈Cτ1,X〉 − ∑

α∈IV
�ατ1(xα);

(iv)
∑

α∈IV
xα

∑
γ∈IV
γ>α

�γ C
γ

1α = −∑
α∈IV

xα

∑
γ∈IV
γ>α

�γ 〈Cγ τ1, τα〉 = −〈Cτ1,X
⊥
HS〉.

Note that, if X ∈ C∞(S,HS), then from the very definition of C and CH (see Notation 3.6), we obtain:

〈Cτ1,X〉 = 〈CH τ1,X〉HS.

18 We have:

C
γ
1α

= 〈[τ1, τα], τγ
〉 = ∑

l∈IH

〈[Al
1Xl,Xα],Xγ

〉 = ∑
l∈IH

Al
1Cgγ

lα
,

and the last term is different from zero only if ord(γ ) = ord(α) + 1, by (5) of Section 2.1.
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Therefore Theorem 3.17 follows from (23), by applying (i) of Claim 3.23 together with the very definition of CH and
setting xα = 0 (α ∈ IV ). Moreover, to prove Theorem 3.20, it is enough to apply Claim 3.23 into (23). Indeed, from
equation (23) by using (i), (ii), (iv) above, we get:

d(X σn−1
H )|S =

(
divHS XHS − x1Hsc

H + 〈Cτ1,X〉 +
∑
α∈IV

τ S
α (xα)

)
σn−1

H |S. (24)

Therefore, using (iii) of Claim 3.23, Remark 3.11 and (ii) of Claim 3.23, we get the thesis. �
4. Variational formulas: 1st and 2nd variation of σn−1

H

4.1. 1st variation of σn−1
H

In this section, we will compute the 1st variation of σn−1
H , by adapting to the sub-Riemannian setting of Carnot

groups, some classical differential-geometric methods based on the use of moving frames and differential forms.
As references for these topics in the Riemannian case we mention Spivak’s book [45] and also the paper by Hermann
[24].

As before, let G be a k-step Carnot group and let S ⊂ G be a non-characteristic hypersurface oriented by its unit
normal vector ν. Moreover, let U ⊂ S \CS be a relatively compact open set which is assumed to be non-characteristic
and let us assume that the boundary ∂U of U is a (n−2)-dimensional C∞-regular submanifold oriented by its outward
unit normal vector η.

Definition 4.1. Let ı :U → G denote the inclusion of U in G and let ϑ : (−ε, ε) × U → G be a C∞ map. Then ϑ is a
smooth variation of ı if

(i) every ϑt := ϑ(t, ·) :U → G is an immersion;
(ii) ϑ0 = ı.

Moreover, we say that the variation ϑ keeps the boundary ∂U fixed if

(iii) ϑt |∂U = ı|∂U for every t ∈ (−ε, ε).

The variation vector of ϑ , is defined by W := ∂ϑ
∂t

|t=0 = ϑ∗ ∂
∂t

|t=0.

Later on we shall set W̃ := ∂ϑ
∂t

= ϑ∗ ∂
∂t

and we will assume that W̃ is defined in a neighborhood of Im(ϑ). For any

t ∈ (−ε, ε), we will denote by νt the unit normal vector along Ut := ϑt (U) and by (σ n−1
R )t the Riemannian measure

on Ut . Note that if U and ε are small enough, then Ut = ϑt (U) turns out to be immersed and non-characteristic for
every t ∈ (−ε, ε). So let us define the differential (n − 1)-form (σ n−1

H )t along Ut by:

(σ n−1
H )t |Ut

= (νt
H σn

R)|Ut
∈ Λn−1(T Ut ),

for t ∈ (−ε, ε), where

νt
H := pH νt

|pH νt | .
By setting

Γ (t) := ϑ∗
t (σ n−1

H )t ∈ Λn−1(T U), t ∈ (−ε, ε),

we get that Γ (t) is a C∞ 1-parameter family of (n − 1)-forms along U . Thus, in order to determine the 1st variation
IU (W,σn−1

H ) of σn−1
H , we have to compute:

IU (W,σn−1
H ) := d

dt

∣∣∣∣
t=0

∫
Γ (t) =

∫
Γ̇ (0). (25)
U U
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So we will need to preliminarily compute Γ̇ (0). Notice that the derivative under the integral sign can be done by
the well-known Leibnitz’s rule (see, for instance, [45], p. 417). Thus making use of the Cartan’s formula for the Lie
derivative of a differential form, we may prove the following:

Theorem 4.2 (1st variation of σn−1
H ). Under the previous hypotheses we have:

IU (W,σn−1
H ) = −

∫
U

Hsc
H

〈W,ν〉
|pH ν| σn−1

H +
∫
∂U

〈W,η〉|pH ν|σn−2
R . (26)

Notice that from this result it follows immediately that a necessary condition for minimality of any smooth non-
characteristic hypersurface is given by the vanishing of the scalar horizontal mean curvature Hsc

H . This justifies the
fact that the equation,

−Hsc
H = divHS νH = divνH = 0,

is the right sub-Riemannian generalization of the Riemannian one. In this respect, we would note that the Riemannian
scalar mean curvature Hsc

R and that horizontal Hsc
H are related by the identity:

Hsc
R = |pH ν|Hsc

H − ∂|pH ν|
∂νH

− div(pV ν).

Analogously to the Riemannian case, the terms in the 1st variation formula are two, the first one—the integral along
U—only depending on the normal component of the variation vector W , and the second one—the integral along the
boundary ∂U—which only depends on the tangential component of W . This fact relies on a general principle of the
Calculus of Variations on manifolds, for which we refer the reader to [25]. It is also clear that, if we allow the variation
vector to be horizontal, then (26) becomes more “intrinsic”. Indeed, if W ∈ C∞(S,H), W = 〈W,νH 〉H νH + WHS ,
then we get the following:

Theorem 4.3 (Horizontal 1st variation of σn−1
H ). Under the previous hypotheses, let us assume that the variation

vector W of ϑ be horizontal, i.e. W ∈ C∞(S,H). Then we have:

IU (W,σn−1
H ) = −

∫
U

〈HH ,W 〉H σn−1
H +

∫
∂U\C∂U

〈W,ηHS〉HS σn−2
H . (27)

Proof. Use Theorem 4.2 and Remark 3.16.

Therefore, in the case of horizontal variations, by remembering Corollary 3.19, we get:

IU (W,σn−1
H ) =

∫
U

(
divHS W + 〈CH νH ,W 〉HS

)
σn−1

H .

We stress that, also in the case of horizontal variations, the 1st variation formula (27) is given by two terms, the first
of which only depends on the horizontal normal component of W , while the second one only depends on its horizontal
tangential component.

Remark 4.4 (Boundary integrals). The integrals along the boundary ∂U of the domain U ⊂ S are zero in the following
two cases:

(i) W ∈ C∞
0 (U, T G), i.e. we assume that the vector variation be compactly supported on U ;

(ii) The smooth variation ϑ of U keeps the boundary ∂U fixed; see Definition 4.1.

Note also that, from (26) (resp. (27)) it follows that the boundary integral is zero whenever we choose W ∈ X(νS)

(resp. W ∈ X(νH S)).
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As a corollary of the 1st variation formula we obtain a necessary condition for a smooth domain to be sub-
Riemannian isoperimetric. To this end, let us consider the sub-Riemannian isoperimetric functional:

JH (D) = σn−1
H (∂D)

volnR(D)1−Q
, (28)

where D varies over bounded domains in G having smooth (at least C2) boundary. We stress that, we do not need any
assumption about the characteristic set of ∂D, since C∂D is a set of zero σn−1

H -measure.

Corollary 4.5. Let D ⊂ G be a bounded domain with smooth boundary that is a critical point of the functional (28).
Then, at every point of ∂D \ C∂D we have that Hsc

H is constant.

Proof. The proof is analogous to the Riemannian case (see, for instance, [7]). Indeed, let us choose a volume-
preserving vector field W ∈ X(G). Then the flow ϑt : (−ε, ε) × G → G generated by W does not change the volume,
i.e. volnR(ϑt (D)) = volnR(D) for every t ∈ (−ε, ε). So, by the Riemannian Divergence Theorem, we get:∫

D

divW d volnR =
∫

∂D

〈W,ν〉σn−1
R = 0,

for any such W . By differentiating (28) along the flow ϑt , using Theorem 27 we get:

d

dt
JH

(
ϑt (D)

)∣∣
t=0 = − 1

volnR(D)1−Q

∫
∂D

Hsc
H 〈W,ν〉σn−1

R − Q − 1

Q

∫
∂D

〈W,ν〉σn−1
R = 0,

since D is an extremal of (28). Therefore,
∫
∂D

Hsc
H 〈W,ν〉σn−1

H = 0 for every volume-preserving vector field

W ∈ X(G). A standard argument now implies that Hsc
H must be constant. �

4.2. 1st variation of σn−1
H : proof of Theorem 4.2

Proof. Let us choose an orthonormal moving frame τ on the open set U ⊂ G satisfying:

(i) τ1|Ut
:= νt

H ; (ii) HTpUt = span
{
(τ2)p, . . . , (τh1)p

}
(p ∈ Ut ); (iii) τα := Xα.

Let φ := {φ1, . . . , φn} be its dual co-frame (i.e. φI (τJ ) = δJ
I (I, J = 1, . . . , n)). We have:

(σ n−1
H )t U t = (τ1 φ1 ∧ · · · ∧ φn)|Ut

= (φ2 ∧ · · · ∧ φn)|Ut

and Γ (t) = ϑ∗
t (φ2 ∧ · · · ∧ φn). We stress that the variation vector field W on U can be seen as the restriction to U of

the vector field W̃ = ∂ϑ
∂t

. Clearly the integral curve of W̃ that starts at a point p ∈ U is just t �→ ϑt (p).

Claim 1. We claim that Γ̇ (0) = ı∗(LW̃ ((σ n−1
H )t )) = ı∗(LW̃ (φ2 ∧ · · · ∧ φn)).

Proof of Claim 1. The proof of this fact is standard; see, for instance, [45]. For the sake of completeness we

shall report it below. Denote by θt (p) the integral path of W̃ starting at p ∈ U . If p ∈ U and Y ∈ TpU we have
θt∗(ı∗Y) = ϑt∗Y . So let Y1, . . . , Yn−1 be tangent vectors of U . Then

Γ̇ (0)(Y1, . . . , Yn−1) = lim
t→0

1

t

{
Γ (t)(Y1, . . . , Yn−1) − Γ (0)(Y1, . . . , Yn−1)

}
= lim

t→0

1

t

{
ϑt

∗(σ n−1
H )t (Y1, . . . , Yn−1) − ı∗(σ n−1

H )t (Y1, . . . , Yn−1)
}

= lim
t→0

1

t

{
(σ n−1

H )t (ϑt ∗Y1, . . . , ϑt∗Yn−1) − (σ n−1
H )t (ı∗Y1, . . . , ı∗Yn−1)

}
= lim

t→0

1

t

{
(σ n−1

H )t
(
θt∗(ı∗Y1), . . . , θt∗(ı∗Yn−1)

) − (σ n−1
H )t (ı∗Y1, . . . , ı∗Yn−1)

}
= L˜(σ n−1)t (ı∗Y1, . . . , ı∗Yn−1) (by definition of Lie derivative). �
W H
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By Cartan’s formula for the Lie derivative we get LW̃ (σ n−1
H )t = W̃ d(σ n−1

H )t + d(W̃ (σn−1
H )t ) and therefore,

by Claim 1, we get:

Γ̇ (0) = ı∗
(
W̃ d(σ n−1

H )t + d
(
W̃ (σn−1

H )t
))

. (29)

Now we have:

d(σ n−1
H )t = d(φ2 ∧ · · · ∧ φn) =

n∑
I=2

(−1)I φ2 ∧ · · · ∧ dφI ∧ · · · ∧ φn

=
n∑

I=2

(−1)I φ2 ∧ · · · ∧
(

−
n∑

J=1

φJI ∧ φJ

)
∧ · · · ∧ φn (30)

= −
n∑

I=2

(−1)I φ2 ∧ · · · ∧ (φ1I ∧ φ1) ∧ · · · ∧ φn. (31)

Note that (30) is the 1st structure equation of the coframe φ = {φ1, . . . , φn}, while (31) comes from the fact that J can
only be equal to 1. Since φ1I = ∑n

K=1 φ1I (τK)φK , we get:

d(σ n−1
H )t = −

n∑
I=2

(−1)I (−1)I−1φ1 ∧ · · · ∧ φ1I ∧ · · · ∧ φn

=
n∑

I=2

φ1I (τI )φ1 ∧ · · · ∧ φI ∧ · · · ∧ φn (since K must be equal to I )

=
∑

i∈IHS

φ1i (τi) φ1 ∧ · · · ∧ φn, (32)

where (32) follows because φiα(τα) = 0; see Lemma 3.13. Thus we get:

ı∗
(
W̃ d(σ n−1

H )t
) = ı∗

( ∑
i∈IHS

φ1i (τi)(W̃ φ1 ∧ · · · ∧ φn)

)
=

( ∑
i∈IHS

φ1i (τi) 〈W̃ , νt 〉 (σ n−1
R )t

)∣∣∣∣
U

= −Hsc
H 〈W,ν〉σn−1 U . (33)

The second term in (29) is given by ı∗(d(W̃ (σn−1
H )t )) = d(ı∗(W̃ (σn−1

H )t )). Moreover,

ı∗
(
W̃ (σn−1

H )t
) = ı∗

(
W̃ |pH νt | (σ n−1

R )t
) = (

W |pH ν|σn−1
R

)∣∣
∂U = |pH ν| (W σn−1

R )|∂U .

Using the last computation and equalities (29) and (33) we get:

Γ̇ (0) = −Hsc
H 〈W,ν〉σn−1

R + d
(|pH ν|(W σn−1

R )
)
. (34)

The thesis now easily follows using (25), Leibnitz’s rule, and then integrating along U both sides of (34). Clearly, for
the second term, we use Stokes’ theorem and the fact that

(W σn−1
R )|∂U = 〈W,η〉 (σ n−2

R )|∂U . �
Remark 4.6. By analyzing (29) we see that, if W ∈ C∞(S,H), the Lie derivative of σn−1

H along the flow of W

can be thought of as the sum of two terms, one only depending on the horizontal normal component of W , the
other only depending on its horizontal tangential component. Analogously, in the case of an arbitrary vector variation
W ∈ C∞(S,T G), (29) says that the Lie derivative of σn−1

H along the flow of W , is the sum of two terms, the first one
only depending on the normal component of W , and the second one only depending on its tangential component.
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4.3. 2nd variation of σn−1
H

In this section we illustrate the main result of this paper, that is, a complete formula for the 2nd variation of
the measure σn−1

H on non-characteristic hypersurfaces, with or without boundary, having constant horizontal mean
curvature Hsc

H . From what we have seen in Section 4.1 we have that

IIU (W,σn−1
H ) := d2

dt2

∣∣∣∣
t=0

∫
U

Γ (t) =
∫
U

Γ̈ (0), (35)

and so we have to compute Γ̈ (0). We preliminarily note that

Γ̈ (t) = ϑ∗
t

(
LW̃

(
W̃ d(σ n−1

H )t
) +LW̃ d

(
W̃ (σn−1

H )t
))

,

and, as in the Riemannian case, the hard part of the computation is in the first addend of the above formula. We note
that, just in the case of 3-dimensional contact manifolds, for which the Heisenberg group H

1 constitutes a noteworthy
example, a similar formula for the 2nd variation of the H -perimeter measure on minimal surfaces (i.e. Hsc

H = 0),
has been proved in [9]. This formula, in the case of minimal surfaces of H

1, also appears in [12]; compare with
Example 4.10 below.

The next result gives the second variation of σn−1
H in a particularly important special case.

Corollary 4.7 (Horizontal normal 2nd variation). Under the hypotheses of Section 4.1, let ϑ be a smooth variation of
U ⊂ S having variation vector W = ϑ∗ ∂

∂t
|t=0 such that W ∈ νH S, i.e. W = w νH , where w ∈ C∞(S). Then we have:

IIU (W,σn−1
H ) =

∫
U

{
−Hsc

H w
∂w

∂νH

+ |gradHS w|2 + w2
[
(2 Tr2 BH ) −

∑
α∈IV

〈(
2 gradHS(�α) − CτS

α

)
,CανH

〉]}
σn−1

H

−
∫

∂U\C∂U

w〈gradHS w,ηHS〉HSσn−2
H ,

where we remind that �α := να|pH ν| and that τS
α := τα − �ανH (α ∈ IV ). Moreover, if we assume that W ∈

C∞
0 (U, νH S), or equivalently, that W keeps the boundary fixed, the boundary integral in the previous formula is

identically zero.

Note that in the previous corollary we do not assume that
Hsc

H is constant. A more general statement for the second variation formula of σn−1
H in the horizontal case can be

given; see Corollary 4.25. Actually, the proof of Corollary 4.7 is an immediate consequence of Corollary 4.25; see
Section 4.5.

The next theorem is perhaps the main result of this paper and its proof will be given in Section 4.6.

Theorem 4.8 (General 2nd variation of σn−1
H for hypersurfaces with Hsc

H constant). Under the hypotheses of
Section 4.1, let ϑ be a smooth variation of U ⊂ S having variation vector W = ϑ∗ ∂

∂t
|t=0 and let us denote by

W̃ := ϑ∗ ∂
∂t

any extension of W to a neighborhood of Im(ϑ). Finally, let us set w := 〈W,ν〉
|pH ν| . If Hsc

H = const. along
U , then we have:

IIU (W,σn−1
H ) =

∫
U

{
−W(w)Hsc

H + |gradHS w|2 + w2
[
(2 Tr2 BH ) −

∑
α∈IV

〈(
2 gradHS(�α) − CτS

α

)
,CανH

〉]}
σn−1

H

+
∫
∂U

{〈(−w gradHS w + [W̃ νt

, W̃ T ]T |t=0
)
, η

〉|pH ν|

+ (
divT S

(|pH ν|WT
) −Hsc

H 〈W,ν〉)〈WT ,η〉}σn−2
R ,

where we remind that �α := να|pH ν| and that τS
α := τα −�ανH (α ∈ IV ). Obviously, if we assume that W ∈ C∞

0 (U, T G)

the boundary integral in the previous formula is identically zero.
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It should be noted that we will prove this theorem as a consequence of a more general statement in which we do
not require that Hsc

H is constant along U ; see Proposition 4.13 in the next section.

Remark 4.9. We have used the notation Tr2 for the sum of the principal minors of order 2 of the matrix representing
a linear operator. In our case we have Tr2BH = 1

2

∑
i,j∈IHS

(φ1i (τi)φ1j (τj ) − φ1i (τj )φ1j (τi)). Moreover we remind
that, in general, the following identity holds (see [15], Chapter 1, p. 36):

Tr2BH = 1

2

(
(TrBH )2 − Tr(BH ◦ BH )

)
.

By a simple calculation using Remark 3.7, we then get:

Tr2 BH = 1

2

(
Hsc2

H − ‖SH ‖2
Gr − 1

4
‖CHS‖2

Gr

)
,

where we have denoted by ‖ · ‖Gr the Gram norm of a linear operator.

Notice that Tr2 BH = 0 if dimHS = 1. This is the case, for instance, of the 3-dimensional Heisenberg group H
1

and of the Engel group E
1 on R

4.

Example 4.10 (Heisenberg group H
1). Let {X,Y,T } be the standard set of generators for the Lie algebra h1 of H

1.
They satisfy [X,Y ] = T with all other commutators zero. In particular, T is the center of h1. Under the hypotheses of
Theorem 4.8, we have:

IIU (W,σ 2
H ) =

∫
U

{
−W(w)Hsc

H +
(

∂w

∂ν⊥
H

)2

+ w2
[

2
∂�

∂ν⊥
H

− � 2
]}

σ 2
H ,

for every vector variation W compactly supported on U , where as before w = 〈W,ν〉
|pH ν| and, if ν = (νX, νY , νT ) denotes

the Riemannian unit normal, then � := νT√
ν2
X+ν2

Y

. In the previous formula ν⊥
H denotes the unique horizontal tangent

vector of HS satisfying |ν⊥
H | = 1 and such that det[νH , ν⊥

H ,T ] = 1.

Example 4.11 (Heisenberg group H
n). Let {X1, . . . ,X2n,X2n+1} be the standard set of generators for the Lie algebra

hn of H
n. We have [Xi,Xi+n] = X2n+1 (i = 1, . . . , n) with all other commutators zero. The center of h1 is X2n+1;

see Example 2.12. Under the hypotheses of Theorem 4.8, one has:

IIU (W,σn−1
H ) =

∫
U

{−W(w)Hsc
H + |gradHS w|2 + w2[(2 Tr2 BH ) − 〈2 gradHS(�),C2n+1

H νH 〉 − � 2]}σn−1
H ,

for every vector variation W compactly supported on U , where w = 〈W,ν〉
|pH ν| and, if ν = (ν1, . . . , ν2n, ν2n+1) is the

Riemannian unit normal, then � := ν2n+1
|pH ν| . With respect to the canonical basis of H

n, we have:

C2n+1
H νH = (ν2

H ,−ν1
H ,ν4

H ,−ν3
H , . . . , ν2n

H ,−ν2n−1
H ,0) =: −ν⊥

H ,

where νH = (ν1
H , . . . , ν2n

H ,0). Note that ‖C2n+1
HS ‖2

gr = 2(n − 1) and therefore that

2 Tr2 BH = Hsc
H

2 − ‖SH ‖2
Gr − 1

4
‖CHS‖2

Gr = Hsc
H

2 − ‖SH ‖2
Gr − 2(n − 1)

4
� 2.

So we finally obtain

IIU (W,σn−1
H ) =

∫
U

{
−W(w)Hsc

H + |gradHS w|2 + w2
[
Hsc

H
2 − ‖SH ‖2

Gr + 2
∂�

∂ν⊥
H

− n + 1

2
� 2

]}
σn−1

H .

Example 4.12 (Engel’s group E
1). Let {X1,X2,X3,X4} be the set of generators for the Lie algebra e1 of E

1 satisfying
[X1,X2] = X3, [X1,X3] = [X2,X3] = X4 and such that all other commutators vanish. In particular, X4 is the center
of h1. Under the hypotheses of Theorem 4.8, we have:
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IIU (W,σn−1
H ) =

∫
U

{
−W(w)Hsc

H +
(

∂w

∂ν⊥
H

)2

+ w2
[(

2
∂�3

∂ν⊥
H

− � 2
3

)
− � 2

4

[
(ν2

H )2 − (ν1
H )2 − 2ν1

H ν2
H

]2 − �4
[
(ν2

H )2 − (ν1
H )2 + 2ν1

H ν2
H

]]}
σ 3

H ,

for every vector variation W compactly supported on U , where as above w = 〈W,ν〉
|pH ν| . Here �3 := ν3|pH ν| and

�4 := ν4|pH ν| where ν = (ν1, ν2, ν3, ν4) denotes the Riemannian unit normal. Moreover ν⊥
H denotes the unique hor-

izontal tangent vector of HS satisfying |ν⊥
H | = 1 and such that det[νH , ν⊥

H ,X3,X4] = 1. Thus in canonical coor-
dinates we have ν⊥

H = (−ν2
H ,ν1

H ,0,0) ∈ HS, where νH = (ν1
H ,ν2

H ,0,0). Note that we have used 〈Cτ3,C
3
H νH 〉 =

−�4〈C4τ3, ν
⊥
H 〉 = �4[(ν2

H )2 − (ν1
H )2 + 2ν1

H ν2
H ] and |C4νH | = ((ν2

H )2 − (ν1
H )2 − 2ν1

H ν2
H ). Using polar coordinates

on H in such a way that νH = eiψ , ψ := arg(νH ) ∈ [0,2π], we get

IIU (W,σn−1
H ) =

∫
U

{
−W(w)Hsc

H +
(

∂w

∂ν⊥
H

)2

+ w2
[(

2
∂�3

∂ν⊥
H

− � 2
3

)
− � 2

4 (1 + sin 4ψ) + √
2�4 cos

(
2ψ + π

4

)]}
σ 3

H .

4.4. 2nd-variation of σn−1
H : proof

In this section we will prove all the results stated in the previous section. Our proof will closely follow that of
the 1st variation of σn−1

H and so we will use the notations previously adopted in Section 4.2. We stress that in the
following computations, we shall sometimes omit the subscripts H and HS from the notations of inner products and
norms.

Our first step in proving the results introduced before is the following, more general:

Proposition 4.13 (General 2nd variation of σn−1
H ). Under the hypotheses of Section 4.1, let ϑ be a smooth variation

of U ⊂ S having variation vector W = ϑ∗ ∂
∂t

|t=0 and let us set w := 〈W,ν〉
|pH ν| . Then

IIU (W,σn−1
H ) =

∫
U

{
−Hsc

H

[
W(w) + w

(
divHS WHS + div(WV ) − 〈

JH (WV )νH ,�
〉 + 2〈CνH ,W 〉)]

+ w

[
−�HSw1 −

∑
α∈IV

(
�α�HSwα + 〈

(gradHS wα + CαW), (2 gradHS �α − CτS
α )

〉)
+ w1(2 Tr2 BH ) + Tr

(
BH ◦ [JHSWHS]tr) + Tr

(
C ◦ [JHSW 0]tr)

− 1

2

∑
α∈IH2

(
wα Tr(BH ◦ Cα

HS) + 〈
Cα

H νH ,gradHS wα

〉)]}
σn−1

H

+
∫
∂U

{〈[W̃ νt

, W̃ T ]T |t=0, η
〉 |pH ν| + (

divT S

(|pH ν|WT
) −Hsc

H 〈W,ν〉)〈WT ,η〉}σn−2
R .

Finally, if we assume that W ∈ C∞
0 (U, T G), then the boundary integral in the previous formula is identically zero.

Here above, 0 := 0n×n−h1+1 denotes the zero matrix in Mn×n−h1+1(R) and so [JHSW 0] ∈ Mn×n(R). Remind
that, if τ = {τ1, . . . , τn} is an adapted moving frame for U ⊂ S on U , we have τ1 := νH and τS

α := τα − να|pH ν|νH

(α ∈ IV ) along U . Moreover, by definition, � = ∑
α∈IV

�ατα = pV ν
|pH ν| . We also remember that S ⊂ G is a smooth

immersed hypersurface and U ⊂ G is an open set such that U = U ∩ S is a relatively compact subset of S with smooth
(n − 2)-dimensional boundary ∂U oriented by its unit normal η.
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Proof of Proposition 4.13. The proof below can be seen as a continuation of the proof of Theorem 4.2. Through-
out this section we will choose, as in Section 4.2, an orthonormal moving frame τ on U ⊂ G satisfying for every
t ∈ (−ε, ε):

(i) τ1|Ut
:= νt

H ; (ii) HTpUt = span{(τ2)p, . . . , (τh1)p} (p ∈ Ut ); (iii) τα := Xα.

From now on we also assume that the variation vector field W ∈ C∞(S,T G) of ϑ is transversal along U . We already
know that, in order to compute the 2nd variation of σn−1

H , we have to compute, in a fixed point p0 ∈ U , the quantity
Γ̈ (0). (We stress that, in the next computations, we shall drop the dependence on the “initial” point p0 ∈ U .) Therefore
we will first compute

Γ̈ (t) = ϑ∗
t

{
LW̃

(
W̃ d(σ n−1

H )t
) + LW̃ d

(
W̃ (σn−1

H )t
)}

(:= A + B). (36)

Remark 4.14. From (36), making use of Stoke’s theorem, we see that

IIU (W,σn−1
H ) = IIInt.

U (W,σn−1
H ) + IIBound.

U (W,σn−1
H ),

where

IIInt.
U (W,σn−1

H ) :=
∫
U

ı∗
(
LW̃ (W̃ d

(
σn−1

H

)
t
)
)

and

IIBound.
U (W,σn−1

H ) :=
∫
∂U

ı∗
(
LW̃

(
W̃ (σn−1

H )t
)∣∣

∂Ut

)
.

By setting:

w := 〈W,ν〉
|pH ν| , wt := 〈W̃ , νt 〉

|pH νt | , (37)

we obtain, using what we have proved in Section 4.2, that the first term A in (36) is given by

A =
∑

j∈IHS

LW̃ (wt φ2 ∧ · · · ∧ φ1j︸︷︷︸
j th place

∧· · · ∧ φn)|Ut
. (38)

Remark 4.15 (Boundary terms). Since the Lie derivative commutes with exterior differentiation, using Stoke’s
theorem we get that the second term in (36), is given by B = ϑ∗

t LW̃ (W̃ (σ n−1
H )t )|∂Ut

. Using well-known prop-
erties of the Lie derivative, B can be computed in the following way:

(i) If W̃ ∈ X(G), we may decompose the variation vector as W̃ = W̃T + W̃ νt
(tangent and normal components of W̃

with respect to Ut ) and we get:

B = LW̃

(
W̃T (σn−1

H )t
)∣∣

∂Ut
= ([W̃ , W̃ T ]T (σn−1

H )t + W̃T
(
LW̃ (σ n−1

H )t
))∣∣

∂Ut

= ([W̃ νt

, W̃ T ]T (σn−1
H )t + W̃T

(
W̃ νt

d(σ n−1
H )t

) + W̃T d
(
W̃T (σn−1

H )t
))∣∣

∂Ut
,

where we have used the fact that the bracket of tangent vector fields is still a tangent vector and Cartan’s formula
for the Lie derivative. By integrating B along ∂Ut and setting t = 0, we obtain:

IIBound.
U (W,σn−1

H ) =
∫

ı∗∂U
(
LW̃

(
W̃ (σn−1

H )t
))

=
∫
∂U

{〈[W̃ νt

, W̃ T ]T |t=0, η
〉|pH ν| + (

divT S

(|pH ν|WT
) −Hsc

H 〈W,ν〉)〈WT ,η
〉}

σn−2
R . (39)
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(ii) If W̃ ∈ X(H), we may write the variation vector as W̃ = W̃νH
+ W̃HS , where W̃νH

and W̃HS are respectively, the
horizontal normal component and the horizontal tangential component of W̃ along Ut . In this case we have:

B = LW̃

(
W̃ (σn−1

H )t
)∣∣

∂Ut
= LW̃

(
W̃HS (σn−1

H )t
)∣∣

∂Ut

= ([W̃ , W̃HS]T (σn−1
H )t + W̃HS

(
LW̃ (σ n−1

H )t
))∣∣

∂Ut

= ([W̃ , W̃HS]T (σn−1
H )t + W̃HS (W̃νH

d(σ n−1
H )t ) + W̃HS d

(
W̃HS (σn−1

H )t
))∣∣

∂Ut
.

By integrating B along ∂Ut , using Theorem 3.17, and setting t = 0, we get:

IIBound.
U (W,σn−1

H ) =
∫

ı∗∂U
(
LW̃

(
W̃ (σn−1

H )t
))

=
∫
∂U

{〈[W̃ , W̃HS]T |t=0, η
〉 + [

divHS WHS + 〈CH νH ,WHS〉HS

−Hsc
H 〈W,νH 〉H

]〈WHS,η〉HS

}|pH ν|σn−2
R . (40)

We start with the computation of (38) by first computing the following quantities:

(i) LW̃ (φh) for h ∈ IHS = {2, . . . , h1};
(ii) LW̃ (φ1j ) for j ∈ IHS ;

(iii) LW̃ (φα) for α ∈ IV = {h1 + 1, . . . , n}.

This can be done using Cartan’s formula and the structure equations for our coframe φ = {φ1, . . . , φn}. For the term
appearing in (i) we get:

LW̃ (φh) = W̃ dφh + dφh(W̃ ) =
∑
L

(W̃ φhL ∧ φL) + dw̃h,

and so

LW̃ (φh) =
∑
L�=h

(
φhL(W̃ )φL − w̃LφhL

) + dw̃h. (41)

Analogously, for the term in (ii), using the 2nd structure equation for φ, we get:

LW̃ (φ1j ) = W̃ dφ1j + dφ1j (W̃ ) =
∑
L

(
W̃ (−Φ̃1j + φ1L ∧ φLj )

) + dφ1j (W̃ ),

and therefore

LW̃ (φ1j ) = −Φ1j (W̃ , ·) +
∑

L�=1,j

(
φ1L(W̃ )φLj − φLj (W̃ )φ1L

) + dφ1j (W̃ ). (42)

Finally, for the term in (iii), we get:

LW̃ (φα) = W̃ dφα + dφα(W̃ ) =
∑
L�=α

(W̃ φαL ∧ φL) + dw̃α,

and so

LW̃ (φα) =
∑
L�=α

(
φαL(W̃ )φL − w̃LφαL

) + dw̃α. (43)

Now we may compute A. We have:

A = LW̃

(
W̃ d(σ n−1

H )t
) = −W̃ (wt )(Hsc

H )t (σ
n−1
H )t + wt

∑
LW̃ (φ2 ∧ · · · ∧ φ1j ∧ · · · ∧ φn)
j∈IHS
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= −W̃ (wt )(Hsc
H )t (σ

n−1
H )t +

∑
j,h∈IHS

wt (φ2 ∧ · · · ∧ φ1j ∧ · · · ∧LW̃ φh ∧ · · · ∧ φn)︸ ︷︷ ︸
=:A1

+
∑

j∈IHS

wt (φ2 ∧ · · · ∧LW̃ φ1j ∧ · · · ∧ φn)︸ ︷︷ ︸
=:A2

+
∑

j∈IHS

∑
α∈I2

wt(φ2 ∧ · · · ∧ φ1j ∧ · · · ∧LW̃ φα ∧ · · · ∧ φn)︸ ︷︷ ︸
=:A3

.

By using (41) and Lemma 2.19, the term A1 can be easily computed as follows:

A1 = wt

{
φ2 ∧ · · · ∧ (

φ1j (τj )φj + φ1j (τh)φh

) ∧ · · · ∧
[ ∑

L�=h

(
φhL(W̃ )φL − w̃LφhL

) + dw̃h

]
∧ · · · ∧ φn

}

= wt

{
φ1j (τj )

[
τh(w̃h) −

∑
L�=h

w̃LφhL(τh)

]
− φ1j (τh)

[
φhj (W̃ ) + τj (w̃h) −

∑
L�=h

w̃LφhL(τj )

]}
(σ n−1

H )t

= wt

{
φ1j (τj )

[
τh(w̃h) −

∑
l �=h

w̃lφhl(τh)

]
− φ1j (τh)

[
τj (w̃h) +

∑
L�=h

w̃LCh
jL

]}
(σ n−1

H )t ,

where we have used the identity φhα(τh) = 0 (see (ii) in Lemma 3.13) and also (14) to compute the last term; see
Section 3. For the term A2, by means of (42) and Lemma 2.19, we get:

A2 = wt

{
−Φ1j (W̃ , τj ) + τj

(
φ1j (W̃ )

) +
∑

L�=1,j

[
φ1l (W̃ )φlj (τj ) − φlj (W̃ )φ1l (τj )

]}
(σ n−1

H )t .

Analogously, the term A3 is computed by means of (43) and Lemma 2.19 as follows:

A3 = wt

{
φ2 ∧ · · · ∧ φ1j ∧ · · · ∧

[ ∑
L�=α

(
φαL(W̃ )φL − w̃LφαL

) + dw̃α

]
∧ · · · ∧ φn

}

= wt

{
φ2 ∧ · · · ∧

(∑
K

φ1j (τK)φK

)
∧ · · · ∧

[ ∑
L�=α

∑
M

(
φαL(W̃ )φL − w̃LφαL(τM)φM

) + τM(w̃α)φM

]
∧ · · · ∧ φn

}

= wt

{
φ1j (τj )

[
τα(w̃α) − �t

α

(
τ1(w̃α) + φα1(W̃ ) −

∑
L�=1,α

w̃LφαL(τ1)

)]

+ �t
αφ1j (τ1)

[
τj (w̃α) + φαj (W̃ ) −

∑
L�=j,α

w̃LφαL(τj )

]

− φ1j (τα)

[
τj (w̃α) + φαj (W̃ ) −

∑
L�=j,α

w̃LφαL(τj )

]}
(σ n−1

H )t

= wt

{
φ1j (τj )

[
τS
α (w̃α) + �t

α

∑
L�=1,α

w̃LCα
L1

]
− φ1j (τ

S
α )

[
τj (w̃α) +

∑
L�=j,α

w̃LCα
jL

]}
(σ n−1

H )t .

Here we have used the notation �t
α := νt

α

νt
1

= νt
α|pH νt | . We also stress that, in the above computations, we have used the

fact that φαL(τα) = 0 for every L and that φαj (τj ) = 0 for j ∈ IH ; see Lemma 3.13. Now, by using these expressions,
identity (14), and rearranging a little bit we obtain:

A =
{
−W̃ (wt )(Hsc

H )t + wt

[ ∑
j∈IHS

φ1j (τj )

[ ∑
l∈IH

∑
h∈IHS
h�=l

(
τh(w̃h) + w̃lφlh(τh)

)

+
∑
α∈IV

(
τS
α (w̃α) + �t

α

∑
L�=1,α

w̃LCα
L1

)]
−

∑
j,h∈IHS

φ1j (τh)

[
τj (w̃h) +

∑
L�=h

w̃LCh
jL

]

−
∑ ∑

φ1j (τ
S
α )

[
τj (w̃α) +

∑
w̃LCα

jL

]

j∈IHS α∈IV L�=j,α
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+
∑

j∈IHS

[(−Φ1j (W̃ , τj ) + τj

(
φ1j (W̃ )

)) +
∑
α∈IV

φ1α(τj )φjα(W̃ )

]

+
∑

L�=1,j

[
φ1l (W̃ )φlj (τj ) − φlj (W̃ )φ1l (τj )

]]}
(σ n−1

H )t .

Remark 4.16. From now on we will extensively make use of Lemma 3.8. Roughly speaking, Lemma 3.8 says that,
if we fix a point p0 ∈ U = U ∩ S, we can always choose our moving frame τ for U adapted to U , in such a way that
its dual coframe φ satisfies φij (p0) = 0, whenever i, j ∈ IHS . Since our computation is actually done in a fixed point
p0 ∈ U , making use of this fact will greatly simplify our next computations.

Thus, in the sequel, we shall restrict to U ⊂ S the above expression. We have then,

(ı∗A)p0 =
{
−W(w)Hsc

H + w

{ ∑
j∈IHS

φ1j (τj )

[
−Hsc

H

(
τh(wh) + w1φ1h(τh)

) +
∑
α∈IV

(
τS
α (wα) + �α

∑
L�=1,α

wLCα
L1

)]

−
∑

j,h∈IHS

φ1j (τh)

(
τj (wh) +

∑
L�=h

wLCh
jL

)
−

∑
j∈IHS

∑
α∈IV

φ1j (τ
S
α )

(
τj (wα) +

∑
L�=j,α

wLCα
jL

)

+
∑

j∈IHS

[(−Φ1j (W, τj ) + τj

(
φ1j (W)

)) +
∑
α∈IV

φ1α(τj )φjα(W)

]}}∣∣∣∣
p0

σn−1
H (p0).

By using again Lemma 3.8, together with (5) of Section 2.1 and (14) of Section 3, we get that∑
L�=h

wLCh
jL = w1φ1h(τj ) +

∑
α∈IV

wαφαh(τj ) at p0

and therefore that

(ı∗A)p0 =
{
−Hsc

H

[
W(w) + w

∑
α∈IV

(
τS
α (wα) + �α

∑
L�=1,α

wLCα
L1

)]

+ w

[ ∑
j,h∈IHS

[
w1

(
φ1j (τj )φ1h(τh) − φ1j (τh)φ1h(τj )

) + (
φ1j (τj )τh(wh) − φ1j (τh)τj (wh)

)]

−
∑

j∈IHS

∑
α∈IV

φ1j (τ
S
α )

(
τj (wα) −

∑
L�=j,α

wLCα
Lj

)
+

∑
j∈IHS

[(−Φ1j (W, τj ) + τj

(
φ1j (W)

))
+

∑
α∈IV

(
φ1α(τj )φjα(W) +

∑
h∈IHS
h�=j

wαφ1j (τh)φhα(τj )

)]]}∣∣∣∣
p0

σn−1
H (p0).

In Proposition 3.15 we have computed some of the curvature 2-forms. In particular, it was shown that∑
j∈IHS

Φ1j (W, τj ) = −3

4

∑
α∈IH2

〈Cα
H νH ,Cα

H WH 〉 − 1

4

∑
α∈IH2

∑
β∈IH3

wβ〈Cα
H νH ,Cβτα〉.

Substituting this identity into the previous formula gives us:

(ı∗A)p0 =
{
−Hsc

H

[
W(w) + w

∑
α∈IV

(
τS
α (wα) + �α

∑
L�=1,α

wLCα
L1

)]

+ w

[
w1

∑
j,h∈IHS

(
φ1j (τj )φ1h(τh) − φ1j (τh)φ1h(τj )

) +
∑

j,h∈IHS

(
φ1j (τj )τh(wh) − φ1j (τh)τj (wh)

)
+

∑
τj

(
φ1j (W)

) −
∑ ∑

φ1j (τ
S
α )

(
τj (wα) −

∑
wLCα

Lj

)
+

∑ ∑
φ1α(τj )φjα(W)
j∈IHS j∈IHS α∈IV L�=j,α j∈IHS α∈IV
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+
∑

j,h∈IHS
j �=h

∑
α∈IV

wαφ1j (τh)φhα(τj ) + 3

4

∑
α∈IH2

〈Cα
H τ1,C

α
H WH 〉

+ 1

4

∑
α∈IH2

∑
β∈IH3

wβ〈Cα
H τ1,C

βτα〉
]}∣∣∣∣

(t,p)=(0,p0)

σ n−1
H (p0). (44)

Claim 4.17. The following hold:

(i) Let [JHSWHS]tr denote the transposed matrix of the horizontal tangent Jacobian of WHS .19 Then, using
Lemma 3.8, we see that at p0, one has∑

j,h∈IHS

(
φ1j (τj )τh(wh) − φ1j (τh)τj (wh)

) = −Hsc
H divHS WHS + Tr

(
BH ◦ [JHSWHS]tr).

(ii) Since Cα
L1 = 〈[τL, τ1], τα〉 = 〈Cατ1, τL〉, it follows that

−Hsc
H

∑
α∈IV

(
�α

∑
L

wLCα
L1

)
= −Hsc

H 〈Cτ1,W 〉.

(iii) Since φ1α(τj ) = 1
2 〈Cα

H τ1, τj 〉, and since φjα(W) = − 1
2 (〈CαW,τj 〉 + ∑

β∈IV
wβ〈Cβτα, τj 〉), as is easily seen,

we find that ∑
j∈IHS

φ1α(τj )φjα(W) = −1

4

∑
j∈IHS

〈Cα
H τ1, τj 〉

(
〈CαW,τj 〉 +

∑
β∈IV

wβ〈Cβτα, τj 〉
)

= −1

4

(
〈Cα

H τ1,C
αW 〉 +

∑
β∈IV

wβ〈Cα
H τ1,C

βτα〉
)

.

(iv) We have:∑
j∈IHS

∑
α∈IV

∑
L�=j

φ1j (τ
S
α )wLCα

Lj = −
∑

j∈IHS

∑
α∈IV

∑
L�=j

φ1j (τ
S
α )wL〈CατL, τj 〉 = −

∑
α∈IV

〈∇τS
α
τ1,C

αW 〉

= −
∑
α∈IV

(〈∇τα τ1,C
αW 〉 − �α〈∇τ1τ1,C

αW 〉)
= 〈∇H

τ1
τ1,CW 〉 −

∑
α∈IV

(〈
pHS[τα, τ1],CαW

〉 + 1

2
〈Cα

H τ1,C
αW 〉

)
,

where we have used the identity φ1j (τα) = 〈∇τα τ1, τj 〉 = 〈[τα, τ1], τj 〉 + 1
2 〈Cα

H τ1, τj 〉.
(v)

∑
j∈IHS

φ1j (τ
S
α )τj (wα) = 〈∇H

τS
α
τ1,gradHS wα〉.

(vi) By using (iii) of Lemma 3.13 and the very definition of BH , we get:∑
j,h∈IHS

φ1j (τh)φhα(τj ) = 1

2

∑
h∈IHS

〈∇H
τh

τ1,C
α
H τh〉 = −1

2

∑
j,h∈IHS

BH (τh, τj )〈Cα
H τh, τj 〉 = −1

2
Tr(BH ◦ Cα

HS);

we have set Cα
HS := Cα

H |HS to stress the fact that Cα
H acts here only on horizontal tangent vectors; see

Notation 3.6.
(vii) By using Definition 2.4 and (5) of Section 2.1, we see that Cα

H �= 0 if and only if α ∈ IH2 and, in this case,
Cα = Cα

H . Analogously, we also infer that 〈Cα
H τ1,C

ατβ〉 = 0 (α,β ∈ IV ).

Now we have to compute the term
∑

j∈IHS
τj (φ1j (W)) and, to this aim we need an extra little work. We start with

the following:

19 [JHSWHS ] = [τj (wh)](h,j)∈I ×I .

HS HS
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Claim 4.18. We claim that 〈[W̃ ,ϑt∗X], νt 〉 = 0 for every X ∈ C∞(S,HS).

Proof. A proof of this claim can also be found in Spivak [45], Chapter 9, pp. 521–522.
First, we remind that W̃ (t,p) := ∂ϑ

∂t
(t,p) for any (t,p) ∈ (−ε, ε) × U . Now let u1, . . . , un−1 be a system of local

coordinates around p0 ∈ U . Thus X(u) = ∑n−1
i=1 ai(u) ∂ϑ

∂ui
, where each ai is a function of u = (u1, . . . , un−1). We

therefore have: [
W̃ ,

∂ϑ

∂ui

]
=

[
∂ϑ

∂t
,

∂ϑ

∂ui

]
= ϑ∗

[
∂

∂t
,

∂

∂ui

]
= 0,

because [ ∂
∂t

, ∂
∂ui

] = 0. Therefore:

[W̃ ,ϑt∗X] =
[
W̃ ,

n−1∑
i=1

ai(u)
∂ϑ

∂ui

]
=

(
n−1∑
i=1

W̃ (ai)
∂ϑ

∂ui

)
and this shows that [W̃ ,ϑt∗X] is tangent to Ut which is the claim. �
Claim 4.19. Let us set Ct := ∑

α∈IV
� t

αCα
H . Then we have:

∇H
W̃

τ1 = −gradHS w̃1 −
∑
α∈IV

� t
α gradHS w̃α − pHS(CtW̃ ). (45)

Proof. Using the previous Claim 4.18 we get 〈[W̃ , τj ], νt 〉 = 0 for any j ∈ IHS , and so:

〈∇W̃ τj , ν
t 〉 = 〈∇τj

W̃ , νt 〉.
This implies that:

−〈∇H
W̃

νt
H , τj 〉 = 〈∇τj

W̃ , νt
H 〉 +

∑
α∈IV

� t
α

(〈∇τj
W̃ , τα〉 − 〈∇W̃ τj , τα〉)

= τj (w̃1) +
∑
α∈IV

� t
ατj (w̃α) +

∑
α∈IV

∑
I

w̃I�
t
α

(〈∇τj
τI , τα〉 − 〈∇τI

τj , τα〉)
= τj (w̃1) +

∑
α∈IV

� t
ατj (w̃α) +

∑
α∈IV

∑
I

w̃I�
t
αCα

jI

= τj (w̃1) +
∑
α∈IV

� t
ατj (w̃α) + 〈CtW̃ , τj 〉

(
j ∈ IHS = {2, . . . , h1}

)
which is equivalent to the claim. �
Claim 4.20. At p0 we have:∑

j∈IHS

τj

(
φ1j (W)

)
(p0) = −�HSw1 −

∑
α∈IV

(
�α�HSwα + 〈gradHS wα,gradHS �α〉) − divHS(CW). (46)

Proof. We have: ∑
j∈IHS

τj

(
φ1j (W̃ )

) = divHSt (∇H
W̃

τ1) −
∑

j,l∈IHS

φlj (τj )〈∇H
W̃

τ1, τl〉 (47)

and the thesis follows by applying Lemma 3.8 (which says that the sum in the previous identity (47) vanishes at
(0,p0)) and Claim 4.19. More precisely, we have:∑

j∈IHS

τj

(
φ1j (W)

)
(p0) =

(
divHSt

(
−gradHS w̃1 −

∑
α∈IV

� t
α gradHS w̃α − CtW̃

))∣∣∣∣
(t,p)=(0,p0)

= −�HSw1 −
∑
α∈IV

(
�α�HSwα + 〈gradHS wα,gradHS �α〉) − divHS(CW) at p0. �
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Remark 4.21. To compute the last term in the previous sum we may proceed as follows:

divHS(CW)(p0) =
∑

j∈IHS

〈∇H
τj

(CW), τj

〉∣∣
p0

=
∑

j∈IHS

∑
α∈IV

〈∇H
τj

�α(CαW), τj

〉∣∣
p0

=
∑
α∈IV

[〈gradHS �α,CαW 〉 +
∑
I

�α

(〈CατI ,gradHS wI 〉 + wI divHS(CατI )
)]∣∣

p0

=
∑
α∈IV

[
〈gradHS �α,CαW 〉 +

∑
I,L

�α

(〈CατI ,gradHS wI 〉 + wI

〈
CατI , τL

〉
divHS(τL)

)]∣∣∣∣
p0

=
∑
α∈IV

〈gradHS �α,CαW 〉 +
∑
I

〈CτI ,gradHS wI 〉 +Hsc
H 〈Cτ1,W 〉 at p0.

We stress that in this computation we have used the fact that Cα ∈ GL(Rn) is a linear operator and that, by Lem-
ma 3.8 and (ii) of Lemma 3.13, it turns out that divHS(τL)(p0) �= 0 only if L = 1 and, in this case, we have
divHS(τ1)(p0) = −Hsc

H (p0).

Claim 4.22. We have:

〈∇H
τ1

τ1,CW 〉 −
∑
α∈IV

〈
pHS[τα, τ1],CαW

〉 = −
∑
α∈IV

〈
(gradHS �α − CτS

α ),CαW
〉
.

Proof. We need identity (ii) of Lemma 3.12 which can be written as follows:

〈∇H
τS
α
τ1, τj 〉 = τj (�α) + 1

2
〈Cα

H τ1, τj 〉 − 〈CτS
α , τj 〉 (j ∈ IHS,α ∈ IV ). (48)

Moreover, note that 〈pHS[τα, τ1], τj 〉 = 〈∇H
τα

τ1, τj 〉 − 1
2 〈Cα

H τ1, τj 〉 (j ∈ IHS). So we get:

〈∇H
τ1

τ1,CW 〉 −
∑
α∈IV

〈
pHS[τα, τ1],CαW

〉 = ∑
α∈IV

(
−〈∇H

τα
τ1,C

αW 〉 + 1

2
〈Cα

H τ1,C
αW 〉 + �α〈∇H

τ1
τ1,C

αW 〉
)

=
∑
α∈IV

(
−〈∇H

τS
α
τ1,C

αW 〉 + 1

2
〈Cα

H τ1,C
αW 〉

)
= −

∑
α∈IV

〈
(gradHS �α − CτS

α ),CαW
〉
. �

Claim 4.23. We have:∑
α∈IV

〈∇H
τS
α
τ1,gradHS wα〉 = 〈gradHS �α,gradHS wα〉 + 1

2
〈Cα

H τ1,gradHS wα〉 − 〈CτS
α ,gradHS wα〉.

Proof. This follows once again from (ii) of Lemma 3.12; see (48). �
We may now accomplish the computation of our second variation formula of σn−1

H . Indeed, by applying Remark 4.9
together with Claims 4.17 and 4.20 into (45) and rearranging we get:

ı∗(A)p0 =
{
−Hsc

H

[
W(w) + w

(
divHS WHS +

∑
α∈IV

τ S
α (wα) + 〈Cνt

H ,W 〉
)]

+ w

[
divHSt (∇H

W̃
νt
H ) + w1(2 Tr2 BH ) + Tr

(
BH ◦ [JHSWHS]tr) − 1

2

∑
α∈IV

wαTr(BH ◦ Cα
HS)

+ 〈∇H
νt
H
νt
H ,CW 〉 −

∑ (〈
pHS[τα, νt

H ],CαW
〉 + 〈∇H

τS
α
νt
H ,gradHS wα〉)]}∣∣∣∣

(t,p)=(0,p0)

σ n−1
H (p0). (49)
α∈IV
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Starting from (49), making use of identity (15) (see Remark 3.11), Claim 4.20, Remark 4.21, Claim 4.22 and
Claim 4.23 we get:

ı∗(A)p0 =
{
−Hsc

H

[
W(w) + w

(
divHS WHS + div(WV ) − 〈

(JH WV )νH ,�
〉 + 〈CνH ,W 〉)]

+ w

[
−�HSw1 −

∑
α∈IV

(
�α�HSwα + 〈gradHS wα,gradHS �α〉 + 〈gradHS �α,CαW 〉)

−
∑
I

〈CτI ,gradHS wI 〉 −Hsc
H 〈CνH ,W 〉 + w1(2 Tr2 BH ) + Tr

(
BH ◦ [JHSWHS]tr)

− 1

2

∑
α∈IV

wα Tr(BH ◦ Cα
HS)

−
∑
α∈IV

[〈
(gradHS �α − CτS

α ),CαW
〉 + 〈gradHS �α,gradHS wα〉 + 1

2
〈Cα

H νH ,gradHS wα〉

− 〈CτS
α ,gradHS wα〉

]]}
σn−1

H (p0)

=
{
−Hsc

H

[
W(w) + w

(
divHS WHS + div(WV ) − 〈

(JH WV )νH ,�
〉 + 2〈CνH ,W 〉)]

+ w

[
−�HSw1 −

∑
α∈IV

(
�α�HSwα + 2

〈
(gradHS wα + CαW),

(
gradHS �α − 1

2
CτS

α

)〉)
− Tr(JHSW ◦ C) + w1(2 Tr2 BH ) + Tr

(
BH ◦ [JHSWHS]tr)

− 1

2

∑
α∈IH2

(
wα Tr(BH ◦ Cα

HS) + 〈Cα
H νH ,gradHS wα〉)]}

σn−1
H (p0).

Remark 4.24. Note that here above we have set Tr(JHSW ◦ C) := ∑
I 〈CτI ,gradHS wI 〉. However there is a slight

abuse of notation here and, in fact, we have Tr(JHSW ◦ C) := Tr([JHSW0] ◦ C) where 0 := 0n×n−h1+1 denotes the
zero matrix in Mn×n−h1+1(R).

Now from the last expression, using Remarks 4.14 and 4.15, we finally get:

IIU (W,σn−1
H ) =

∫
U

{
−Hsc

H

[
W(w) + w

(
divHS WHS + div(WV ) − 〈

(JH WV )νH ,�
〉 + 2〈CνH ,W 〉)]

+ w

[
−�HSw1 −

∑
α∈IV

(
�α�HSwα + 〈

(gradHS wα + CαW), (2 gradHS �α − CτS
α )

〉)
+ w1(2 Tr2 BH ) + Tr

(
BH ◦ [JHSWHS]tr) + Tr

(
C ◦ [JHSW 0]tr)

− 1

2

∑
α∈IH2

(
wα Tr(BH ◦ Cα

HS) + 〈
Cα

H νH ,gradHS wα

〉)]}
σn−1

H

+
∫
∂U

{〈[W̃ νt

, W̃ T ]T |t=0, η
〉 |pH ν| + (

divT S

(|pH ν|WT
) −Hsc

H 〈W,ν〉)〈WT ,η〉}σn−2
R

and the proof of Proposition 4.13 is complete. �
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4.5. Case W ∈ C∞(S,H)

Now we find the expression for the 2nd variation of σn−1
H relatively to arbitrary horizontal variations.

If W = WH ∈ C∞(S,H) (WH = w1νH +WHS), then w is equal to w1 by (37). Thus, using Proposition 4.13 and (40)
of Remark 4.15 we immediately obtain the following expression for IIU (W,σn−1

H ):

IIU (W,σn−1
H ) =

∫
U

{
−Hsc

H

[
WH (w) + w

(
divHS WHS + 2〈CH νH ,WHS〉)]

+ w

[
−�HSw −

∑
α∈IV

〈
(2 gradHS �α − CτS

α ),CαWH

〉 + w(2 Tr2 BH )

+ Tr
(
BH ◦ [JHSWHS]tr) + Tr

(
C ◦ [JHSWH 0]tr)]}

σn−1
H

+
∫
∂U

{〈[W̃H , W̃HS]T |t=0, η
〉 + (

divHS WHS + 〈CH νH ,WHS〉

− wHsc
H

)〈WHS,η〉}|pH ν|σn−2
R . (50)

Starting from (50) we may easily obtain the following general version of the second variation formula relatively to
arbitrary horizontal variations:

Corollary 4.25 (Horizontal 2nd variation). Under the hypotheses of Proposition 4.13 let us assume that
W ∈ C∞(S,H), W = wνH + WHS . Then we have:

IIU (W,σn−1
H ) =

∫
U

{
−Hsc

H

[
WH (w) + w

(
divHS WHS + 2〈CH νH ,WHS〉)]

+ |gradHS w|2 + w

[
w(2 Tr2 BH ) + Tr(BH ◦JHSWHS)

−
∑
α∈IV

〈
(2 gradHS �α − CτS

α ),CαWH

〉]}
σn−1

H

+
∫
∂U

{〈(−w gradHS w + [W̃ , W̃HS]|t=0
)
, η

〉
+ (

divHS WHS + 〈CH νH ,WHS〉 − wHsc
H

)〈WHS,η〉}|pH ν|σn−2
R . (51)

Proof. First, note that:

Tr
([JHSWH 0] ◦ C

) = Tr
([JHSWH 0] ◦ CH

) = 〈gradHS w,CH νH 〉 + Tr(JHSWHS ◦ CHS). (52)

We therefore have:

Tr
(
BH ◦ [JHSWHS]tr) + Tr

(
CHS ◦ [JHSWHS]tr)

=
∑

i,j∈IHS

(〈∇H
τi

τj , νH 〉〈gradHS wi, τj 〉 + 〈CHS gradHS wi, τi〉
)

=
∑

i,j∈IHS

〈gradHS wi, τj 〉
(
φj1(τi) − 〈τi,CHSτj 〉

)
=

∑
i,j∈IHS

τj (wi)φi1(τj )
(
by (i) of Lemma 3.12

)
= Tr(BH ◦JHSWHS). (53)



490 F. Montefalcone / J. Math. Pures Appl. 87 (2007) 453–494
Thus, we will get the thesis by using the following application of Theorem 3.17:∫
U

(
w �HSw + |gradHS w|2 + w 〈CH νH ,gradHS w〉)σn−1

H =
∫

∂U\C∂U

w 〈gradHS w,ηHS〉HS σn−2
H . (54)

Indeed, from (50), (52) and (53) we have:

IIU (W,σn−1
H ) =

∫
U

{
−Hsc

H

[
WH (w) + w

(
divHS WHS + 2〈CH νH ,WHS〉)]

+ w

[
−�HSw − 〈gradHS w,CH νH 〉 −

∑
α∈IV

〈
(2 gradHS �α − CτS

α ),CαWH

〉
+ w(2 Tr2 BH ) + Tr(BH ◦JHSWHS)

]}
σn−1

H

+
∫
∂U

{〈[W̃H , W̃HS]T |t=0, η
〉 + (

divHS WHS + 〈CH νH ,WHS〉 − wHsc
H

)〈WHS,η〉}|pH ν|σn−2
R

and the thesis follows by applying (54). �
Proof of Corollary 4.7. Starting from Corollary 4.25 the proof is quite immediate. Indeed, it is enough to substitute
WHS = 0 into (51). �
4.6. Proof of the main result: the case Hsc

H = const.

In this section we shall prove Theorem 4.8. To this aim we remark that the hypothesis that Hsc
H be constant along S

is crucial to obtain a more simple expression for the second variation formula of σn−1
H . In Appendix A, an analogous

remark will be made in the particular case that Hsc
H = 0.

Let us preliminarily set (Hsc
H )t := −∑

j∈IHS
φ1j (τj ) = ∑

j∈IHS
〈∇H

τj
τj , ν

t
H 〉 to denote the horizontal scalar mean

curvature of Ut = ϑt (U), t ∈ (−ε, ε).

Remark 4.26. If we assume that Hsc
H = const. along S, we immediately get that LXHsc

H = 0 along S whenever
X ∈ C∞(S,HS). If W denotes the variation vector of ϑ , we see that:

ı∗
(
LW̃HS

(Hsc
H )t

) = LWHS
Hsc

H = 0.

Analogously, we see that ı∗(LτS
α
(Hsc

H )t ) = LτS
α
Hsc

H = 0 (α ∈ IV ) and this implies that:

ı∗
(
Lτα (Hsc

H )t
) = ı∗

(
L�t

ανt
H
(Hsc

H )t
)

(α ∈ IV ). (55)

We have already noted (see Remark 4.14 in Section 4.4) that:

IIU (W,σn−1
H ) = IIInt.

U (W,σn−1
H ) + IIBound.

U (W,σn−1
H ). (56)

We stress that the hypothesis Hsc
H = const. can be used to compute the first addend in (56) in a slightly different way

with respect to what we have done in Section 4.4 throughout the proof of Proposition 4.13. More precisely, we have
the following

Claim 4.27. Let U be such that Hsc
H is constant. Then we have:

IIInt.
U (W,σn−1

H ) = IIInt.
U (w νH ,σn−1

H ) +
∫
U

{
−W(w) + w

∂w

∂νH

}
Hsc

H σn−1
H . (57)
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Proof of Claim 4.27. We remind the notations w := 〈W,ν〉
|pH ν| and wt := 〈W̃ ,νt 〉

|pH νt | . Note that the first addend in the first
variation formula (27) can be written as follows

I Int.
U (W,σn−1

H ) = −
∫
U

wHsc
H σn−1

H .

So we easily get that

IIInt.
U (W,σn−1

H ) =
∫
U

ı∗
{
LW̃

(−wt(Hsc
H )t (σ

n−1
H )t

)} =
∫
U

{
w(Hsc

H )2 − W(w)Hsc
H − wı∗

(
LW̃ (Hsc

H )t
)}

σn−1
H . (58)

Now we make use of Remark 4.26 to compute ı∗(LW̃ (Hsc
H )t ). Setting W⊥(HS) := w1νH + WV , we have:

ı∗
(
LW̃ (Hsc

H )t
) = ı∗

(
LW̃HS

(Hsc
H )t

) + ı∗
(
LW̃⊥(HS)

(Hsc
H )t

)
= LWHS

Hsc
H + ı∗

(
LW̃⊥(HS)

(Hsc
H )t

)
= ı∗

(
LW̃⊥(HS)

(Hsc
H )t

)
(by Remark 4.26)

= ı∗
(
Lw̃1ν

t
H
(Hsc

H )t
) +

∑
α∈IV

ı∗
(
Lw̃ατα (Hsc

H )t
)

= ı∗
(
Lw̃1ν

t
H
(Hsc

H )t
) +

∑
α∈IV

ı∗
(
Lw̃α� t

ανt
H
(Hsc

H )t
) (

by (55)
)

= ı∗
(
Lwt νt

H
(Hsc

H )t
)
. (59)

Therefore, from (58) we get:

IIInt.
U (W,σn−1

H ) =
∫
U

{
(wHsc

H )2 − W(w)Hsc
H − wı∗

(
Lwt νt

H
(Hsc

H )t
)}

σn−1
H ,

and the thesis easily follows by observing that:

IIInt.
U (w νH ,σn−1

H ) =
∫
U

{
(wHsc

H )2 − w
∂w

∂νH

Hsc
H − wı∗Lw νH

(Hsc
H )t

}
σn−1

H . �

Proof of Theorem 4.8. At this point the proof of Theorem 4.8 is very simple. Indeed, using (56) and Claim 4.27 we
get:

IIU (W,σn−1
H ) = IIInt.

U (W,σn−1
H ) + IIBound.

U (W,σn−1
H )

= IIInt.
U (w νH ,σn−1

H ) +
∫
U

{
−W(w) + w

∂w

∂νH

}
Hsc

H σn−1
H + IIBound.

U (W,σn−1
H ).

The first addend can be computed using Corollary 4.7 with w = 〈W,ν〉
|pH ν| , while the third addend has been already

computed in the general case; see (39) in Remark 4.15. Putting all together we therefore get:

IIU (W,σn−1
H ) =

∫
U

{
−Hsc

H w
∂w

∂νH

+
[
−W(w) + w

∂w

∂νH

]
Hsc

H

+ |gradHS w|2 + w2
[
(2 Tr2 BH ) −

∑
α∈IV

〈(
2 gradHS(�α) − CτS

α

)
,CανH

〉]}
σn−1

H

+
∫
∂U

{〈(−w gradHS w + [W̃ νt

, W̃ T ]T |t=0
)
, η

〉 |pH ν|

+ (
divT S

(|pH ν|WT
) −Hsc〈W,ν〉)〈WT ,η〉}σn−2
H R
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=
∫
U

{
−W(w)Hsc

H + |gradHS w|2 + w2
[
(2 Tr2 BH ) −

∑
α∈IV

〈(
2 gradHS(�α) − CτS

α

)
,CανH

〉]}
σn−1

H

+
∫
∂U

{〈(−w gradHS w + [W̃ νt

, W̃ T ]T |t=0
)
, η

〉 |pH ν|

+ (
divT S

(|pH ν|WT
) −Hsc

H 〈W,ν〉)〈WT ,η〉}σn−2
R .
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Appendix A. Remark about the case Hsc
H = 0

As before, let S ⊂ G be an immersed hypersurface and U ⊂ G be an open set having non-empty intersection
with S. Let U := U ∩ S be non-characteristic with smooth boundary ∂U and denote by ı the inclusion of U in G.
Assume that U is an extremal of the H -perimeter functional (25), so that its scalar horizontal mean curvature Hsc

H is
identically zero. We set:

SVU (X,Y ) := X d(Y dσn−1
H ) for X,Y ∈ X(G).

Lemma A.1. [24] With the previous hypotheses we have
∫
U ı∗(SVU (X,Y )) = 0 if either X or Y is tangent to U .

This lemma appears in [24] in a more general setting.20 Now we explicitly remark that if the variation vector W of
ϑ is compactly supported on U , we have:

IIU (W,σn−1
H ) =

∫
U

ı∗
(
SVU (W̃ , W̃ )

)
,

20 Proof of Lemma A.1. First note that, using standard properties of the Lie derivative and the hypothesis Hsc
H

= 0, it turns out that∫
U

ı∗
(
SVU (X,Y )

) =
∫
U

ı∗
(
SVU (Y,X)

) +
∫

∂U

ı∗∂U
(
Y X d(σn−1

H
)t

)
. (A.1)

Indeed:

ı∗
(
SVU (X,Y )

) = (
X d

(
Y d(σn−1

H
)t

))∣∣
U = (−[Y,X] d(σn−1

H
)t

)∣∣
U + (

LY

(
X d(σn−1

H
)t

))∣∣
U

= (−[Y,X] d(σn−1
H

)t
)∣∣
U + (

d
(
Y X d(σn−1

H
)t

))∣∣
U + ı∗

(
SVU (Y,X)

)
,

and the first addend is zero since U is an extremal of (25) (i.e. Hsc
H

= 0). So (A.1) follows using Stoke’s theorem. Now suppose that X is tangent

to U . We have SVU (X,Y ) = (LX(Y d(σn−1
H

)t ))|U −d(X Y (σn−1
H

)t )|U . Note that (Y d(σn−1
H

)t )|U = 0 again because U is an extremal
of (25); since X is tangent to U , we also get:

ı∗
(
LX

(
Y d(σn−1

H
)t

)) = (
LXı∗

(
Y d(σn−1

H
)t

)) = 0.

Then ∫
U

ı∗
(
SVU (X,Y )

) =
∫

∂U

ı∗∂U
(
Y X d(σn−1

H
)t

) = 0,

where the second equality follows because (Y d(σn−1
H

)t )|U = 0 and X is tangent to U . Finally, if Y is tangent to U , the right-hand side of (A.1)

vanishes because (X d(σn−1)t )|U = 0 and we may use the previous case. �

H
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where, as usual, W̃ denotes any extension of W to a neighborhood of Im(ϑ). Denote by W̃ ν the normal component of
W̃ along Ut = ϑt (U) and set w = 〈W,ν〉

|pH ν| . Therefore, using Lemma A.1 and arguing as in Claim 4.27 (see (59)) we get
that:

IIU (W,σn−1
H ) =

∫
U

ı∗
(
SVU (W̃ ν, W̃ ν)

) =
∫
U

−w ı∗
(
LW̃ (Hsc

H )t
)
σn−1

H

=
∫
U

−wı∗
(
Lwtν

t
H
(Hsc

H )t
)
σn−1

H .
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