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Abstract

In this paper we study smooth immersed non-characteristic submanifolds (with or without boundary) of k-step sub-Riemannian
Carnot groups, from a differential-geometric point of view. The methods of exterior differential forms and moving frames are
extensively used. Particular emphasis is given to the case of hypersurfaces. We state divergence-type theorems and integration by
parts formulas with respect to the intrinsic measure G;_’fl on hypersurfaces. General formulas for the first and the second variation
of the measure 01"1_1 are proved.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article nous étudions les sous-variétés non caractéristiques (avec ou sans bord) immergées dans un groupe de Carnot
sous-riemannien, selon le point de vue de la géométrie différentielle classique, en utilisant la méthode du repere mobile et le
formalisme des formes différentielles. En particulier, nous étudions le cas des variétés de codimension 1 en établissant des formules
de type divergence et d’intégration par parties par rapport a la mesure intrinséque Gl'ffl. Enfin, nous établissons des formules
générales pour les variations premiére et seconde de la mesure crl'fl_l.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Over the last years considerable efforts have been devoted to extending the methods of Analysis, Calculus of Vari-
ations and Geometric Measure Theory to general metric spaces. This type of study, in some sense already contained
in the classical Federer book’s [15], has received new stimuli, among the others, by the works of Ambrosio and
Kirchheim [2,3], Cheeger [8], De Giorgi [14], Gromov [22,23], David and Semmes [13], Pansu [39,40].
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In this respect, the so-called sub-Riemannian or Carnot—Carathéodory geometries have become of great interest.
The setting of sub-Riemannian geometry is that of a smooth manifold N endowed with a smooth non-integrable
distribution H C T N of h-planes, or horizontal subbundle (h is a constant less than dim N). Such a distribution is
endowed with a positive definite metric gy defined only on the subbundle H. The manifold N is said to be a Carnot—
Carathéodory space (abbreviated CC-space) when one considers the so-called CC-metric dy (see Definition 2.2).
With respect to this metric the only paths on the manifold which have finite length are tangent to the distribution H
and therefore called horizontal. Roughly speaking, for connecting two points we are only allowed to follow horizontal
paths joining them.

We would stress that sub-Riemannian geometry has many connections with many different areas of Mathematics
and Physics: Analysis, PDEs, Calculus of Variations, Control Theory, Mechanics, etc. For references, comments and
perspectives, we refer the reader to Montgomery’s book [38] and the surveys by Gromov [23], and Vershik and
Gershkovich [49]. We also mention, specifically for sub-Riemannian geometry [47], and the recent [42].

The geometric setting of this paper is that of Carnot groups. Roughly speaking, a Carnot group G is a nilpotent
and stratified Lie group endowed with a one-parameter family of dilations adapted to the stratification.

In sub-Riemannian geometry, Carnot groups are of special interest and one of the main reasons is that they consti-
tute a wide class of concrete examples of sub-Riemannian geometries.

Another reason comes from the fact that, by virtue of a theorem due to Mitchell (see [35,38]), the Gromov—
Hausdorfftangent cone at regular points of a sub-Riemannian manifold is a suitable Carnot group. This further justifies
the interest towards the study of Carnot groups, which play, for sub-Riemannian geometries, a similar role to that of
Euclidean spaces for Riemannian geometry.

The initial interest in developing Analysis and Geometric Measure Theory in this setting was the proof of the
existence of intrinsic isoperimetric inequalities, first proved in Pansu’s Thesis [39], for the case of the Heisenberg
group H'. For a survey of results about isoperimetric inequalities on Lie groups, see [48]. More recently, a new
impulse in this direction has come from a Rectifiability Theorem for sets of finite H-perimeter, obtained by Franchi,
Serapioni and Serra Cassano in [16], first in the case of Heisenberg groups and then generalized to the case of 2-step
Carnot groups; see [18].

For recent results on these topics and for more detailed bibliographic references, we shall refer the reader, for
instance, to [1,5,16-19,30,31,36,37].

Object of the present paper is the differential geometry of immersed hypersurfaces in Carnot groups. In particular,
we shall prove some variational formulas concerning the “intrinsic volume” of hypersurfaces.

The point of view adopted here is that of the classical differential geometry. In this respect, we stress that we
will extensively use moving frames and differential forms as a tool. For a somewhat different, but still differential-
geometric, approach to sub-Riemannian geometry, we refer to the articles [23,44], and [41,42].

As is common in differential geometry, we will study smooth submanifolds. We would remark that, since Carnot
groups are naturally equipped with a left-invariant Riemannian metric, they can also be naturally equipped with the
Levi-Civita connection related to such a metric. We will also introduce a notion of partial connection or horizontal
connection (see Definition 2.8), to bring to light some typically sub-Riemannian features.

In Section 2.2 we introduce some basic notions about hypersurfaces and submanifolds.

We stress that the submanifolds we consider are supposed to be geometrically H-regular (see Definition 2.23)
with respect to the horizontal distribution H, and equipped with homogeneous measures with respect to the intrinsic
Carnot dilations. In the case of the hypersurfaces, such measure coincides with the H-perimeter measure, extensively
studied in recent literature; see [1,5,16,17,19,30]. The idea here is to look at the H -perimeter measure of sets having
regular boundary, like a measure associated to a suitable (n — 1)-differential form crl';_l. In such a manner we can
use the formalism of differential forms to make computations. We then give some more general definitions for higher
codimensional submanifolds.

In Section 3, we introduce some geometrical basic notions aiming at studying non-characteristic hypersurfaces,
like for example the notion of sub-Riemannian horizontal I1* fundamental form and that of horizontal mean curvature
(see Definition 3.2).

In Section 3.2, we then illustrate and prove some integration by parts formulas on non-characteristic hypersurfaces
equipped with the measure o;’l_l.

Section 4 is entirely devoted to prove the formula for the /st variation and that of the 2nd variation of 01"{_1. The
last one is, of course, the main result of this paper. For precise statements, we refer to Section 4.3. These results
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have many consequences. As an example, we will show in Corollary 4.5 that smooth isoperimetric sets in Carnot
groups must have constant horizontal mean curvature. Actually, these formulae are basic tools in many problems, as
for instance, in studying the sub-Riemannian minimal surfaces equation, that is the object of a great deal of recent
study; see [20,12,28,43,9].

We would like to stress that the methods used in this paper are general enough to be used also in at least two
different ways. Indeed we could use them not only to generalize our results to the case of higher codimensional
submanifolds of Carnot groups but also to study hypersurfaces and, more generally, submanifolds in the setting of
equiregular CC-spaces in the sense of Gromov’s definition; see [22] and [42].

2. Carnot groups, submanifolds and measures
2.1. Sub-Riemannian geometry of Carnot groups

In this section, we will introduce the definitions and the main features concerning the sub-Riemannian geometry
of Carnot groups. References for this subject are, for instance, [5,19,21-23,30,35,38-42,47].

First, let us consider a C*°-smooth connected rn-dimensional manifold N and let H C TN be a hj-dimensional
smooth subbundle of TN. For any p € N, let TI’,‘ denote the vector subspace of T, N spanned by a local basis of
smooth vector fields X (p), ..., X, (p) for the subbundle H around p, together with all commutators of these vector
fields of order < k. The subbundle H is called generic if for all p € N dim TI’,‘ is independent of the point p and
horizontal if Tlf = TN for some k € N. The pair (N, H) is a k-step CC-space if is generic and horizontal and if
k ;= inf{r: Tlf = T N}. In this case, we have that

0=T°cH=T'cT?C---cT"=TN (1)

is a strictly increasing filtration of subbundles of constant dimensions n; := dimT? (i = 1,...,k). Setting
(Hi)p = Ti\ Ti™, then gx(T,N) := @}_,(Hy), is the associated graded Lie algebra, at the point p € N,
with Lie product induced by [-,-]. Moreover, we shall set #; := dim H; = n; — nj—1 (ngp = hg = 0). The k-vector
h = (hy, ..., hg) is called the growth vector of H. Notice that every H; is a smooth subbundle of the tangent bundle
7:TN — N,ie. mp, :H — N,where iy, =n|p, (i=1,...,k).

Definition 2.1. We will call graded frame X = {X1, ..., X,,} for N, any frame for N such that, for any p € N we have
that {X;,(p): nj—1 <ij <nj},isabasisfor H;, (j=1,...,k).

Definition 2.2. A sub-Riemannian metric gg = (-,-)g on N is a symmetric positive bilinear form on H. If (N, H) is
a CC-space, then the CC-distance dy (p, q) between p, g € N is

di(p.q) :=inff\/<y',y'>ﬁdr,

where the infimum is taken over all piecewise-smooth horizontal paths y joining p to gq.

In fact, Chow’s theorem (see [22,38]) implies that dy is actually a metric on N, since any two points can be joined
with (at least one) horizontal path; moreover the topology induced by the CC-metric turns out to be compatible with
the given topology of N.

The general setting introduced above is the starting point of sub-Riemannian geometry. A nice and very large class
of examples of these geometries is represented by Carnot groups which for many reasons play, in sub-Riemannian
geometry, an analogous role to that of Euclidean spaces in Riemannian geometry. Below we will introduce their
main features. For an introduction to the following topics, we suggest Helgason’s book [26], and the survey paper
by Milnor [33], regarding the geometry of Lie groups, and Gromov [22], Pansu [40,42], and Montgomery [38],
specifically for sub-Riemannian geometry.

A k-step Carnot group (G, e) is a n-dimensional, connected, simply connected, nilpotent and stratified Lie group
(w.r.t. the multiplication e) whose Lie algebra g(= R") satisfies:

g=H\® ---®H,, [H,H_1l=H (@(=2,....k), H1={0} 2
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We shall denote by 0 the identity on G so that g = TyG. The smooth subbundle H; of the tangent bundle 7'G is said
horizontal and henceforth denoted by H. We will set V := H, @ --- @ Hy and call V the vertical subbundle of TG.
As before, we will assume that dim H; = h; (i = 1,...,k) and that H is generated by some basis of left-invariant
horizontal vector fields Xy := {X1, ..., Xp,}. This one can be completed to a global basis (frame) of left-invariant
sections of TG, X :={X;: i =1, ..., n}, which is graded or adapted to the stratification. We set nj :=hy +---+ I
(ng =ho :=0, ny =n), and

H; = spanp{X;: nj—1 <i <ny}.

Note that the canonical basis {e;: i =1, ...,n} of R" = g can be relabeled in such a way that it turns out to be adapted
to the stratification. In this way, any vector field X; of the frame X is given by X;, := L. e; (i =1,...,n).

Notation 2.3. In the sequel, we shall set Iy := {1, ..., b1}, Iy, :={h1+1,...,no(=h1+h2)}, ..., Iy = {ng—1+1,

...,ng(=n)},and Iv :={h1 + 1, ..., n}. Moreover, we will use Latin letters i, j, k, ..., for indices belonging to Iy
and Greek letters «, 8, y, ..., for indices belonging to Iy . Unless otherwise specified, capital Latin letters I, J, K, ... .,
may denote any generic index. Finally, we define the function ord: {1, ...,n} — {1, ..., k} by ord() :=i if, and only

if,ni_1<I<n; (i=1,...,k).

If pe Gand X € g we set ylf () :=expltX1(p) (t eR), 1i.e. )/If is the integral curve of X starting from p and it is
a l-parameter sub-group of G. The Lie group exponential map is then defined by:

exp:g—> G, exp(X):=exp[X](1).

It turns out that exp is an analytic diffeomorphism between g and G whose inverse will be denoted by log. Moreover,
we have:

vy (t)=peexp(tX) VieR.

From now on we shall fix on G the so-called exponential coordinates of 1st kind, i.e. the coordinates associated to the
map log.

As for any nilpotent Lie group, the Baker—Campbell-Hausdorff formula (see [10]) uniquely determines the group
multiplication e of G, from the “structure” of its own Lie algebra g. In fact, one has,

exp(X)eexp(Y) =exp(XxY) (X,Y €g),
where x: g X g — g is the Baker—Campbell-Hausdorff product defined by:

XxY=X+Y+ %[X, Y1+ 1—12[X, [X, Y]] — 1—12[Y, [X, Y]] + brackets of length > 3. 3)

Using exponential coordinates, (3) implies that the group multiplication e of G is polynomial and explic-
itly computable (see [10]). Moreover, 0 = exp(0,...,0) and the inverse of p € G (p = exp(p1,...,pn)) is
pil = exp(_Pl, s _pn)~

When we endow the horizontal subbundle with a metric gy = (-,-) g, we say that G has a sub-Riemannian struc-
ture. Is important to note that it is always possible to define a left-invariant Riemannian metric g = (-,-) in such a way
that the frame X turns out to be orthonormal and such that g|y = gg. For this, it is enough to choose a Euclidean
metric on g = ToG which can be left-translated to the whole tangent bundle. This way, the direct sum (2) becomes an
orthogonal direct sum.

Since for Carnot groups the hypotheses of Chow’s theorem trivially apply, the Carnot—Carathéodory distance dg
associated with gy can be defined as before, and dy makes G a complete metric space in which every couple of
points can be joined by (at least) one dpy-geodesic.

We remark that Carnot groups are homogeneous groups (see [46]), i.e. they are equipped with a 1-parameter group
of automorphisms §; : G — G (¢ > 0). In exponential coordinates, we have:

St p =exp(thp,~jeij>,

Joij
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for all p =exp(}_ ji; Pijei;) € G.2 The homogeneous dimension of G is the integer Q := Zle ih;, coinciding with
the Hausdorff dimension of (G, dg) as a metric space; see [35,38,22].

The introduction of a Riemannian metric will allow us to study Carnot groups in a Riemannian way. To this end,

we define the left-invariant co-frame w := {w;: I =1,...,n} dual to X. In particular, the left-invariant 1-forms’ w;

are uniquely determined by the condition
wr(Xy)=(X7,Xy) :811 (Kronecker) (I, J =1,...,n).

We remind that the structural constants of the Lie algebra g associated with the (left invariant) frame X are defined
by:

Y =(X1, Xs1, Xg) (L, R=1,...,n).

They satisfy the customary properties:

1) Cgfj + C9§1 = 0 (skew-symmetry),
(i) Y , C8L, CO%yy +C8L,C8) €8 94, =0 (Jacobi’s identity).
The stratification hypothesis on the Lie algebra implies the following further property:
X;€Hy, X;€Hy = [Xi,X;)€ Him. (4)
Therefore, if i € Iy, and j € Iy, , one has:

Cg:';;éO = mely,,. (5)
Definition 2.4. Throughout this paper we shall make use of the following notation:

(1) C?-] = [Cg%']i,jely € Mh]xh| (R) (d € IHz)a
(i) C*:=[C%,11,u=1,..n € Mpsn(R) ( € Iv).

.....

The linear operators associated with these matrices will be denoted in the same manner.

Definition 2.5. The ith curvature of the distribution H (i =1, ..., k) is the (antisymmetric, bilinear) map,
2 HQ®H — Hi11, 2p,(X®Y):=[X,Y]mod T! VX eH, VY cH,.

Obviously, we have that £2, (-,-) = 0, by definition of k-step Carnot group.

Since the bracket map [-,-]: H ® H; — H;4+1 (i =1,..., k) is surjective, this definition turns out to be well posed.
Notice that the 1st curvature 2y (-,-) 1= §2g, (-,-) of H is the customary curvature of a distribution; see [21,23,38].

Notation 2.6. If Y € TG let us denote by ¥ = (Y1, ..., Y) its canonical decomposition with respect to the grading of
the tangent space, i.e. ¥ = Zf‘: 1 PH;(Y), where py, denotes the orthogonal projection onto H; (i =1,..., k). Then
we set Qv (X, Y):= Zi:ll 2p(X,Y))for X e Hand Y € TG.

Lemma 2.7.Let X € H and Y, Z € TG. Then we have:

(i) (QuX,Y),Z)=~— Zae]Hz 2 (CHX, Y);

(i) (v(X,Y),Z)=—3 e, 2a(C*X,Y).

2 Here, je{1,..., kyandij eIy, ={nj_1+1..., nj}.
3 That is, Lyor =y forevery p € G.
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Proof. The proof is an immediate consequence of Definitions 2.5 and 2.4. O

In the sequel, we will give a quite general definition of connection which recovers the definitions of Riemannian,
partial and non-holonomic connections. Classical notions of connection (linear, affine or Riemannian) and related
topics can be found in [26,27] and [45]. Partial connections was introduced by Z. Ge in [21]; see also [23]. Non-
holonomic connections were first used by E. Cartan in his studies on non-holonomic mechanics and then in a great
number of works of the Russian school; see the survey by Vershik and Gershkovich [49], and also [29].

Definition 2.8. Let N be a C*° smooth manifold and let 7g : E — N, 7w : F — N be smooth subbundles of TN.
An E-connection VE-F) on F is a rule which assigns to each vector field X € C®(N, E) an R-linear transformation

V;(EsF) :C®(N, F) = C*®(N, F) such that

@) v}@ﬁ;yz = vz 4+ evED7Z VX, Y € CO(N, E)VZ € CO(N, F),
Vf. g € C¥(N);
i vy = pvEDY 4+ (Xf)Y VX, Y € CO(N, E) Vf € CO(N).
If E = F we shall set VE := V(£.E) and call VE an E-connection. Any such connection will be called a partial

connection of TN.If E = TN, then V"N-F) is called a non-holonomic F-connection.* If E has a positive definite
inner product gg, then an E-connection V¥ is said metric preserving if

(iii) Zg (X, Y) =gp(V5X.Y) + ge(X,VLY) VX.Y,ZeC™(N,E).
The forsion T associated to the E-connection V£ is defined by:
Te(X,Y):=VEY —VEX — pg[X,Y] VX,Y e C®(N, E),

where pg: TN — E denotes the orthogonal projection onto E. An E-connection is torsion free if Tg(X,Y) =0 for
every X,Y € C°(N, E). We shall say that V¥ is the Levi-Civita E-connection on E if it is metric preserving and
torsion-free. Note that if E = T N, terminology and definitions adopted here are the customary ones and, in this case,
we will denote by V the (univocally determined) Levi-Civita connection on T N with respect to the canonical metric g
on N.

We stress that the difference between the definitions of partial and non-holonomic connection is that the latter
allows us to covariantly differentiate along any curve of N whereas using the first one only curves that are tangent to
the subbundle E can be considered.

Definition 2.9. Henceforth, we shall denote by V the (unique) left-invariant Levi-Civita connection on G associated
with g. Moreover, if X, Y € C*(G, H)(:= X(H)), we shall set VJF(IY = pu(VxY). We stress that VH isan example
of partial connection, called horizontal H-connection. For notational convenience, in the sequel we will denote by the
same symbol the non-holonomic connection on G, i.e. VH = vT'G.H),

Remark 2.10. From Definition 2.9, using the properties of the structural constants of any Levi-Civita connection, we
get that the horizontal connection VH is flat, i.e.
Vi X;=0 (i.jeln).
Note that the horizontal connection V¥ is compatible with the sub-Riemannian metric gy, i.e.
X(Y, Zyy =(VEY, Z)yu + (Y, VB Z)y VX,Y,Z e X(H).

This follows immediately from the very definition of V¥, by using the analogous property of the Levi-Civita
connection V on G. Furthermore, V¥ is torsion-free, i.e.

VHY —VIX — pulX,Y1=0 VX,Y e X(H).

4 This definition recovers the usual one of “vector bundle connection” (see [34]) where instead of a generic vector bundle 7 : F — N we make
use of a subbundle of the tangent bundle.
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Definition 2.11. If € C*°(G) we define the horizontal gradient of , grady ¥, as the (unique) horizontal vector
field such that
(grady ¢, X)g =dy (X)) =Xy VX e X(H).
We will call horizontal divergence of X € X(H), divy X, the function given, at each point p € G by:
divy X (p) :=Trace(Y — VE# X)(p) (Y € H)).

Later on, we will denote by Jy the Jacobian matrix of a vector-valued function, computed with respect to a given
orthonormal frame z y; = {1, ..., 7, } for H.

For what concerns the theory of connections on Lie group and left-invariant differential forms, see [26]. Moreover,
for many topics about the geometry of nilpotent Lie groups equipped with a left-invariant connection, see [33].
The Cartan’s structure equations for the left-invariant co-frame w are given by:

n

n
D doy =Y oy re;, (Mdojx=)Y ojprok -2k LJLK=1,..n),
J=1 L=1

where wy7(X) = (Vx X1, X ;) are the connection 1-forms for w while §2jk are the curvature 2-forms, defined by:
2kX.Y)=0g(RX,1)X;) (X.Y€XG)).
Here and in the sequel, R will denote the Riemannian curvature tensor, defined by:
R(X,Y)Z:=VyVxZ —-VxVyZ—-Viyx1Z (X,Y.Z€X(G)).

Both the connection 1-forms w;; and the curvature 2-forms §2;; are skew-symmetric in the lower indices. We explic-
itly remark that, with respect to the global frame X = {X}, ..., X,} of left-invariant vector fields on G, it turns out
that (see, for instance, [33]):

¢ R I J
Vx Xy =3 D (€, = CYp+CO% DXk (LT =1,....n). (6)
R=1
In the sequel, by using this formula and condition (4), we will perform explicit computations in terms of the structural
constants. For instance, from (6) it follows that the 1st structure equation for the coframe w, becomes:

1
dog = —5 Y W orne; (Relg={jini_1<j<n} i=1...k). (7)
1<1,J<ni—)

We end this section with some examples.

Example 2.12 (Heisenberg group H"). Let b, := ToH" = R?**! denote the Lie algebra of the Heisenberg group H"
that is an important example of 2-step Carnot group. Its Lie algebra b, is defined by the rules,

lei,eitn]l =€2041 (i =1,...,n),

and all other commutators are zero. We have b, = H @ Rey,41 where H = spang{e;: i =1, ..., 2n}. In particular,
the 2nd layer of the grading Re,, 4 is the center of the Lie algebra b,. These conditions determine the group law e
via the Baker—Campbell-Hausdorff formula. More precisely, if p, g € H", then

1 n
peq= eXp(pl Fq1s s Pon Tt Gons Pantt + Gt 5 Z(piqi-‘rn - Pi+nqi)>-

i=1
Example 2.13 (Engel group E'). The Engel group is a simple but very important example of 3-step Carnot group;
see, for instance, [38]. Its Lie algebra ¢ is 4-dimensional and is defined by the rules,

[e1,e2] =e3, [e1,e3]=[ez,e3] =eq4,

and all other commutators vanish. We have ¢ = H @ Re3; @ Re4, where H = spang{e;, €2} and the center of the Lie
algebra e is Rey.
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2.2. Hypersurfaces, H-regular submanifolds and measures

Throughout this paper we shall use many properties of differential forms for which we refer the reader, for instance,
to [15,27,26,45].

In the sequel, H;, and SZ; will denote, respectively, the usual and the spherical® m-dimensional Hausdorff measures
on G associated with dy, while Hg' will denote the (Euclidean) m-dimensional Hausdorff measure on R" = G.
The (left-invariant) Riemannian volume form on G is defined as

op =A]_jw; € A"(TG).
Remark 2.14. By integrating o, we obtain a measure vol,, which is the so-called Haar measure of G. Since
the determinant of L, is equal to I, this measure equals the measure induced on G by the push-forward of the
n-dimensional Lebesgue measure £ on R" = g. Moreover, up to a constant multiple, vol’, equals the Q-dimensional
Hausdorff measure HCQC on G. This follows because they are both Haar measures for the group and therefore they are
equal, up to a constant; see [38]. Here we assume this constant equal to 1.

In this paper we are mainly interested to the study of codimension 1 immersed’ sub-manifolds (or hypersurfaces)
of Carnot groups. Note that any hypersurface S C R"(Z g) is identified, by means of the exponential map, with a
hypersurface of G, i.e. S =ZexpS. A hypersurface S is C"-regular (r =1, ..., 00), if S is C"-regular as a Euclidean
submanifold of R".

In the study of hypersurfaces of Carnot groups we have to introduce the notion of characteristic point.

Definition 2.15. If S C G is a C"-regular (r =1, ..., 0c0) hypersurface, we say that S is characteristic at p € S if
dim H, = dim(H, N T,S) or, equivalently, if H, C T, S. The characteristic set of S is denoted by Cy, i.e.

Cs:={peS: dimH,=dim(H, NT,5)}.

A hypersurface S C G, oriented by its unit normal vector v, is non-characteristic if, and only if, the horizontal
subbundle H is transversal to S (H th T S). We have then,

H,hT,S <<= ppvpy#0 < 3IXeX(H): (Xp,vp)#0,

for all p € S, where py : TG — H denotes the orthogonal projection onto H.

Remark 2.16. (Hausdorff measure of Cs; see [30].) If S C G is a Cl-regular hypersurface, then the
(Q — 1)-dimensional Hausdorff measure associated with dy of the characteristic set Cy is zero, i.e.

HE 1 (Cs) =0.

5 We remind that
(i) Hee(S) =limg_, o+ HY, 5(S) where, up to a constant multiple,

Hie 5(5) :inf{Z(diamH(Ci))m: Sc UC,-; diamg (C;) < 8},
i i
and the infimum is taken with respect to any non-empty family of closed subsets {C;}; C G;
(i) Sge(S) =limg_, o+ ng.(g(S) where, up to a constant multiple,
St s(S)= inf{Z(diamH(B,-))m: sc|JBi; diamy (B;) < 3},
i i

and the infimum is taken with respect to closed d g -balls B;.

6 Here and in the sequel, G is identified with R” by means of the exponential map.

7 If N is a manifold, then an immersed m-submanifold of N is a subset M™ C N endowed with a m-manifold topology (not necessarily the
subspace topology) together with a smooth structure such that the inclusion : : M — N is a smooth immersion (i.e. the push-forward 1 is injective
at each point, or equivalently, rank 7y, = m).
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Remark 2.17 (Riemannian measure on hypersurfaces). Let S C G be a C"-regular hypersurface and let v denote the
unit normal vector along S. By definition, the (n — 1)-dimensional Riemannian measure along S is given by:

—1
op L Si=@Wwldop)ls, (8)
where _| denotes the “contraction” (or interior product) of a differential form.®

Since we shall study regular hypersurfaces, instead of the usual definition of H-perimeter measure’ we now

introduce a (n — 1)-differential form which, by integration, coincides with the H-perimeter measure.

Definition 2.18 ( 01”1_1 -measure on hypersurfaces). Let S C G be a C"-regular non-characteristic hypersurface and let
us denote by v its unit normal vector. We will call H-normal along S, the normalized projection onto H of v, i.e.
._ PbHVY
H = .
lpEV]
1

We then define the (n — 1)-dimensional measure U;‘f along S to be the measure associated with the

(n — 1)-differential form 01"[1 e A"HTS) given by the contraction of the volume form 07’% of G with the hori-
zontal unit normal vy, i.e.

op 'L S = (v o). ©)

If we allow S to have characteristic points we may trivially extend the definition of gl’;*‘ by setting Ulr;l L Cg=0.
Notice also that o, 'L S = [pyv|-ofs ' LS.

From this definition, we obtain:
. . o R
o 'L S=> v (Xi dof)ls= Y (D)@ A AD A Ao,
iely iely

where v;, = (vh, X;) (i € Ig). In the sequel, we will frequently use the next elementary lemma.

Lemma 2.19. If S C G be a smooth non-characteristic hypersurface, then for every X € HS we have
(X dogp)ls=0.

Proof. Since X € HS(C TS), we have (X, v) =0 and (8) implies (X | o5)[s = (X, v)a7"{1 ls=0. O

The comparison among different notions of measures on submanifolds, is an interesting problem of the Geometric
Measure Theory of Carnot—Carathéodory spaces. In the case of smooth hypersurfaces in Carnot groups, the problem
is to compare the H-perimeter measure with the (Q — 1)-dimensional Hausdorff measure associated with either the
cc-distance dy or with some suitable homogeneous distance. In general, thanks to a remarkable density estimate
for 01”1_1 proved in [1], we have the following:

8 The linear map _| : AK(TG) — AK—1(TG) is defined, for X € TG and ¥ € AK(TG), by (X _| ) (Y|, ..., Y1) =K (X, Yy, ..., Y1)
see [26,15].
9 LetU CGbe openand f € LY (U). Then f has H-bounded variation in U if

IVH £y ) ::sup{/fdivH YdL": Y e CY(U, H), Y]y <1} < oo.
U

Let HBV(U) denote the vector space of bounded H -variation in U. From Riesz’s theorem it follows that \VH flg is a Radon measure on U and
that there exists a horizontal IVHfIH—measurable section vy such that |v¢|y =1 for IVHf\H—a.e. p € U and that

/fdivH ydc! =/(Y, v g dVE flg vy ecClw, m).
U U

We say that a measurable set E C G has finite H-perimeter in U if xg € HBV(U). The H-perimeter of E in U is the Radon measure
[0E|g(U) = \VHXE\H(U). We call generalized unit H-normal along 0 E the Radon R measure VE 1= —Vy; see [1,5,16-19].
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Theorem 2.20. If S C G is a C'-regular hypersurface which is locally the boundary of an open set E having (locally)
finite H-perimeter (see footnote 9), then

10E|1(B) =k, ,(vp)SE™'L(SNB) VB e Bor(G), (10)

where k, | is a function depending on vy, called metric factor; see [30]. Ir is important to stress that
[0E|g(B) = GZ_I L (S N B) because of the regularity of 0E.

A proof of this theorem can be found in [30].

Remark 2.21. We would explicitly notice that

ol (snU) = / X LR -+ Xy ne) B dHE (11)
SNU

where 7¢ denotes unit Euclidean normal along S,'0 and that its unit H-normal is given by:
(X1, ne)Rn, ..oy (Xpy, ne)RA)
\/(Xla ne)]len + o + (X/’ll 9 ne)%{n

Here, the Euclidean normal n, along S and the vector fields X; (i € Iy) of the horizontal left-invariant frame X g, are
thought of as vectors in R” = G, endowed with its canonical inner product (-,-)r=. We note that the (RiemanniaT) unit
normal v along S may be represented with respect to the global left-invariant frame X for G, in terms of the Euclidean
normal ne. More precisely, we have:

Vg =

(Lp oexp),ne(log p)
[(Lp oexp), ne(log p)l
where L, (q) =[X1(q), ..., Xa(@)] € Myusn(R) (p,q € G).

v(p) = (pesScG),

Definition 2.22. If vy is the horizontal unit normal along S, at each regular point p € S\ Cs one has that
H, = (vy)p, ® Hp,S, where we have set:
H,S:=H,NT,S.

We call H),S the horizontal tangent space at p along S. Moreover, we define in the obvious way the associated
subbundles HS(C T'S) and vy S, called, respectively, horizontal tangent bundle and horizontal normal bundle of S.

If we consider an immersed submanifold "~/ C G of codimension i > 1, the above construction can be general-
ized in the following way.

Definition 2.23. We say that a codimension i submanifold §"~ of G is geometrically H-regular at p € S if there
exist linearly independent vectors v}i, ...,V € H) transversal along S at p. Without loss of generality, we may also
suppose that these vectors be orthonormal at p. The horizontal tangent space at p is defined by:

H,S:=H,NT,S.
If this condition is independent of the point p € S, we say that S is geometrically H -regular. In such case we may de-

fine the associated vector bundles HS(C T'S) and vy S, called, respectively, horizontal tangent bundle and horizontal
normal bundle. Therefore, one has

Hy=H,S®Rv, @ - - 0oRv,.

10 1f § c R" has a C’ -parametrization, @ : B C R"=1 — R", then we have:
43
I(DSI ARERWAN @En—l ‘]R"

AN NP,
ne(@(©)) =% =
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Deﬁ_nition 2.24 (Characteristic set of $"—1). The characteristic set Cs of a C!-smooth i-codimensional submanifold
S§"t C G is defined by

Cs:={peS:dimH, —dimH,NT,S) <i—1}.
Remark 2.25 (Hausdorff measure of Cgu-i ). The above definition of Cg has been used in [31], where it was shown

that every C!-smooth submanifold $"~ c G has zero (Q — i)-dimensional Hausdorff measure, with respect to dgy,
1.€.

HE™(Cs) =0.
Definition 2.26 ( Uz_i-measure on geometrically H-regular submanifolds). Let S"~' C G be a geometrically
H -regular submanifold of codimension i. Let v }1, e v}_l € vy S and assume that they are everywhere orthonormal.
We set:

vy = v}i Ao A vi, e A(TG),
and define the (n — i)-dimensional measure ol’fl_i along S to be the measure associated with the (n — i)-differential

form ol';*i € A"7I(T'S) given by the interior product of the volume form of G with the i-vector vy, i.e.!!

ol L S = (v Job)ls. (12)

Remark 2.27. The measure az_i is homogeneous of degree Q — i with respect to Carnot dilations {4;};~0,
ie. 6;“0}_1[" = tQ”'o}_’f’.. This fact easily follows from the definitions. Moreover, it can be proved that the mea-
sure o;‘I_i restricted to any geometrically H-regular submanifold $”~/ equals, up to a normalization constant, the
(Q —i)-dimensional Hausdorff measure computed with respect to a some homogeneous distance on G. Here, instead
of proving the last statement, we shall refer the reader to the recent paper [32], where similar results are proved.

3. Geometry of H S and calculus on hypersurfaces

In this section we will study non-characteristic hypersurfaces, or equivalently, non-characteristic domains of a
given hypersurface S. Some of the notions that we shall develop has been recently studied in [4,9,20,43,28,11,12].

We remark that, if V7S denotes the induced connection on S from the Levi-Civita connection V on G,'2 then V7§
induces a partial connection VHS associated with the subbundle H S of TS, defined as follows!3:

VHSY .= pus(VESY) (X, Y € HS).

Starting from the orthogonal decomposition H = HS @ vy S (see Definition 2.22), we could also define V#5 by
mimicking the usual definition of “induced connection” on submanifolds (see, for instance, [6]). Indeed, it turns out
that

VHSY =iy — (VEY, vu)uve (X, Y € HS).
Definition 3.1. We will call HS-gradient of yy € C*°(S) the unique horizontal tangent section of HS, grady¢ ¥,
satisfying
(gradyg ¥, X)ps=dy(X) =Xy VX eHS.
We will denote by divy s the divergence operator on H S, i.e.if X € HS and p € S, then

divirs X (p) := Trace(Y — VIS X)(p) (Y € H,S).

1" For the general definition of the operation _| see [15], Chapter 1.
12 Therefore, VTS is the Levi-Civita connection on S (see [6]).
13 The map pys:TS— HS denotes the orthogonal projection of 7S onto H S.
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We will also denote by Ay the HS-Laplacian, i.e. the 2nd order differential operator given by:

Apsy =divgs(gradyg¥) (¥ € CF(9)). (13)
Finally, we will denote by Jg s the Jacobian matrix of any vector-valued function, computed with respect to any given
orthonormal frame THS = {2, ..., T, } for the subbundle HS.

Definition 3.2. We will call sub-Riemannian horizontal IInd fundamental form of S the map By : HS x HS — vy S
given by:

Bu(X.Y):=(VEY vy)yvy (X.Y € HS).

Moreover we _Will denote by Hy € vy S the horizontal mean curvature vector of S, defined as the trace of By,
i.e. Hg = Tr By. The horizontal scalar mean curvature of S, denoted by H;j is defined by Hﬁ = (Hy,vH)H.
Finally, we shall set:

By(X,Y):=(VEY,vu)y (X,Y € HS).

Note that, in the previous definition, the trace Tr is computed with respect to the 1st sub-Riemannian fundamental
form gy s = (-,-) us, which is the restriction to S of the metric gy, i.e. gns :=gulus = glHs-

By arguing as in the Riemannian case, we may prove that By (X, Y) is a C*°(S)-bilinear form in X and Y. More
importantly, in general, By is not symmetric. The reason is the following: symmetry of By is easily seen to be
equivalent to the following condition:

X,YeHS = pyl[X,Y]€HS.

But this condition fails to be true, in general. As a matter of fact, this is trivially true in the case of the Heisenberg
group H!, being HS a 1-dimensional subbundle of TS, for any given non-characteristic surface S ¢ H'. But, for
example, the condition fails to hold, in general, in the case of H" (n > 1), as it can be easily proved, by using a
dimensional argument.

According with Definition 2.8, we may give the following:

Definition 3.3. We define the torsion T g of the partial H S-connection V#5 by

Tus(X,Y):=VHSy - VISX — py[X, Y] (X,Y € HS).

From this definition, it follows immediately that for every X, Y € X(H S) one has:
Tus(X,Y)=Bu(Y,X)— Bu(X,Y)=(pulY. X, VH)HVH.

Note also that the mapping HS > X — V)I;I vy is, in fact, the sub-Riemannian analogous of the usual Weingarten
map; see [27], Chapter 2. In the case of hypersurfaces, using the compatibility of V7 with the metric gz, we get that
(V}IZ VH)p € H,S. Indeed, by differentiating the identity |vH|2 =1, we obtain:

X (v, v =2(Vvu,ve) =0.

In the sequel, if U C G is open, we will set U := U N S. Moreover we will assume that I/ is non-characteristic.
We now introduce the notion of adapted frame, that will be used extensively throughout this paper. Roughly speaking,
we shall “adapt” in the usual Riemannian way (see [45]) an orthonormal frame to the horizontal tangent space of a
hypersurface.

Definition 3.4. We will call adapted frame to U on U any orthonormal frame on U t := (7y, ..., T,) such that

) tily :==vy; (i) HU = span{(tg),,, e, (thl),,} (peld); (i) 1y :=Xg.

Remark 3.5. Let GL(R') be the general linear group acting on R’ (i = 1, ...,k) which we identify with the i-th
layer H; of g = gr(TG) = R”". We stress that any graded frame for G is naturally identified with an element of the
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k
subgroup]4 GL;, := X i=1 GL(R") of GL(R"). Using matrix notation, any element A € GLy,(R") is then a block
diagonal matrix, i.e. A, =diag[Ap,, ..., Ap, ]. Furthermore, any graded orthonormal basis of g may be identified with

k
an element of the subgroup Oy (R") := X i=1 O(R") of O(R"); see Definition 2.1.

Every adapted orthonormal frame to a hypersurface is a graded frame. In particular, given an adapted frame t for
on U, then at every p € U C S, there exists an orthogonal matrix,

An(p)=[A](M)]; , €0u®) (I, J=1,....m),

expressing the linear change of coordinates from the fixed left-invariant orthonormal frame X to the adapted one ©
such that

n
u(p) =) Al(p)X; U=1...n).
J=1
Given an adapted frame 7, we will denote by Q = (@1, ..., Pn), its dual co-frame. This means that
o1 (ty) =(SIJ (Kronecker) (I, J =1, ...,n).

Clearly, ¢ satisfies its own Cartan’s structural equations:

D dpr=Y ¢rsn¢s, (Ddpsx=Yy ¢ Aprk—Psx (LI K=1,....n),

J=1 L=1

where ¢;;(X) := (Vx1y, 1) are the connection 1-forms for the co-frame ¢ and @k denote its curvature 2-forms,
defined by:

Dk (X, Y)=¢x(RIX, V1)) (X,Y €X(G)).
We have a basic identity between connection 1-forms and structural constants of z, i.e.
C1Kj=¢JK(fI)—¢1K(TJ) (I,J,K=1,...,n). (14)

This can easily be proved using the fact that V is torsion-free.
Notation 3.6. In the sequel, we shall frequently use the following notations:

(i) @y =g (@ely);
(i) w:= Zae]v WaTa;
(iii) Cg := Zaelyz o CYs
@iv) C:= Zaelv w,CY.

Moreover, for any a € Ip,, we shall set C; ¢ := C|ns to stress the fact that the linear operator Cf; ¢ only acts on

horizontal tangent vectors, i.e. (Cy¢)ij := (C{ ), 7)) for i, j € Iys. Consequently, we set Cpyg := Zaele @ Clg-

Remark 3.7. The horizontal mean curvature vector Hy can equivalently be written as follows:
H ‘
Hyg =— Z (Vi v, Tj)usve = — Z ¢1(tj))vy =HyvE.
je€lpys Jj€luys

We note that the symmetry of the sub-Riemannian horizontal //* fundamental form would be equivalent to the
symmetry of the connection 1-forms, i.e. ¢1;(7;) = ¢1;(rj) (i, j € Igs). As already said, this is false, in general.

14 The symbol “x”” means direct product of groups.
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Indeed, using the symmetry of the Riemannian //* fundamental form and writing the unit normal vector along S w.r.t.
7,i.e.v=v17] + Zaelv Vo Ta, WE see that

1 (tj) = ¢1;(Ti) + Z o (ChgTin Tj)us = ¢1(t) + (Custi, tj)us (i, j €lns).

O{EIHz

Therefore By can be seen as a sum of two matrices, one symmetric and the other skew-symmetric, i.e.
By = Sy + Ag, where the skew-symmetric matrix Ag is explicitly given by Ay = %C Hs.

3.1. Some preliminaries

The following lemma will be a useful tool in proving the second variation formula of al’?l .
Lemma 3.8. Let S C G be an immersed hypersurface and let U C G be an open set having non-empty intersection
with S and such that U := U N S is non-characteristic. Moreover, let us choose an adapted orthonormal moving frame
T ={t1,...,tw}on U forU and fix po € U. Then we claim that it is always possible to choose T so that the connection

1-forms of its dual co-frame ¢ = (D1, ..., &) satisfy ¢ij(po) =0 wheneveri, j € Iys =1{2,...,h1}.

Proof. Consider a Riemannian orthonormal moving frame on U adapted to Y = U N S. This means that we have an

orthonormal frame § ={&1,...,&,} on U, satisfying & (p) = v(p) and such that
&5 =spang{&(p)..... & (p)} =TS
for every p e U C S. Moreover let us denote by ¢ = {¢y, ..., &,} its dual co-frame.

Claim 3.9. It is always possible to choose another Riemannian orthonormal moving frame g for U adapted to U
satisfying:

@ &(po) =£(po);
(ii) The connection 1-forms &yj = (V§1, é;) ,J=1,..., n)forgsatisﬁes gij(po) =0foreveryi, j=2,...,n.

Here again, ES=1{&,...,&)isa tangent orthonormal frame for {/. We stress that the proof of this claim is standard
and it can be found, for instance, in [45], pp- 517-519, Eq. (17). Therefore, from this fact the thesis easily follows by
assuming that at pg the frame & satisfy &; (po) = 7;(po) for every i € Iy, i.e. the set of vectors {£2(po), ..., &x, (Po)}
is an orthonormal basis of the horizontal tangent space H poS at po, coinciding with that given at the beginning. In this
case we get, in particular, that

&ij(po) = (proéi,§j>(l70) =0 foreveryi,je€lys.

By extending the orthonormal frame (&2,..., éhl} for the horizontal tangent space to a full adapted frame 7 in the
sense of Definition 3.4 we get our initial claim. 0O

Definition 3.10. From now on we shall set:
v,
ro‘f =Ty — * vy (a €ly).
|pEV]
Note that HS+ = spanR{rof: o € Iy}, where HS' denotes the orthogonal complement of HS in TS,
ie. TS=HS® HS".

Remark 3.11. If X € X(G) we shall set Xy := py (X). It is readily seen that!>

3 28 () = div(Xy) — (Tt Xy )i, @) = div(xy) — LKV V) (15)

acly pEVI

15 Here and in the sequel vy := pyv, where py : TG — V denotes the orthogonal projection onto V.
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If X = Xus + Xp55 € X(S),'° by differentiating the identity (X, v) = xjv; + Y wety XavVa =0, we get:

0wy
al)H

Z ras(xa) =x1Hy —i—diV(Xi}S) + Z X

aely aely

’

note also that diV(XJF;S) =-—x1H} + ngI; + Zae]v To (Xg)-
In the following two lemmas we collect some useful identities for the sequel.

Lemma 3.12. The following identities hold:

(1) ¢1i(rj)) =1 (i) +(Custi,tj)m G, j € IHS);

(i) ¢1i(zS) =t (wg) + %(C;‘Iﬁ,fi)fl —(CtS, t)y (i ey, aely);
(iii) ¢ia (1)) =@ja (i) +(ChsTi, Tj)u (i, j €1y, a €ly);
(iv) 74 (@) — 7 (o) = (CT5, 7)) (. BEIv).
Proof. The proof is an elementary exercise based on the definitions and on the fact that the bracket of tangent vec-
tors at regular points of S is again a tangent vector to S. For instance, to prove (i) it is enough to use the identity
([ti, Tjl,v) =0 (i, j € Igs). Moreover, (ii), (iv) follow from the identity ([;, r(f], v) =0 (@ € Iys, a € Iy) and

([r(f, Tg 1,v) =0 («, B € Iy), respectively. Finally, (iii) is just a reformulation of the fact that V is torsion free. Note
also that (i) says that the partial connection VHS has, in general, non-zero torsion. [

Lemma 3.13. For every i, j € Iy and every « € Iy, the following identities hold:

(1) ¢ia (Ta) =0
(i) Pui(ti) =0
(i) ¢ia (1)) = $(CHTi. T)).

Proof. Sett; =), A{XJ where at each p € U we have set A(p) = [A{(p)] € 0, (R). We first prove (i). We have:

bia(Ta) = (Ve Ti. Ta) = Y AL(Vx, X1, X Z ANCE, —C9, +C9) =0 (aely),

lely IEIH
by (6) and (5) of Section 2.1. To prove (ii), we use again (6) and (5) of Section 2.1. We have:

Gui (1) = (Ve Tan T1) = ) ATAT(Vx, Xt Xn) Z Alarcoy —col 4 o)

l,mely l mely
1
Z Al LANCE = 2(C‘)‘r,', 1) =0 (by skew-symmetry of any C* (« € Iy)).
l mely
Clearly, the identity (iii) can be proved in the same way. More precisely, we have:

Gia (1)) = (Ve 11, ta) = Y ALAT(Vx, X, Xo)

I,mely

1 1
=5 Y. ALATCT, -, +C) = Z(Chu ). O

I,mely

16 Note that TS>X =31 |xt=x7| +Zi€/1~1s XiTi +Za€,v XoTo =XHS+ZD,€[V xaTS.
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Here below we make some computations involving the (Riemannian) curvature 2-forms @, associated with the
orthonormal co-frame ¢ (dual of 7). More precisely, we are interested in computing the quantity:

Z ®1;(X, 1)) = Z (R(X, )11, 7)),
Jj€lns Jj€lys

Note that for X € vy S this is nothing but the Ricci curvature for the partial H S-connection V5.
Lemma 3.14. We have:

(@) (R(%i. T))Th. Teh 1 = =3 Yaeryy, (Chy T 1) HACH T Tt (i o bk € Iy

(i) (R(%8. @) Tj %) 1 = 5 Laery, (CH T W) {CP ta. Ti) 1t (k€ I, B € Inyy).

Proof. By linearity of the curvature tensor, we may compute these quantities with respect to the fixed frame X of
left-invariant vector fields. More precisely, to prove (i), we first compute:

Ruped = (R(Xa, Xp)Xc, Xa), (a,b,c.d € Ip),
and then we deduce the result by observing that, if 7; = > acly A;‘Xa (i € Iy), one has:
Rz, 1) th, w), = Z AL AP A5 AR (X4, Xp) X, Xa) -
a,b,c,dely

Now we claim that

1 1 1
— E B B B B B B
(R(Xav Xp)Xe, Xd)H = (chaccgdb - chbccgda - Ecgbacgdc‘)'
Beln,

This formula can be proved directly from the definition of R, by using (5) and (6) of Section 2.1. The com-
putation of (ii) can be done analogously, by linearity, but we need to compute preliminarily the quantity
Rgape : = (R(Xg, X0)Xp, Xe)n (B € I3, a,b, c € Iy). It can be easily shown that

1
Rﬁabc = _Z Z (ngacgga + CgaCgfa)'

OlE[Hz

By (5) of Section 2.1, this quantity is different from zero only if 8 € 3. O
Proposition 3.15. For every X (= xvy) € X(vy S), we have:

. 3
Ricys(X) = ) [ROX. tj)vm. 7)) yg =—3x D ICHvalys.
jelys OlEle
Moreover, for every X(= Xy + Xy) € X(G), X N S, one has:
3 1
> @, )=y > (CHvu. C Xu) s — 1 >0 xp(Chvm. CPra) s

jEIHs DlE]H2 DlEIHZ ﬁEIH3
Proof. Use Lemma 3.14. O
3.2. Integration by parts on hypersurfaces

The aim of this section is to write down explicit integration by parts formulas for non-characteristic hypersurfaces

of any Carnot group, endowed with the measure UZ_I

If X € X(S5), by the very definition of al’fl_l using the Riemannian Divergence Formula (see [45]), we get:
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dX J o Dy =d(lpuviX o) = divrs(Ipuv| X)o" ™!
d
- (dist X+ <X, w»o;}_l Lu,
|pHVI

where grady g e divrg are, respectively, the (Riemannian) tangential gradient and the tangential divergence operator
on U C S. However this formula is not so “explicit”, from a sub-Riemannian point of view. The notion of adapted
frame has been introduced so far to bypass this inconvenience.

So let T be an adapted frame to &/ C S on the open set U and let us denote by ¢ := {¢1, ..., ¢, } its dual co-frame,

obtained by means of the metric g. It is immediate to see that the H -perimeter al’;_l on U is given by:

o LU= doMlu=@ ¢ A Adlu= (G2 A Adw)lu
:(_1)a+1((wa)—l¢l/\,_,/\@/\.../\(pnﬂu (x ely),

where the last identity makes sense only if v, % 0.!7 By direct computations based on the 1st structure equation of ¢,
we will obtain divergence-type formulas and some easy but useful corollaries.

Remark 3.16 (Measure on the boundary ol ). Before stating these results we have to make a preliminary comment
on the topological boundary alf of I/. We first assume, as in the Riemannian case that dl{ is a (n — 2)-dimensional
Riemannian manifold, oriented by the unit normal vector n. Let us denote by 67"{2 the usual Riemannian measure
on 0U, which can be written as

o Pl U = (nJ o Dlau.
This means that if X € X(TU), then
(X Jop Dlaw = (X, ) puvios 2L aU.

Now suppose that 0l is geometrically H-regular. As it can be easily seen, this is equivalent to require that the
projection onto HS of the unit (Riemannian) normal » along dl{ is non-singular, i.e. |pgs(n,)| # 0, for every
p € 0U. In the sequel, we shall denote by Cys the characteristic set of 9/, which turns out to be given by
Cou ={p € 0U: |pus(np)| =0}. From Definition 2.26 it follows that

- PHSN -1
o2 U = < o} )
H y2:8ul "

’

ou

or, equivalently, that UZ—2|_ oU = |pgv| - |pH517|G7”€2|_ OU. Setting nys = LHL we will call nys the unit hori-

" lpusnl’
zontal normal along 0U{. We then get:

(X 1o Doy = (X, nus)ol 2L oU VX € C(S, HS).
We now state the main results of this section.

Theorem 3.17 (Horizontal Divergence Theorem). Let G be a k-step Carnot group. Let S C G be an immersed
hypersurface and U C S \ Cs be a non-characteristic relatively compact open set. Assume that OU is C*-regular,
(n — 2)-dimensional manifold oriented by its unit normal vector 1. Then, for every X € C*°(S, HS) one has

[ v x + (v Xpus)oy = [ Xnus)usa >
u OU\Cyyy

If OU is geometrically H-regular we have that Cyy = {0}.

From this formula we obtain the following Green’s type-formulas:

17 We remind that, w.r.t. the adapted frame 7, the Riemannian unit normal vy is given by v = vi7 + ), Iy VaTa and that 7| := vy and
vp = lppvl
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Theorem 3.18 (Horizontal Green’s formulas). Under the hypotheses of Theorem 3.17, let us assume that ¢y, ¢ €
C®°(S) and that at least one of them be compactly supported on U. Then

f{¢1AHS¢2 + (grad ;s d1, grad g $2) s + P1{Crvm, gradyg o) ushop ' = / o1(grad g ¢2, s Hso .
u U\ Cyyy

Moreover, we have:

/{(¢1AHS¢2 — p2Ausd1) + (Crvn, (91 grad g o — ¢ grady g ¢1))HS}UZ;] =0.
u

Proof. Use Theorem 3.17 with X = ¢; grady g ¢, for the first claim. Analogously, the second claim follows since
P1AHsP2 — P2AnsP1 = divas(dr grady g o) — divys(pagradygdr). O

Corollary 3.19 (Horizontal integration by parts). Under the hypotheses Theorem 3.17, for any X € X(H) we have:

/ (divizs X + (Corvar. X)s)oli' = — / (X, H)moli + / (X, nis) sl .
u U AU\Cyyy

Proof. It follows by Theorem 3.17 and Definition 3.2. O

Theorem 3.20 (Divergence Theorem). Let G be a k-step Carnot group. Let S C G be an immersed hypersurface and
U C S\ Cs be a non-characteristic relatively compact open set. Assume that U is C*°-regular, (n — 2)-dimensional

manifold oriented by its unit normal vector n. Set w = ﬁ;‘;l and choose X € X(S5), X = Xgs + Xyg1. Then we

have:

(X

. . (X, v _ _
/{dlvHs(XHs) +div(X 1) — WH) +([X, v l, w)}ol’_’l - /(X, mlpavioy 2,
ou

We remark that the previous formula can also be written as follows:

/ {divHs(XHs> — (Hu. X) +(Cog. X)+ > rof(m}a;z,‘l = f (X.n) puvloy >,
aely U

where X = (X, vy)vyg + Xpgs + Zae[v Xo Ty and rof =14 — @WuVH (@ € Iy); see Eq. (24) below.
We stress that denoting by Div_.-1(X) the Lie divergence of X with respect to al';_l (X € X(G)), i.e.
H

. -1 ~1
D1V0271(X)01'; =Lxoy .
one could shortly rewrite the previous divergence-type theorems; see, for instance, [6], p. 139.

3.3. Divergence-type theorems: proofs

Proof. For X € C*°(S, HS), we have to compute the exterior derivative of the contraction by X of al’fl_l, ie.
d(X o Hls. Soif X =3 _, x;7;, then

n n
dX JofDls=) dayt dog Dls=) dszsdgan---Aduls
J=1 J=1

n
=Y (m@nop s —n@)@ Jop)ls +xsd(r; JofHls)
J=2
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=Y (wGnof s —u@)@ dop)ls)+ Y xidm o Hls

J=2 ielgs

=1
+ Y xed(ty Jof s (16)

aely

Notice that, using Lemma 2.19, we get:

I= ( Z T (xi) + Z (ta(x0) — @aT (xa))>‘71'31|5

ielgys acly
=( PIRACHEDD rj(m))a,’f,lm. (17)
iEIHS OCEIV
Claim 3.21. We claim that
d(z; a,’;‘1>|s=< Db+ Y wg<6£,n,n>ﬂ> o s (18)
J€lus Beln,

Proof. Since d(z; _| o;‘fl)|5 =(=Did(gr A A 5, A+ A ¢p)ls, without loss of generality we assume that i = 2.
We have:

i=dgs A Ag) =D (=DM g3 n-Adpy A Ay

J=3
=Y =Dy <Z¢>1 A¢>u> A Ay
J=3 1=1 g
Jth place
n 2
=—Z(—1)J+1<Z¢11 mm) ANGLA-AGIA- N Ay
J=3 =1

== DTG AP AGLAGI A AP A A Ay

J=3

=1l

=Y DTGy A AGLAGI A AT A AL Ay (19)

J=3

=HI
Here above, we have used the first structure equation of the adapted coframe ¢. The generic term of /7 is given by:

@y AP)AGI A Aps A ANy = (b1 $2+ 1 (TN GI) APLAGL A AT A+ Apy
==y (TP A AP A Ay
+(=D! oy @) P AG A A by 20)

Now, if J € Iygs, Lemma 2.19 says that (¢1 A --- A 557 A+ A@p)|s is zero and that it is different from zero only
if J € Iy. Furthermore, Lemma 2.19 says that the second addend is zero, when restricted to S. Analogously, for the
generic term of /11, we have:

G20 AP AGIA - ANBT A Ay = (27 (T) D1+ b2 (TN PI) A2 A= AGT A+ Ay
=g T PIA AP Ay + (=) oy (T2 A Ay (21)
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Arguing as above, by using again Lemma 2.19, we get that the first term of (21) is different from zero only if
J € Iy, while the second one is different from zero only if J € Iy, because ¢;q (t,) = 0. From (19), (20) and (21) we
get:

1= ") @2 A Adls+ Y (=D (Gr1p(r2) — dop(T)) @1 A A Gp A Ad)ls

J=3 Bely

=Y () op s+ D (¢1p(12) — ap(x)) (xp | )]s

J=3 Bel
= ( Z hj(tj) + Z wp(p1p(r2) — ¢2ﬁ(71))) o s
J€lus Belr

Since ¢14(12) — ¢2p(11) = —sz, we get our initial claim, by using Definition 2.4. O

Claim 3.22. We claim that

d(zg o}.‘,lns:—( Y @l e Y qsu(r,-))o:,lm (e ly), (22)
yely J€lps
y>ao
where CIKJ ={([t;,15],tx) U, J, K =1,...,n) are the structural constants of the adapted frame t.

Proof. We have d(z, _| 0;’1_1) =(—D%d(gr A--- A a; A -+ A ¢y,) and so

d(¢2/\"'/\(75;/\"'/\¢n)= Z (_1)j¢2/\"'/\d¢jA"'/\‘/p;/\"'/\‘l’n

J€lHs
=1
+ YDA Aga A Ay Adut D (=D Ty A Ay A Ay Ay
vely v€ely
y<a y>a
=1l =1l

As above, we shall make use of the Ist structure equation for the co-frame ¢ and of Lemma 2.19. For the first
summation, since d¢; = ZK# ok Nk (K =1,...,n), we get:

I= Z (=1 o A Adpj A APg A+ Ay

J€lus
=D Y DG AAGR AR A A A Ay
J€lus K#j

jth place

Y DIga A A DL AL+ P AP A A A A

J€lus

Jjth place

Using this expression, Lemma 2.19 and the fact that ¢ (7;) = 0 (see Section 3.1), we obtain:

I=3" (=Dg2n-A@GAGI)A - AGu A A

Jj€lus

= D DD TG ENGIA G A AG A Ay A Ay

JE€lns

= (=D Y driE) I oR)ls = (D @y Y diiog s,

JE€lHs J€lus
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Moreover the second and the third summations can be computed as follows. First, we note that, using the 1st structural
equation for the coframe ¢ and Lemma 2.19, the term ¢ A -+ - A g A --- Adpy, A ¢y 18 given, up to sign, by:

Ay A APa A Ay AGr=F D GIA - AGu A A DL ABLY) A Ay
————

Ly yth place

=Py A--Ada A A (P APy + Pa APay) A Ay
yth place
= £(P1y (@) = Gay (T))$1 A Ay Ao Ay Ay = E([T1. Tal. Ty )(Ty L 05

Using this fact, by an easy computation of the signs and the fact that C%’a = ([71, Ta]. 7)), We see that

1+ 1 = Z (=D)"HECT d1 A Ay Ao Ay + Z ()7 G A APy A A

vely yely
<o y>a
1 v Y ! vt
=0 T im0t B el dois= 0 T s
vely yely vely
y<a y>a y=a

where we have used the identity18 C i/a =0 if ord(y) < ord(«). Putting all together we obtain (22).

At this point we may achieve the proof, using (16), (17) and the previous claims. We have:

d(XJUZ_1)|5={ > [ri<xi)+x,-< Y i@+ Y. wﬂw,’in,mﬂ

i€lys JE€lHS Beln,
+ 3 [fg(xo,) —xa( > w0l twa Y ¢1.,~<rj))“o;’,‘l|s. (23)
aely yely Jj€lns
y>a

Claim 3.23. Let X = Xy + XJ,;S(z Xus+>. xar(f). Then, we have:

aely

(1) the HS-divergence of X gs(= pusX) turns out to be given by:

divgs Xps= Y <Ti(xi)+xi > ¢ij(Tj));
ielys J€lnus
(i) if X € TS, then xjv; + Zae]v XqVy =0, and x; = — Zae[v
=2 wery PaTi(Xe) = T1(x1) + _x.r$fu1) + D wery x—“zﬂfu‘x);

(i) ([X,r1l, @) =(Ct1, X) — X ger, PaTi(Xa);

(iv) Zaelv Xo Z);i]&/ wyci/a =—- Zaelv Xo Zyelv wy(CVrl, 7o) = —(C11, Xi[3>~
y>ao

WaXy. By differentiating this identity, we get that

Note that, if X € C*°(S, HS), then from the very definition of C and Cp (see Notation 3.6), we obtain:

(Ct1, X)=(Cxt1, X)Hs.-

18 We have:

ol =t wl o)=Y (14h Xp, Xal, Xy )= Y AfCO],
lely lely

and the last term is different from zero only if ord(y) = ord(«) + 1, by (5) of Section 2.1.
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Therefore Theorem 3.17 follows from (23), by applying (i) of Claim 3.23 together with the very definition of Cy and
setting x4, = 0 (o € Iy). Moreover, to prove Theorem 3.20, it is enough to apply Claim 3.23 into (23). Indeed, from
equation (23) by using (i), (ii), (iv) above, we get:

dX Jdop Hls= <divH5 Xps —x1H5 + (Cry, X) + Z rj(xa)>a,’;—1 Is. (24)

aely

Therefore, using (iii) of Claim 3.23, Remark 3.11 and (ii) of Claim 3.23, we get the thesis. O

4. Variational formulas: 1st and 2nd variation of a}'l_l

) n—1
4.1. Ist variation of oy

In this section, we will compute the 1st variation of 01';_1, by adapting to the sub-Riemannian setting of Carnot
groups, some classical differential-geometric methods based on the use of moving frames and differential forms.
As references for these topics in the Riemannian case we mention Spivak’s book [45] and also the paper by Hermann
[24].

As before, let G be a k-step Carnot group and let S C G be a non-characteristic hypersurface oriented by its unit
normal vector v. Moreover, let i/ C S\ Cs be a relatively compact open set which is assumed to be non-characteristic
and let us assume that the boundary ol of I is a (n — 2)-dimensional C°°-regular submanifold oriented by its outward
unit normal vector 7.

Definition 4.1. Let : :U/ — G denote the inclusion of I/ in G and let ¢ : (—¢, &) x U — G be a C* map. Then ¥ is a
smooth variation of 1 if

(1) every ¥ := U (¢, ) :U — G is an immersion;
(i) vo=1.

Moreover, we say that the variation ¥ keeps the boundary U fixed if
(i) O¢lgy =19y forevery t € (—¢, ).
The variation vector of ¥, is defined by W := % li=0 = ﬁ*%lt:()-

Later on we shall set W := % = % and we will assume that W is defined in a neighborhood of Im(?%). For any
t € (—¢, &), we will denote by v’ the unit normal vector along U, := ©; () and by (07”3_1)[ the Riemannian measure
on U;. Note that if U/ and ¢ are small enough, then U; = 9, (Uf) turns out to be immersed and non-characteristic for

every t € (—¢, ¢). So let us define the differential (n — 1)-form (al’?]), along U; by:
O Dily, = 0y J o)y, € A" (TU,
for t € (—¢, €), where

o = puV'
H._ .
[puv'|

By setting
L@y =t 0pr " e AN TU), 1e(~¢0),

we get that I'(¢) is a C* 1-parameter family of (n — 1)-forms along /. Thus, in order to determine the 1st variation

Iy (W, GZ_I) of 01"1_1, we have to compute:
/rm:/f@. (25)
t=0
u

u

4. d
LyW,op ") = o
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So we will need to preliminarily compute I"(0). Notice that the derivative under the integral sign can be done by
the well-known Leibnitz’s rule (see, for instance, [45], p. 417). Thus making use of the Cartan’s formula for the Lie
derivative of a differential form, we may prove the following:

Theorem 4.2 (st variation of 0,’?1_1 ). Under the previous hypotheses we have:

W, v)

pHV|

_ ( _ _
wW,o == [ 5 o+ [ mlpavior 26)
u ou
Notice that from this result it follows immediately that a necessary condition for minimality of any smooth non-
characteristic hypersurface is given by the vanishing of the scalar horizontal mean curvature Hy;. This justifies the
fact that the equation,

—H3y =divgsvy =divvy =0,

is the right sub-Riemannian generalization of the Riemannian one. In this respect, we would note that the Riemannian
scalar mean curvature H% and that horizontal 7}; are related by the identity:

dlpuvl
8\1[{

Analogously to the Riemannian case, the terms in the 1st variation formula are two, the first one—the integral along
U—only depending on the normal component of the variation vector W, and the second one—the integral along the
boundary dl/—which only depends on the tangential component of W. This fact relies on a general principle of the
Calculus of Variations on manifolds, for which we refer the reader to [25]. It is also clear that, if we allow the variation
vector to be horizontal, then (26) becomes more “intrinsic”. Indeed, if W € C*°(S, H), W = (W, vg)gvy + Wgs,
then we get the following:

H% =|puvIHy — —div(pyv).

Theorem 4.3 (Horizontal 1st variation of UZ_I ). Under the previous hypotheses, let us assume that the variation
vector W of 0 be horizontal, i.e. W € C*°(S, H). Then we have:

(W, op =~ / (Hy, Wynolh™ ' + / (W, nus)usop . (27)
u U\ Cay

Proof. Use Theorem 4.2 and Remark 3.16.

Therefore, in the case of horizontal variations, by remembering Corollary 3.19, we get:

Iy(W, o} = /(divHs W+ (Crve, Wins)opy
u

We stress that, also in the case of horizontal variations, the 1st variation formula (27) is given by two terms, the first
of which only depends on the horizontal normal component of W, while the second one only depends on its horizontal
tangential component.

Remark 4.4 (Boundary integrals). The integrals along the boundary 0l of the domain &/ C S are zero in the following
two cases:

(i) WeCPU,TG),ie. weassume that the vector variation be compactly supported on U
(i1) The smooth variation ¥ of U/ keeps the boundary dl{ fixed; see Definition 4.1.

Note also that, from (26) (resp. (27)) it follows that the boundary integral is zero whenever we choose W € X(v.S)
(resp. W € X(vg 5)).
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As a corollary of the 1st variation formula we obtain a necessary condition for a smooth domain to be sub-
Riemannian isoperimetric. To this end, let us consider the sub-Riemannian isoperimetric functional:

o' @D)

Jn(D)= —H 2
H)= o Dy-0

(28)

where D varies over bounded domains in G having smooth (at least C?) boundary. We stress that, we do not need any
assumption about the characteristic set of d D, since Cyp is a set of zero Uf[_l-measure.

Corollary 4.5. Let D C G be a bounded domain with smooth boundary that is a critical point of the functional (28).
Then, at every point of 9D \ Cyp we have that Hy; is constant.

Proof. The proof is analogous to the Riemannian case (see, for instance, [7]). Indeed, let us choose a volume-
preserving vector field W € X(G). Then the flow ¥; : (—¢, ¢) x G — G generated by W does not change the volume,
ie. vol’k(ﬂ,(D)) = VO]%(D) for every t € (—¢, €). So, by the Riemannian Divergence Theorem, we get:

/didevol"Rz /(W,wa;g‘ =0,

D aD
for any such W. By differentiating (28) along the flow ¥, using Theorem 27 we get:
d . 1 sc n—1 Q -1 n—1 __
EJH(L%(D))’I=O__W/HH(W’U>GR —T <W’U>GR —0,
aD aD
since D is an extremal of (28). Therefore, f op Hi (W, v)ol"[l = 0 for every volume-preserving vector field

W € X(G). A standard argument now implies that 7{}; must be constant. O

4.2. Ist variation ofa;fl_l: proof of Theorem 4.2

Proof. Let us choose an orthonormal moving frame t on the open set U C G satisfying:
() Tily, == vlys () HTU =span{(12) . ..., (th)p} (p €Us); (i) o := X
Let ¢ := {@1, ..., Py} be its dual co-frame (i.e. ¢;(t7) = 811 I,J=1,...,n)). We have:

O L Ur=@ g1 A A, = (G2 A A by,
and I'(t) = 0 (¢2 A -+ - A ¢p). We stress that the variation vector field W on U/ can be seen as the restriction to U of
the vector field W = 33—?. Clearly the integral curve of W that starts at a point p € U is just t — U:(p).

Claim 1. We claim that I"(0) = l*(ﬁﬁ,((al’fl_l),)) =1 (L2 A Adp)).

Proof of Claim 1. The proof of this fact is standard; see, for instance, [45]. For the sake of completeness we

shall report it below. Denote by 0;(p) the integral path of w starting at p e U. If p e U and Y € T,U{ we have
0r4(1xY) =04, Y.Solet Yy, ..., Y,_1 be tangent vectors of ¢/. Then

FO)Y1, ..., Yao1) =tlgr5%{r<r)(n, e Ye)) = T OV, V) )

= tlglg)}{ﬂ,*(az‘l)z(n, e Ya) =0 D (N Y
= }grg);{<oz*‘),(ﬁ,*Y1, o DY) = (O D @Y, LY
=tlgr(1);{(o;’,‘1)t(9[*(zm>,...,et*u*yn_l)) — (O DY, YD)

= ﬁw(a,’fl_l),(l*Yl, ..., 1xYy—1) (by definition of Lie derivative). O
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By Cartan’s formula for the Lie derivative we get Eﬁ,(al'ffl)t =W d(ol’ff]), +d(W (0,’_’[1);) and therefore,
by Claim 1, we get:

r©)="(WJddepg ™ +d(WJ @ ). (29)

Now we have:

dof i=d@a A Ag) = (=D'gg A= Adpr A Ay

1=2
n n
=Z(—1)’¢2A---A(—Z¢JIA¢J>A-~-A¢n (30)
=2 J=1
n
==Y D'ga A A@BUAP) A A 31
1=2
Note that (30) is the 1st structure equation of the coframe 9= {01, ...,¢n}, while (31) comes from the fact that J can

only be equal to 1. Since ¢1; = Z’}(zl é11(tk) Pk, we get:

d(og; e = —Z(—l)l(—l)l_lqbl A AP A A

1=2
n
=Z¢11(1’1)¢>1 AN~ ANPr AN+ AN, (since K must be equal to 1)
1=2

=Y i@ d1 A A, (32)

ielys

where (32) follows because ¢;q () = 0; see Lemma 3.13. Thus we get:

(W d(op ) =z*< > bW I A A¢n)> = ( > prim) (W) (o;g‘»)‘

ielys ielys

= —HS(W,v)o" 1L U. (33)

u

The second term in (29) is given by l*(d(W _ (al’fl_l),)) = d(l*(W _ (al’fl_l),)). Moreover,

(W (o) = (W pav' | (o D) = (W L pavlos )|y, = lpavl (W o Dlau.

Using the last computation and equalities (29) and (33) we get:

o) =15 W, v)olk ' +d(lpavi(W o5 h). (34)

The thesis now easily follows using (25), Leibnitz’s rule, and then integrating along ¢/ both sides of (34). Clearly, for
the second term, we use Stokes’ theorem and the fact that

W d oz Dlay = (W,n) (o Dlayr. D

Remark 4.6. By analyzing (29) we see that, if W € C°°(S, H), the Lie derivative of GI’_‘I_l along the flow of W
can be thought of as the sum of two terms, one only depending on the horizontal normal component of W, the
other only depending on its horizontal tangential component. Analogously, in the case of an arbitrary vector variation
W e C*(S, TG), (29) says that the Lie derivative of Ul’ffl along the flow of W, is the sum of two terms, the first one
only depending on the normal component of W, and the second one only depending on its tangential component.
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T n—1
4.3. 2nd variation of oy

In this section we illustrate the main result of this paper, that is, a complete formula for the 2nd variation of
the measure 0;’1_1 on non-characteristic hypersurfaces, with or without boundary, having constant horizontal mean
curvature H’;. From what we have seen in Section 4.1 we have that

/ ra = / i(0), 35)
t:Ou

u

2

n—1 d
IIZ/[(W, oy ) = ﬁ

and so we have to compute I"(0). We preliminarily note that
F@y =97 Ly (W Idopl ™) + Ly d(W 2 @),

and, as in the Riemannian case, the hard part of the computation is in the first addend of the above formula. We note
that, just in the case of 3-dimensional contact manifolds, for which the Heisenberg group H! constitutes a noteworthy
example, a similar formula for the 2nd variation of the H-perimeter measure on minimal surfaces (i.e. Hiﬁ =0),
has been proved in [9]. This formula, in the case of minimal surfaces of H!, also appears in [12]; compare with
Example 4.10 below.

The next result gives the second variation of a}f[l in a particularly important special case.

Corollary 4.7 (Horizontal normal 2nd variation). Under the hypotheses of Section 4.1, let ¥ be a smooth variation of
U C S having variation vector W = 17*%|t:0 such that W € vy S, i.e. W = w vy, where w € C*®°(S). Then we have:

ow
Iy (W,or ™ =/{—H§§wa— + |gradHSw|2+w2[(2TrzBH) - Z((Zgrast(wa) —cfj),C%H)“o';,—l

Vv
H aely

)
- / w(gradygw, NHS)HSOY s
AUNCaq

where we remind that wy = IpUTavl and that ‘L'(f =Ty — WeVy (@ € Iy). Moreover, if we assume that W €
C°U,vuS), or equivalently, that W keeps the boundary fixed, the boundary integral in the previous formula is

identically zero.

Note that in the previous corollary we do not assume that
J; is constant. A more general statement for the second variation formula of a}fl_l in the horizontal case can be
given; see Corollary 4.25. Actually, the proof of Corollary 4.7 is an immediate consequence of Corollary 4.25; see
Section 4.5.

The next theorem is perhaps the main result of this paper and its proof will be given in Section 4.6.

Theorem 4.8 (General 2nd variation of GZ_I for hypersurfaces with ‘Hy; constant). Under the hypotheses of

Section 4.1, let ¥ be a smooth variation of U C S having variation vector W = ﬁ*%|,=o and let us denote by
W,
PH

W= 19*% any extension of W to a neighborhood of Im(v}). Finally, let us set w :=

v>‘. If H}; = const. along
U, then we have:

iy (W,or™h =f{—W(w)H§§ + |grad ;g w|? + w2|:(2Tr2 By) — Z((ZgradHS(wa) - C1), C%H)} }a,’;—l

aely
—l—/{((—w grad g w + (W, WT]TIz:O)y n)pavl
ou
+ (divrs(IprvIW?") = Hg (W, ) (W n) oz 2,

where we remind that w,, ‘= ‘p‘}ﬁ and that r,f =1y — @y (o € Iy). Obviously, if we assume that W € C(o)o U, TG)

the boundary integral in the previous formula is identically zero.
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It should be noted that we will prove this theorem as a consequence of a more general statement in which we do
not require that {37 is constant along {; see Proposition 4.13 in the next section.

Remark 4.9. We have used the notation Tr, for the sum of the principal minors of order 2 of the matrix representing
a linear operator. In our case we have Tro By = % Zi,jeiHS(‘f’li(fi)d’lj(Tj) — ¢1i(tj)$1(1;)). Moreover we remind
that, in general, the following identity holds (see [15], Chapter 1, p. 36):

1
TraBy = E((TrBH)2 — Tr(By o Bp)).
By a simple calculation using Remark 3.7, we then get:

1 . 1
Try By = E(H;? —ISH G - Zucﬂsnér)
where we have denoted by || - ||g; the Gram norm of a linear operator.

Notice that Trp, By = 0 if dim HS = 1. This is the case, for instance, of the 3-dimensional Heisenberg group H!
and of the Engel group E! on R?.

Example 4.10 (Heisenberg group H'). Let {X, Y, T} be the standard set of generators for the Lie algebra h; of H'.
They satisfy [X, Y] = T with all other commutators zero. In particular, T is the center of f;. Under the hypotheses of
Theorem 4.8, we have:

qw \? 3
Hy(W,o3) = /{—W(w)Hsg + (au—ui> + wz[zw—z‘j - w2i| }a,{,,
u

H

for every vector variation W compactly supported on I/, where as before w = (W.v) and, if v = (vyx, vy, vr) denotes
Ty pactly supp [puvl
the Riemannian unit normal, then @ := ——Z—. In the previous formula vfl denotes the unique horizontal tangent

2 2
VVxtvy

vector of H S satisfying |v,¥1| =1 and such that det[vy, vfll, T]=1.
Example 4.11 (Heisenberg group H"). Let {X1, ..., X2,, X2,+1} be the standard set of generators for the Lie algebra
b, of H". We have [X;, X;+,] = Xou41 (i =1, ..., n) with all other commutators zero. The center of b is Xo,+1;

see Example 2.12. Under the hypotheses of Theorem 4.8, one has:

Uy (W, op ) = f{—W(w)Hif, + |grad g wl?* + w2[(2Tr, By) — 2 gradyg(@), C5vy) — o?]}op !

u
for every vector variation W compactly supported on U/, where w = ?;V;})l and, if v = (v1,..., V2, V2u41) is the
Riemannian unit normal, then o := IU ;’:Vll . With respect to the canonical basis of H", we have:
2n+1 2 1 .4 3 2 2n—1 -
CI;‘JF v = Vg, =V, Vg —Vi, . vy =y L, 0) =1 —vy,
where vy = (v},, cees v%,", 0). Note that ||C%,"S‘H ||§,, =2(n — 1) and therefore that
2 > 1 2 2 2 _2m=D 5
2Try By =Hy™ — ISullG, — Z”CHS”Gr =Hy = ISullg — — &

So we finally obtain

_ ' . omw n+1 _
Iy (W, oy 1)=/{—W(w)’)—[}§+|gradHSw|2+w2[H7§2— ||SH||ér~|—2av—L - wZ]}U;‘I L
H
u

Example 4.12 (Engel’s group E'). Let {X1, X2, X3, X4} be the set of generators for the Lie algebra ¢; of E! satisfying
[X1, X2] = X3, [X1, X3] =[X2, X3] = X4 and such that all other commutators vanish. In particular, X4 is the center
of 1. Under the hypotheses of Theorem 4.8, we have:
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T
vy

2
Uy (W, o1 :/{—W(w)?ﬂi + < gw )
u

ow

2 3 2 2 252 152 1.2172 252 152 1.2 3

+w [(2m - w3> — [ — () = 2vpvy " — [ vy — (vg) +2quH]]}aH,
H

(W,v) 1

o Here w3 := o and

where v = (v, v2, v3, v4) denotes the Riemannian unit normal. Moreover UI%I denotes the unique hor-

for every vector variation W compactly supported on U/, where as above w =

D4 =
izontal tangent vector of HS satisfying |vIJ_;| =1 and such that det[vy, vf;l, X3, X4] = 1. Thus in canonical coor-
dinates we have vIJ; = (—v%{, ”}1’ 0,0) € HS, where vy = (v}q, v%{, 0, 0). Note that we have used (Ct3, C?ivH> =
—w4(Chr3,v;) = wa[ (V) — (W])? +2vLv3 ] and [CHoy| = ((v3)? — (v),)? — 2v}v3). Using polar coordinates
on H in such a way that vy = e, Y =arg(vy) €10, 2], we get

2
(W, o1 =/{—W(w)H;§ + ( gw )
u

L
vy
0] b4
+ wz[(za_wf - w32> — w2(1 +sindy) + V2 COS(ZI/I + Z)} }0,3,.
v
H
4.4. 2nd-variation of al'fl_l: proof

In this section we will prove all the results stated in the previous section. Our proof will closely follow that of
the 1st variation of 61';_1 and so we will use the notations previously adopted in Section 4.2. We stress that in the
following computations, we shall sometimes omit the subscripts H and H S from the notations of inner products and

norms.
Our first step in proving the results introduced before is the following, more general:

Proposition 4.13 (General 2nd variation of (71’;_1 ). Under the hypotheses of Section 4.1, let ¥ be a smooth variation

of U C S having variation vector W = 0, % |(=0 and let us set w := ?;Vl;?l . Then

Hy (W, = /{_Hg[W(w) + w(divgs Wes + div(Wy) — (Tu (Wy)vg, @)+ 2(Cvg, W))]
u

+ w|:—Ang1 — Z (waAHSu)a + <(gradHS wy + C*W), Qgrady g wy — Ct(f)))

aely

+ w1 (2Tr2 By) +Tr(Bp o [TusWrsl™) 4+ Tr(C o [TusW 01")

1
-5 Z (wa Tr(By o CY ) +(C}“{v1-1, gradyg wa))] }a;’]_l

0!61[.12

* /{([W/”’, W im0, n) vl + (divrs (IpvIWT) = 3 (W ) (W) o .
ou

Finally, if we assume that W € C3°(U, TG), then the boundary integral in the previous formula is identically zero.

Here above, 0 := 0,x,—,+1 denotes the zero matrix in M, x,—p,+1(R) and so [TasW 0] € M, (R). Remind

that, if = = {71, ..., 7,} is an adapted moving frame for &/ C S on U, we have 1| := vy and ras =Ty — “;)T“V‘VH
(o € Iy) along U. Moreover, by definition, o =) . Iy Pala = |l€ I‘;]'jl We also remember that S C G is a smooth

immersed hypersurface and U C G is an open set such that i/ = U N S is a relatively compact subset of S with smooth
(n — 2)-dimensional boundary o/ oriented by its unit normal 7.
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Proof of Proposition 4.13. The proof below can be seen as a continuation of the proof of Theorem 4.2. Through-
out this section we will choose, as in Section 4.2, an orthonormal moving frame t on U C G satisfying for every
te(—e,e8):

0) tiley, = vys () HTplUy = span{(v2)p, ..., (w))p} (p €Up); (i) T := Xa-

From now on we also assume that the variation vector field W € C*°(S, TG) of ¥ is transversal along /. We already
know that, in order to compute the 2nd variation of 01’9_1, we have to compute, in a fixed point pg € U, the quantity
I'" (0). (We stress that, in the next computations, we shall drop the dependence on the “initial” point pg € U.) Therefore
we will first compute

F@oy=91{Ly(WIdol ™)) + Lyd(WI @)} (=A+B). (36)
Remark 4.14. From (36), making use of Stoke’s theorem, we see that

My (W, o™ = I8 (W, oY) + 150 (W, o7,

where
1w, op ) 12/’*(£W(WJ d(op "))
u
and
o = [ (W @) )
au
By setting:
w, W’ '
P B A 7
|prvl lpEV'|

we obtain, using what we have proved in Section 4.2, that the first term A in (36) is given by

A= D" Lywiga A A dij A Adn)ly,- (38)
icl ——
JEIHS Jjth place

Remark 4.15 (Boundary terms). Since the Lie derivative commutes with exterior differentiation, using Stoke’s
theorem we get that the second term in (36), is given by B = 9/ Ly (W _ (ol’;*]),)laut. Using well-known prop-
erties of the Lie derivative, B can be computed in the following way:

@G If Wex (G), we may decompose the variation vector as Ww=wT + w' (tangent and normal components of w
with respect to {/;) and we get:

B=Lg(W" I ©0p D)y, = (W, W I oD+ W I (Lo D0)) |y
= (W W gD+ W (WY o) + W Jd(WT o)) g,

where we have used the fact that the bracket of tangent vector fields is still a tangent vector and Cartan’s formula
for the Lie derivative. By integrating B along dl{; and setting t = 0, we obtain:

B (W, o) = / u(Ci (W @37 Dn))

=/ WY W o n)lpavl + (dives(IlpavIWT) — Hig (W, )W n)loi ™2 (39)
au
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(i) If W e X(H), we may write the variation vector as W= WUH + WH s, Where VT/,,H and WH s are respectively, the
horizontal normal component and the horizontal tangential component of W along ;. In this case we have:

B=Ly(W @)y, = Liv(Was I @57 i)y,
=(IW, Was1" 3 e + Was I (L)) |
= (W, Was1" J (e + Wrs I (Way, Jd(of D0 + Wrs I d(Was J (07 0)) |

By integrating B along dl4;, using Theorem 3.17, and setting t = 0, we get:
1 W) = [ (e (7 2 @)

=/{([VT’, WHS]T|t=O,77>+ [divis Wrs + (Chve, Was)us
u
—H5 (W) (Was, n)us}lpavior > (40)

We start with the computation of (38) by first computing the following quantities:

(i) EW(¢h) forh e lys = {2, N ,h]};
(i) Ly (1)) for jelys;
(iii) Ly (po) foraely ={h1+1,...,n}.

This can be done using Cartan’s formula and the structure equations for our coframe ¢ = {¢1, ..., ¢,}. For the term
appearing in (i) we get:

L (@n) =W 1 dgn +dgn(W) =D (W I ¢y A pr) + dilip,
L
and so
Ly@n) =Y (¢n(W)pr — Drdnr) + dil. (41)
L#h
Analogously, for the term in (ii), using the 2nd structure equation for ¢, we get:
Li(¢1))=W Jdgrj+dgij(W)=> (W (=P1j + 11 Adrj)) +de1 (W),
L
and therefore
Ly@)=—2;(W. )+ Y (d1.(W)pr; — ¢rj(W)p1L) + dgy; (W). (42)
L#1,j
Finally, for the term in (iii), we get:
L (@) =W Jdgy +dpa(W) =D (W I ¢ur A pL) + dilis,
L+#a
and so
Ly@a) =Y (bar(W)pr — Brdar) + dill,. (43)
L#a
Now we may compute A. We have:

A=Ly(W Idof ™)) ==Ww)H50f i+we Y Lo A Adrj A Adn)

JE€lHs
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= W) Mo D+ Y wilda A Agrj A ALGOR A A )

Jshelns

=:A

+ > wi A ALGE A AG)F D Y wi@a A AG A ALy A Adn).

J€lus

—A, jelgsacl —As

By using (41) and Lemma 2.19, the term A; can be easily computed as follows:

Ar=wi{ga A A(dLj(T)@) + b1 (T)dn) A+ A [Z(¢hL(W)¢L —WrenL) +d@h} AREE /\¢n}
L#h
=, ¢1,,~<r,~)[rh<wh> -3 me(rh)] - ¢1,,~(rh)[¢hj<v?) () — Y wmu(r,,)“(o,’;‘l),
L+#h L#h
=wi i ,-(m[rh(wh) -3 wm(m)] — 1 j(rh)[rj(wh> +y chj’L} }(a,’;—l),,
I#h L#h

where we have used the identity ¢y (t) = 0 (see (ii) in Lemma 3.13) and also (14) to compute the last term; see
Section 3. For the term A, by means of (42) and Lemma 2.19, we get:

Ar=wy {—‘PU(W )+ 7 (@1, (W) + Y [¢uWei;(x)) — ¢ (Wdu(x))] }(0}31_1):-
L#1,j

Analogously, the term A3 is computed by means of (43) and Lemma 2.19 as follows:

Az =y ¢2A---A¢1,,~A---A[Z(%L(VVW—wL¢aL)+dwa]A---A¢n}

L#a

=wiiga A-ee A <Z¢1j<r1<)¢z<) A A [ D (S W)L — Brar (Tm)bm) + rM(me} A A ¢n}
K

L#a M

=w

~

¢1 ,-(r;)[m(%)—w;,<n<ma)+¢a1(v~w— > qusaL(n)ﬂ

L#1,«

+w§¢1,~(n)[rj(wa> + (W)= Y qusaL(rj)}

L#j,a

— ¢ j(ra)[rj(wa) + (W) — > wmu(r,-)]}(az‘lx

L#j.a

:wt{¢lj(r'j)[T£(w“)+w‘f‘ 2 chgl} —¢1/’(f¢f)[fj(@a)+ 3 ch;.*L“(ag—l),,
L#1,« L

t
Here we have used the notation @/, := * = e
o v lpEV!|
fact that ¢y (1) = 0 for every L and that ¢ (7;) =0 for j € Iy; see Lemma 3.13. Now, by using these expressions,

identity (14), and rearranging a little bit we obtain:

Az{—VV(wt)( §3>t+w,[ > ¢1,~(:,~)[Z > (ta (@) + Brin ()

. We also stress that, in the above computations, we have used the

jelns lely helps
h#l
+ Y <r§(wa) toy Y chgl)} - > ¢1j(rh)[r,(wh) + ZwLCH
acly L#la j.helys L#h

- Z¢1j(rj>[rj<wa>+ > ch;fL}

Je€lusacly L#j.o
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+ ) [(—qbl.;(VV, )+ 7 (61, (0)) + > ¢1a<r,,~)¢,-a(V~V>]

je€lys acly

+ 2 [ouWigy () - ¢11<W>¢11(rj>]]}(“13‘1>,.

L#1,j

Remark 4.16. From now on we will extensively make use of Lemma 3.8. Roughly speaking, Lemma 3.8 says that,
if we fix a point pp € Y = U N §, we can always choose our moving frame t for U adapted to I/, in such a way that
its dual coframe ] satisfies ¢;;(po) = 0, whenever i, j € Iy . Since our computation is actually done in a fixed point
po € U, making use of this fact will greatly simplify our next computations.

Thus, in the sequel, we shall restrict to I/ C S the above expression. We have then,

(*A)p, = {—W(w)Hiﬁ +w{ Z ¢1j(Tj)|:—Hs§(Th(wh) + widin(th)) + Z (t(f(wa) + @, Z U)LC%1>]

J€lns acly L#l,a
- ¢1,-(rh>(r,-<wh)+2wm§z>— > Z¢1j(r5><rj(wa)+ > chyL)
j.helps L+#h jelpgsacly L#j,a
+ > [(—@ JW. ) +1(01; (W) + Y ¢1a<rj>¢ja(W)]}} ap ! (po).
jelys acly Po

By using again Lemma 3.8, together with (5) of Section 2.1 and (14) of Section 3, we get that
> wiCl = wigin () + Y wadan(ry) at po
Lh acly

and therefore that

(*A)py = {—H‘}j |:W(w) +w Z <ras(wa) + wy Z chg1>i|

aely L#1,a

+ w[ Z [w1 (017 (T)P1n(Tn) — d1; T P1r (T))) + (d17 () Th (Wh) — ¢1j(fh)fj(wh))i|

j.helgs

- qu]j(r(f)(rj(wa)— > ch;{,)+ > [(—q>1,-<w, ) + 7 (61;(W)))
JElnsa€ly L#j,a JE€lHs
+ Z<¢1a(fj)¢ja(W)+ Z wa¢lj(fh)¢ha(fj)>:|]} 01”171(170)-
acly h}iIéH‘S Po
J

In Proposition 3.15 we have computed some of the curvature 2-forms. In particular, it was shown that
3 1
IIETUADE -3 > (CHvE. CEWr) — Z YN wp(Chvn. CPra).
J€lus a€ln, a€ly, feln,
Substituting this identity into the previous formula gives us:

(*A)p, = {—H}?[W(w) +w Z <r(f(wa) + @y Z wLC,‘fl):|

aely L#1,«

+W[w1 Z (017 (T)Nd1n(Tn) — d1; (TP (7)) + Z (o1 (T)Ta(wn) — b1 ()T (wp))

Jih€lps Jih€lps

+ ) Ti(gw) = > Z@,»(rj)(rj(wa)— > ch%,-)+ DY ba(T)dja(W)

JE€lHs JElgsacly L#j,a J€lgsa€ly
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3
D D wadtmIna(T)) + 5 D (ChT. C W)

J.helys acly acly,
J#h
1 _
+t1 2 2 w,s<c;',n,cﬁra>” op ! (po). (44)
(#,p)=(0, po)

O(EIH2 ﬂEIH3
Claim 4.17. The following hold:

(i) Let [TusWus]™ denote the transposed matrix of the horizontal tangent Jacobian of Wys.'2 Then, using
Lemma 3.8, we see that at pg, one has

Z (p1j (T Tn(wn) — d1j(Tn)Tj(wh)) = —H}; divirs Was + Tr(Br o [TusWas]™).
j,hE[HS
(ii) Since C§, = ([tr,11], Ta) = (C%71, T), it follows that

—HY5 > (wa Zch;jl) = —H5(CTy, W).
L

aely

(iii) Since ¢14(t;) = %(Cg]n, 7;), and since ¢jo (W) = —%((C“W, Tj) + Zﬁelv wﬂ(Cﬁra, 7)), as is easily seen,
we find that

1
D Pa@gjeW)=—7 3 <C;;n,rj><<caw, T+ Y w,s<cﬂra,rj>)

J€lns J€lns Belv

1
_ _Z((Cg’“’ CEW) + ) wp(Chm, Cﬁfoﬂ)-
Bely

@iv) We have:

DYDY b EHwLCE == " Y 1 (eHwL(C¥ L, Ty == Y (VosTi, COW)

jelgsaely L#j jelgsaely L#j acly
==Y ((Ve,11. C*W) — o (V71 C*W))
acly
H o 1 o o
= (Vi{r.CW) = 3 {pslte. 1], C*W) + Z(Cfm, CTW) ),
aely

where we have used the identity ¢1;(ta) = (Ve 71, 7j) = ([T, T1], Tj) + %(Cﬁ‘,rl, ;).
V) X jerys 815 (78T (we) = (V%n,grang Wy ).
(vi) By using (iii) of Lemma 3.13 and the very definition of By, we get:

1 o 1 o 1 o
D ST =5 ) (Vi Chm)=—5 Y Bu(m, t)(Chma, 7)) == Tr(Bu o Chig);

Jsh€lps helys Jsh€lps

we have set CY ¢ := C¥l|us to stress the fact that CY, acts here only on horizontal tangent vectors; see
Notation 3.6.

(vii) By using Definition 2.4 and (5) of Section 2.1, we see that C3; # 0 if and only if a € Iy, and, in this case,
C* = Cy;. Analogously, we also infer that (C 11, C%tg) =0 (o, B € Iy).

Now we have to compute the term »
the following:

jelys T (¢1;(W)) and, to this aim we need an extra little work. We start with

Y [ TasWhsl= [tj Wi, jrelygxIys-
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Claim 4.18. We claim that ([W, %1, X1, V") =0 for every X € C®(S, HS).

Proof. A proof of this claim can also be found in Spivak [45], Chapter 9, pp. 521-522.
First, we remind that W (¢, p) := %—f(l, p) for any (¢, p) € (—e,¢) x U. Now let uy, ..., u,_1 be a system of local

coordinates around pg € U. Thus X (u) = Z;:]l a; (ﬁ)g—,fi, where each q; is a function of # = (uy,...,u,—1). We
therefore have:
~ 01U 0y 0v a 0
W7_ =\~ 7 229* PO =Os
ou; ot Ju; ot ou;
because [ 31+ aa ] =0. Therefore:

n—1
(W, 9, X] = [W Za,(u)—} <ZW(a, )

and this shows that [W, ¥4 X] is tangent to U, which is the claim. O
Claim 4.19. Let us set C' :=}_ ., @, C%;. Then we have:

V%rl = —gradyg W) — Z w! grady ¢ Wy — prs(C'W). (45)
(XEIV
Proof. Using the previous Claim 4.18 we get ([VT/, t;j],v') =0forany j € Iy, and so:
(Vi v') = (Ve, W, ).
This implies that:

—(VEV. 7)) =V, VY @ (Ve W, ta) — (V). Ta))
acly

=1;(@) + Y whti(@a) + Y Y Wrwg (Va1 Ta) — (Vo ) Ta))
aecly acly 1

= ‘L’j(wl) + Z (D’éfj(wa) + Z Zwﬂﬂéc ]
aely acly 1

=1 (@) + Y whti(@e) +(C'W. 7)) (jelus={2.....ln})
aely

which is equivalent to the claim. O

Claim 4.20. At po we have:
Z rj(d)]j(W))(po) =—Agsw| — Z (waAHSwa + (grad g we, gradg g wa)) —divys(CW). (46)

jelys aely
Proof. We have:
> 7i(prj (W) =divas (VET) = Y ¢ri(t)) (VA7 1) (47)

JE€lns Jil€lns

and the thesis follows by applying Lemma 3.8 (which says that the sum in the previous identity (47) vanishes at
(0, po)) and Claim 4.19. More precisely, we have:

Z i (1, (W) (po) = (divHSt (—gradHS Wy — Z @), grady g Wy — C’W))

je€lps aecly

(. p)=(0, po)

=—Agsw| — Z (o Arswa + (grad g we, grady g wy)) — divgs(CW)  at po. O

aely
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Remark 4.21. To compute the last term in the previous sum we may proceed as follows:

divys(CW)(po) = Y _ (VH(CW) o) =Y Y (V! wa(c‘*vv) )l

jelps jelgsacly
= Z (grad g wo, C*W) +Zwa C 77, grad g wy) + wy divyg s(C* 1:1))]|
aely
= Z |:(gradHS wa, C*W) + Zwa((cafla grady gwy) + wy(C%7y, TL>diVHS(TL))]
acly IL Po
= Z (gradyyg wo, C*W) + Z(Ctl,gradHS wr) +Hg(Cti, W) at po.
aely 1

We stress that in this computation we have used the fact that C* € GL(R") is a linear operator and that, by Lem-
ma 3.8 and (ii) of Lemma 3.13, it turns out that divys(tz)(po) # 0 only if L =1 and, in this case, we have
divys(t1)(po) = —H35 (po).

Claim 4.22. We have:

(Vo cw) - Z<pHS[ta, 7], C*W) = — Z((gradHS @y — C13), C*W).

aely a€ly
Proof. We need identity (ii) of Lemma 3.12 which can be written as follows:
1 .
(Vest1, 7)) =7 (@) + S (Chm, 1)) = (€T3, 7)) (€ s, a € 1v). (48)

Moreover, note that {(pys[ts, T1], 7;) = (V{jrl, Tj) — %(Cﬁ‘[rl, 7j) (J € Igs). So we get:

1
(Vi m, CW) = 3 (prslta, ], C*W)= 3 { =(Vigmi, C*W) + ¢ ;‘,n,C“W>+wa<V{fn,c°‘W>)

aely aely
1
= Z( (Viz. COW) + 5 ;’é,n,cavm)
aely
=- > ((gradygmy — C13). C*W). O
acly

Claim 4.23. We have:

1
Z (V%rl,gradHS Wy ) = (grady g @y, grady g wy) + E(C}'f]rl,gradHS wg) — (CTS, grady g wy).

aely

Proof. This follows once again from (ii) of Lemma 3.12; see (48). O

We may now accomplish the computation of our second variation formula of 01"[1 . Indeed, by applying Remark 4.9
together with Claims 4.17 and 4.20 into (45) and rearranging we get:

l*(A)po = {—Hsﬁ |:W(w) + w(divHS Wys + Z r(f(wa) + (Cv?,, W))]

aely

. 1
+ w[leHS, (vavth) + w1 (2Tr2 By) + Tr(By o [TusWrs]") — 3 Z wo Tr(By o Cg)

acly

+(V ,uH,CW> Z((pys[ra,u;,],C“W)Jr<V%u;,,gradmwa))“

aely

ol (po). (49)
(t,p)=(0, po)
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Starting from (49), making use of identity (15) (see Remark 3.11), Claim 4.20, Remark 4.21, Claim 4.22 and
Claim 4.23 we get:

*(A)p, = {—H%[W(w) + w(divgs Wes + div(Wy) — ((TaWy)ve, @)+ (Cvg, W)) ]

+ w[—AHSwl - Z (zUO,AHSwa + (grad g we, grady g wy) + (gradg g wy, C“W})

aely

— > (Cry, gradygwr) — Hy5 (Cvy, W) + w1 (2Try By) + Tr(Br o [TusWis]")
1

1
-5 > wy Te(By o Cyg)

aely

1
- Z |:((gradHS Dy — Ct‘f), C“W) + (grady g wy, grad g we) + E(C“HUH, grad g wy)

aely

—(Ct2, gradyg wa)]:| }01”1_1 (po)
= {_H;‘;[W(w) + w(diVHS Wys + div(Wy) — ((jHWV)VHv ZIT) +2(Cvgy, W>)]

1
+ w[—AHSwl - Z <waAH5wa +2<(gradHS we + C*W), (gradHS Wy — 5Cr§)>)

aely

—Tr(JusW o C) + w1 (2Try By) + Tr(By o [TusWrs1™)

1 _
-3 Z (wa Tr(Bp 0 Cyg) + (Cva, grady g wa))“a,’; Y(po).

C{EIHz

Remark 4.24. Note that here above we have set Tr(JgsW o C) := Y, (Cty, grady g wy). However there is a slight
abuse of notation here and, in fact, we have Tr(JysW o C) :=Tr([JusW0] o C) where 0 := 0,,x,,—5,+1 denotes the
zero matrix in M, s, —p,+1(R).

Now from the last expression, using Remarks 4.14 and 4.15, we finally get:

Hy(W,op ") = /{—H%[W(un +w(divgs Wys + diviWy) — (T Wv)ve, @) +2(Cvoy, W))]
u

+ w|:—Ang1 — Z (waAHSwa + <(gradH5 wy + C*W), Qgrady ¢ wy — Cto‘f)))

aely

+ w1 (2Try By) + Tr(By o [TusWrs1™) + Tr(C o [TusW 017)

1
-3 Z (we Tr(By o C31¢) + (CHvm, gradyg wa))]}ol’fll

OtEIHZ

+ / oW, W o, n) Ipavl + (dives(1pavIWT) — H (W) ) (W, ) Jor
au

and the proof of Proposition 4.13 is complete. O



F. Montefalcone / J. Math. Pures Appl. 87 (2007) 453—494 489

4.5. Case W € C*(S, H)

Now we find the expression for the 2nd variation of az_l relatively to arbitrary horizontal variations.

IfW=WgeC®(S, H) (Wyg =wivyg + Wgs), then w is equal to w; by (37). Thus, using Proposition 4.13 and (40)
of Remark 4.15 we immediately obtain the following expression for II;,(W, 0;’1_1):

(W, op ") = / {—Hi.i [Wa(w) + w(divgs Wrs +2(Crvl, Wrs))|

+ w[—AHSw — Z((ZgradHS @y — C1J), C*Wy)+ w(2Try By)

aely

+Tr(By o [TusWus]") + Tr(C o [Tus WHO]tr)] }UZ_I

+ /{([VT/H, Was1" li=o, n)+ (dives Was + (Crvu, Wys)
au
— wHS) (Was. n)}puvloy . (50)

Starting from (50) we may easily obtain the following general version of the second variation formula relatively to
arbitrary horizontal variations:

Corollary 4.25 (Horizontal 2nd variation). Under the hypotheses of Proposition 4.13 let us assume that
W e C®(S, H), W =wvyg + Wggs. Then we have:

My (W, o) =/{—Hsﬁ[WH(w) + w(divygs Was +2(Crve, Was))]

+ | grad g w|? + w|:w(2Tr2 By) + Tr(By o TusWis)

— Z <(2gradHS Dy — Cr(f), c* WH>] }01"1_1

aely
+ /{<(_wgfadﬂs w+ [W, Wslli—o). 1)
au
+ (divirs Wis + (Crva, Was) — wH3)(Wes, )} prviof, *. (51)
Proof. First, note that:
Tr([TasWrH 010 C) =Tr([TusWr 0] o Cy) = (grad g w, Crvg) + Te(TusWas o Chs). (52)

‘We therefore have:

Tr(Br o [TasWasl™) + Tr(Crs o [TusWrs]")
- Z ((Vgrj, vi)(gradygwi, Tj) + (Chs grady g wy, r,-))

i,jEIHS

= Z (grady g wi, 7j)(¢1(w) — (ti, CHsTj))
i,jEIHS

= Y rj(w)gin(ry) (by (i) of Lemma 3.12)
i,jEIHS

=Tr(Bg o TusWhs). (53)
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Thus, we will get the thesis by using the following application of Theorem 3.17:
/(wAHSw—i-|gradHSw|2~|—w(CHvH,gradHSw))01"f1 = / w(grastw,nHS)Hsol"{_z. (54)
u AUN\Cayy

Indeed, from (50), (52) and (53) we have:

My (W, op” 1)_/{—H;§[WH(w)+w(divHs Was +2(Cuvi, Was))]

+ w[—Ast — (gradygw, Cyvp) — Y (2eradyg my — C1)), C“ W)

aely

+w(2Tr2 By) + Tr(By o JHSWHS)] }o;', :

+ /{([VT/H, Wrs1" li=o, n)+ (divies Wes + (Crve, Was) — wH) (Whs. 77)}|PHV|07"{2
au

and the thesis follows by applying (54). O

Proof of Corollary 4.7. Starting from Corollary 4.25 the proof is quite immediate. Indeed, it is enough to substitute
Wgs =0into (51). O

4.6. Proof of the main result: the case H}; = const.

In this section we shall prove Theorem 4.8. To this aim we remark that the hypothesis that }; be constant along §

is crucial to obtain a more simple expression for the second variation formula of oy~ ' In Appendix A, an analogous
remark will be made in the particular case that H}; = 0.

Let us preliminarily set (Hyg): := =3 s, 017 (T) = X jerys (Vg 7j, v},) to denote the horizontal scalar mean
curvature of U; = 0; (U), t € (—¢, &). '

Remark 4.26. If we assume that {}; = const. along S, we immediately get that LyH}; = 0 along S whenever
X € C*(S, HS). If W denotes the variation vector of ¥, we see that:

( WHS(H )t) EWHSH%ZO
Analogously, we see that 1*(L, s (H)e) = H}j =0 (« € Iy) and this implies that:

(Lo, (HE)) =1%(Ly o (Hy i) (aely). (55)
We have already noted (see Remark 4.14 in Section 4.4) that:

Uy (W, ol =10 (W, o + 130 (W, o). (56)

We stress that the hypothesis Hj; = const. can be used to compute the first addend in (56) in a slightly different way
with respect to what we have done in Section 4.4 throughout the proof of Proposition 4.13. More precisely, we have
the following

Claim 4.27. Let U be such that ’H;C, is constant. Then we have:

a .
- (W,op ™) =3 (wvy, o, )+/{—W(w> + w%}?ﬁ?ol’;? (57)
H
u
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(W)

(W,v) _
L= ppvT]|

[pHVI

. Note that the first addend in the first

Proof of Claim 4.27. We remind the notations w :=
variation formula (27) can be written as follows

Ilnt (W ) _ / Hsc n l.
u
So we easily get that

me-(w,op ™ —/ L (—w (K (of D)} = /{w(H )2 — W)Yy —wi* (L (M) o (58)
u u
Now we make use of Remark 4.26 to compute 1* (L (Hjg),). Setting W, g5y := wivy + Wy, we have:
( (H )t) =1 (‘C’VT/HS(H )t)+l ( WJ_(HS)(H )l)
:‘CWHSH;(I: +l (EWL(Hs)( H)t)
= l*(EWL(HS)( Slg)t) (by Remark 4.26)

=1 (Layu, D) + 3 1 (Lar, (H3)1)

aely
=1 ( Wyvy (H; )’) Z *(Eff)aw’v’ (H )t) (by (55))
aely
= ( w[uH( i‘-(]:)t) (59)

Therefore, from (58) we get:

W0l = [ {2 = W = wit (Cy,, ()0 o}
u

and the thesis easily follows by observing that:

_ aw SC
Iy (wvy, of; ‘)=/{(wH P w g M — i Ly (i ),} - H

Proof of Theorem 4.8. At this point the proof of Theorem 4.8 is very simple. Indeed, using (56) and Claim 4.27 we
get:

My (W, o) =1 (W, o) + 1" (W, o)

:]I“t(wvH,o )—i—/{ W(w)—i—wa

- }Hsc n— ]+IlBound (W, O’Hil).

The first addend can be computed using Corollary 4.7 with w = (W.v) " while the third addend has been already

\ VI ’
computed in the general case; see (39) in Remark 4.15. Putting all together we therefore get:

Iy (W, o™~ )—/{ se ) O |:—W(w)+wa—w}7ﬁf
8 81)1-1
u

+ |grady g w|* + wz[(ZTrz By) — Y _((2gradys(ma) — C1y). C“vH)] }o,’;l
aely
+ / {{(~weradygw + W, W1 |,—0). n) | puv
ou
+ (divrs(lpavIwW”) — Hig (W, ) (W, n)}ors?
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:/{—W(w)Hij + IgradHSw|2+w2[(2Tr2 By)— Y _((2gradyg(ma) —Czof),c“uH)“a,’;—l
aely
—i—/{((—wgrastw + [VT’“r, VT/T]T|IZO), 7]>|pH\}|
ou
+ (dives (|pavIWT) = Hig (W, ) (W7, ) fogs 2.
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Appendix A. Remark about the case H}; =0

As before, let S C G be an immersed hypersurface and U C G be an open set having non-empty intersection
with S. Let &/ := U N S be non-characteristic with smooth boundary 9/ and denote by : the inclusion of ¢/ in G.
Assume that ¢/ is an extremal of the H-perimeter functional (25), so that its scalar horizontal mean curvature H3; is
identically zero. We set:

SVy(X,Y):=X 1d(Y Jdoj™") for X, Y € X(G).
Lemma A.1. [24] With the previous hypotheses we have fu 1*(SVy(X,Y)) =0 ifeither X orY is tangent to U.

This lemma appears in [24] in a more general setting.”’ Now we explicitly remark that if the variation vector W of
¥ is compactly supported on U/, we have:

(W, o™ =/z*(svu(VT/, w)),
u

20 Proof of Lemma A.1. First note that, using standard properties of the Lie derivative and the hypothesis Hj; =0, it turns out that

/z*(svu(x, Y)):/l*(SVu(Y, X))+/zf;u(YJ x| d(al”;l),). (A.1)
u u ou
Indeed:
F(SVy (X, V) = (X dd(y LDy, = (~1v. x1d depy D)y, + (Cy (X dep )y,
= (—=1v. X1 d@p D)y + @y J x d @) |y, + 15 (SVur. x)).

and the first addend is zero since U{ is an extremal of (25) (i.e. ’H% =10). So (A.1) follows using Stoke’s theorem. Now suppose that X is tangent

toU. We have SV (X, Y) = (Lx (Y (o Yy —dX Y @p 1))y Note that (¥ I d(ol5™")1)lys = 0 again because U is an extremal
of (25); since X is tangent to U/, we also get:

H(Lx (Y o) = (Lxi* (v o)) =o.
Then
/z*(SVM(X, V)= / (¥ dx 1 d(ag—l)t) =0,
u ou
where the second equality follows because (¥ _| d(crl’_‘fl) t)|ly¢ = 0 and X is tangent to /. Finally, if Y is tangent to I/, the right-hand side of (A.1)

vanishes because (X _| d(ogl_l)[)lu =0 and we may use the previous case. 0O
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where, as usual, W denotes any extension of W to a neighborhood of Im(#). Denote by W the normal component of
W along U; = v (U) and set w = ?ZVH v)l . Therefore, using Lemma A.1 and arguing as in Claim 4.27 (see (59)) we get
that:

I (W, oz_l)zfl*(SVu(W”,W”)):/—wl*(ﬁw( ;C,),)UZ_]

u u
—1
:/—WI*(,CWIU;J( g)t)ofl .
u
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