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1. Introduction

The main focus of this paper is the long-standing Centre Conjecture of J. Tits about the structure
of convex subsets of spherical buildings. Roughly speaking, the Centre Conjecture asserts that a con-
vex subset Σ of a spherical building � should be a subbuilding in an appropriate sense, or should
contain a natural centre — a point of Σ which is fixed by all automorphisms of � that stabilize Σ .
See Conjecture 2.10 below for a precise statement and references. Apart from its independent interest,
this conjecture arises in many areas of mathematics, particularly the theory of reductive linear alge-
braic groups and their subgroups (see [23,4,5]) and the study of algebraic groups acting on algebraic
varieties, which we refer to as Geometric Invariant Theory (GIT) [17,21,8].

In this paper we give an approach to the Centre Conjecture using GIT. A key idea is to consider
not just convex subcomplexes of � but instead a more general class of convex subsets. We study this
strengthened version of the Centre Conjecture.

The original formulation of the Centre Conjecture in the 1950s came about as a possible way to
answer a fundamental question about the subgroup structure of a reductive algebraic group G [25,
Lem. 1.2], later answered by Borel and Tits via different means [11]. The Centre Conjecture also oc-
curs naturally in GIT, when one is considering the notion of unstable points in an affine G-variety [17,
Ch. 2]. In this context, solutions to the Centre Conjecture were found by Kempf [14] and Rousseau [21]
in the 1970s; see Remark 5.9. There has also been a recent renewal of interest in the Centre Conjec-
ture from building theorists, culminating in a proof of the Centre Conjecture for convex subcomplexes
of thick spherical buildings. This proof relies on case-by-case studies by Mühlherr and Tits [16], Leeb
and Ramos-Cuevas [15], and Ramos-Cuevas [19].

The purpose of this paper is to bring together some of the GIT-methods of Kempf [14], Rousseau
[21] and Hesselink [13] in the context of the Centre Conjecture. We concentrate in particular on
the work of Kempf [14], who never makes explicit the connection between his work and the Centre
Conjecture. By carefully modifying some of Kempf’s key constructions, we are able to significantly
extend his results. In the original context of GIT, this gives new results about instability for G-actions
on affine varieties (see Remark 5.12). In the context of spherical buildings and the Centre Conjecture,
our extensions provide a scheme for attacking the Centre Conjecture for a large class of convex subsets
of �G , the spherical building of G . By combining these two points of view, we are able to apply our
methods to provide uniform (rather than case-by-case) proofs of some cases of the Centre Conjecture.
Our methods have the additional advantage of being constructive — not only do we prove the existence
of a centre, but we give a way of finding this centre — and they also cover new cases of the Centre
Conjecture (in general, the subsets coming from GIT are not subcomplexes of �G ). On the other hand,
we restrict attention in this paper to finding “G-centres” for convex subsets of �G — that is, we
restrict attention to those building automorphisms that come from G . Our main reason for this is to
keep the exposition more accessible; in the final section we briefly indicate how our methods may be
extended to cover automorphisms which do not come from G .

Our principal result, Theorem 4.5, gives a necessary and sufficient criterion for the existence of a
G-centre of a convex subset of �G in terms of our generalization of Kempf’s notion of a state. While
GIT-methods have been used in the past to approach the Centre Conjecture, cf. [21], Theorem 4.5
provides a new strategy for an attack on this conjecture.

The paper is laid out as follows. In Section 2 we collect a wide range of prerequisites. Starting
with basic properties of algebraic groups and their sets of cocharacters and characters, we construct
the vector and spherical buildings associated to a semisimple group G . This allows us to give a for-
mal statement of Tits’ Centre Conjecture 2.10. We also provide some basic material on convex cones,
Serre’s notion of G-complete reducibility, and the notion of instability in GIT. In Section 3, we pro-
ceed with our generalization of Kempf’s work from [14]. This section lies at the heart of the paper,
and culminates with our Theorem 3.23, which generalizes Kempf’s key theorem [14, Thm. 2.2]. When
translated into the language of spherical buildings in Section 4, our results give an equivalent for-
mulation of the Centre Conjecture in terms of our generalization of Kempf’s notion of a state: see
Theorem 4.2, Theorem 4.5, and Remark 4.6(i). In particular, Theorem 4.5 gives a complete characteri-
zation of the existence of a G-centre of a convex subset of �G .
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In Section 5, we apply our strengthening of Kempf’s results to situations arising from GIT. In par-
ticular, we show how to recover existing results in the literature (especially from [14,8]) from our
constructions; see Remark 5.9. Subsequently, we then apply our methods to prove the Centre Con-
jecture in some special cases; see Theorem 5.11, Theorem 5.14, and Theorem 5.5. It is rather striking
that these last two results provide applications of our new GIT-methods to situations which have no
apparent connection with GIT. This supports our view that these methods provide valuable insight
into the Centre Conjecture.

The final section of the paper briefly discusses various ways in which our results can be extended,
depending on the situation at hand.

2. Preliminaries

2.1. Basic notation

Throughout the paper (except in part of Section 6), G denotes a semisimple linear algebraic group
defined over an algebraically closed field k. Many of our results hold for an arbitrary reductive alge-
braic group G (see Section 6.1). By a subgroup of G we mean a closed subgroup. Let H be a subgroup
of G . We denote by Ru(H) the unipotent radical of H .

Let T be a maximal torus of G and let Ψ (G, T ) denote the set of roots of G with respect to T .
For α ∈ Ψ (G, T ), we denote the corresponding root subgroup of G by Uα . For a T -stable subgroup H
of G , we denote the set of roots of H with respect to T by Ψ (H, T ) := {α ∈ Ψ (G, T ) | Uα ⊆ H}.

Whenever a group Γ acts on a set Ω , we let CΓ (ω) denote the stabilizer in Γ of ω ∈ Ω . If Σ is
a subset of Ω , we let NΓ (Σ) denote the subgroup of elements of Γ that stabilize Σ setwise.

2.2. Cocharacters and parabolic subgroups

For any linear algebraic group H , we let Y H , XH denote the sets of cocharacters and characters
of H , respectively. When H = G , we drop the suffix and write Y = YG . We write X for the disjoint
union of the XT , where T runs over the maximal tori of G . If H is a torus, then Y H and XH are
abelian groups which we write additively: e.g., if λ,μ ∈ Y H and a ∈ k∗ , then (λ + μ)(a) := λ(a)μ(a).
For any torus H , we denote by 〈 , 〉 the usual pairing Y H × XH → Z. We have a left action of G on Y
given by (g, λ) �→ g · λ, where (g · λ)(a) := gλ(a)g−1 for a ∈ k∗ . Moreover, there is a left action of G
on X given by (g, β) �→ g!β , where (g!β)(x) = β(g−1xg) for x ∈ G . Note that if H is a subgroup of G ,
λ ∈ Y H , β ∈ XH and g ∈ G , then g · λ ∈ Y g H g−1 and g!β ∈ Xg H g−1 . If H is a torus of G , λ ∈ Y H , β ∈ XH ,
and g ∈ G , we have

〈g · λ, g!β〉 = 〈λ,β〉. (2.1)

We recall [8, Def. 4.1].

Definition 2.2. A norm on Y is a non-negative real-valued function ‖‖ on Y such that

(a) ‖g · λ‖ = ‖λ‖ for any g ∈ G and any λ ∈ Y ;
(b) for any maximal torus T of G , there is a positive definite integer-valued form ( , ) on Y T such

that (λ,λ) = ‖λ‖2 for any λ ∈ Y T .

Such norms always exist, as follows from [14, Lem. 2.1]. From now on, we fix a norm ‖‖ on Y .
We now extend the notion of a cocharacter. For the rest of the paper, whenever it is not specified,

the letter K stands for either one of Q or R. Let H be a subgroup of G . Define Y H (Q) to be the
quotient of Y H × N0 by the equivalence relation: (λ,m) ≡ (μ,n) if nλ = mμ. In particular, Y H (Q) ∼=
Y H ⊗Z Q if H is a torus. For any maximal torus T of G , we define Y T (R) = Y T (Q) ⊗Q R. Given
λ,μ ∈ Y T (K ), we denote by [λ,μ] the line segment {aλ + bμ | a,b ∈ K , a,b � 0, a + b = 1} between
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λ and μ in Y T (K ). It is clear from the definition that this line segment does not depend on the choice
of T with λ,μ ∈ Y T (K ).

Let T be a maximal torus of G . If λ ∈ Y T (R), then we define Pλ to be the subgroup generated by T
and the root groups Uα , where α ranges over all roots in Ψ (G, T ) such that 〈λ,α〉 � 0; note that Pλ

is a parabolic subgroup of G [24, Prop. 8.4.5]. A Levi decomposition of Pλ is given by Pλ = LλRu(Pλ),
where Lλ = CG(λ) is the Levi subgroup of Pλ generated by T and the root groups Uα with 〈λ,α〉 = 0.
The unipotent radical Ru(Pλ) is generated by the root groups Uα , where α ranges over all roots such
that 〈λ,α〉 > 0. If P is a parabolic subgroup of G and L is a Levi subgroup of P , then there exists
ν ∈ Y such that P = Pν and L = Lν .

The space Y (Q) = YG(Q) is made by glueing pieces Y T (Q). We now construct a space Y (R) from
pieces Y T (R) in a similar way. If g ∈ G and T is a maximal torus of G , then g gives rise to a Q-linear
map from Y T (Q) to Y gT g−1 (Q). Hence g gives rise to an R-linear map from Y T (R) to Y gT g−1 (R). It
follows that G acts on the disjoint union

⋃
T Y T (R). Now we identify ν ∈ Y T (R) with x ·ν ∈ YxT x−1 (R),

for x ∈ Lν . Then Y (R) is the resulting quotient space. Given λ ∈ Y (R), we define Pλ and Lλ in the
obvious way. We identify Y (Q) with a subset of Y (R); this embedding is equivariant with respect to
the actions of G on Y (Q) and Y (R).

We also define X(Q) and X(R) as the disjoint union of pieces XT (Q) and XT (R) as T runs over
the maximal tori of G . The left action of G on Y (resp. X ) extends to a left action of G on Y (K )

(resp. X(K )); the pairings 〈 , 〉 between Y T and XT extend to give non-degenerate pairings Y T (K ) ×
XT (K ) → K for each maximal torus T of G . The norm ‖‖ on Y comes from integer-valued bilinear
forms on Y T for each maximal torus T of G , by Definition 2.2(b); since each of these forms extends
to a K -valued bilinear form on Y T (K ), the norm on Y extends to a G-invariant norm on Y (K ), which
we also denote by ‖‖. In particular, for any maximal torus T of G , the subset Y T (R) of Y (R) is a real
normed vector space, and hence carries a natural topology coming from the norm. We endow Y T (Q)

with the relative topology coming from the inclusion Y T (Q) ⊂ Y T (R).

Lemma 2.3. Recall that K = Q or R.

(i) For any α ∈ XT (K ), the set of λ ∈ Y T (K ) such that 〈λ,α〉 > 0 is open in Y T (K ).
(ii) For any λ ∈ Y T (K ), there is an open neighbourhood U of λ in Y T (K ) such that for any μ ∈ U , we have

Pμ ⊆ Pλ .

Proof. (i). This is clear: α defines an open half-space in Y T (K ).
(ii). Choose U to be the set of μ ∈ Y T (K ) such that whenever 〈λ,α〉 > 0 for a root α, we have

〈μ,α〉 > 0 also. By (i), U is a finite intersection of open sets, so is open. For μ ∈ U , we then have
Ru(Pμ) ⊇ Ru(Pλ). It is a standard fact that this implies Pμ ⊆ Pλ . �
2.3. Convex cones

Let E be a finite-dimensional vector space over K = Q or R; in the former case we give E the
relative topology it inherits from its embedding in E ⊗Q R. A subset C of E is called a cone if it
is closed under multiplication by non-negative elements of K . We recall some standard facts about
cones; for more detail, see for example the appendix and additional references in [18]. A convex cone
in E is a cone in E which is also a convex subset. Let D ⊆ E∗ , where E∗ denotes the dual of E . The
set {e ∈ E | β(e) � 0 for all β ∈ D} is a closed convex cone in E; we call this the cone defined by D .
A convex cone C is said to be polyhedral if it is the cone defined by some finite subset of E∗ . If K = Q
and D is a finite subset of E∗ , then the subset of E ⊗Q R defined by D is the closure of the subset of
E defined by D .

By the Minkowski–Weyl Theorem [12], a convex cone C is polyhedral if and only if it is finitely
generated: that is, if and only if there exist e1, . . . , es ∈ E for some s such that C = {c1e1 + · · · + cses |
c1, . . . , cs � 0} (we say that C is the cone generated by e1, . . . , es). In particular, a finitely generated
convex cone is closed. If K = Q and C is the finitely generated convex cone in E generated by
e1, . . . , es ∈ E , then the cone in E ⊗QR generated by e1, . . . , es is the closure of C . Likewise, if D ⊆ E∗
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and C is the finitely generated convex cone defined by D , then the cone in E ⊗Q R defined by D is
the closure of C .

2.4. Vector buildings and spherical buildings

We derive our main results in this paper for subsets of Y (K ), but we also wish to translate them
into the language of spherical buildings. In order to do this, we need to recall how to construct
buildings from Y (K ). Instead of moving straight from Y (K ) to the associated spherical building of G ,
we first pass to the vector building and then identify the spherical building of G as a subset of this
vector building. The additional structure afforded by the vector building makes the exposition more
transparent.

First, define an equivalence relation on Y (K ) by λ ≡ μ if μ = u · λ for some u ∈ Ru(Pλ). We let
V (K ) = V G(K ) be the set of equivalence classes and let ϕ : Y (K ) → V (K ) be the canonical projection
(to ease notation, we use ϕ for the projection in both cases K = Q and K = R). We call V (R) and
V (Q) the vector building of G and the rational vector building of G , respectively, see [21, Sec. II, Sec. IV];
we have an obvious G-equivariant embedding from V (Q) to V (R). Since the norm ‖‖ on Y (K ) is G-
invariant, it descends to give a real-valued function on V (K ), which we also call a norm and denote
by ‖‖.

Given a maximal torus T of G , we set V T (K ) := ϕ(Y T (K )). We call the subsets V T (K ) the apart-
ments of V (K ). The restriction of ϕ to Y T (K ) is a bijection, so we can regard V T (K ) as a vector space
over K . Any two points of V (K ) lie in a common apartment, because any two parabolic subgroups
of G contain a common maximal torus. Because of this, we can put a metric d on V (K ) by defining
d(x, y) = ‖x − y‖ to be the Euclidean distance between x and y in any apartment that contains them
both. Similarly, we let [x, y] denote the line segment between x and y in any apartment containing
them both. Neither of these constructions depends on the choice of apartment (see [21, Sec. II]). Like-
wise, if a,b ∈ K , then the linear combination ax + by does not depend on the choice of apartment.
By [21, Prop. 2.3], V (R) is a complete geodesic metric space; it is the completion of the space V (Q)

with respect to the norm.
If W ⊆ V (K ) and T is a maximal torus of G , then we define W T := W ∩ V T (K ). We say that W

is convex if W contains the line segment [x, y] for all x, y ∈ W . If W is convex, then W T is a convex
subset of V T (K ) for every maximal torus T of G , and vice versa.

Now the spherical Tits building �(R) = �G(R) of G can be defined simply as the unit sphere in
V (R), and the rational spherical building �(Q) = �G(Q) of G is the projection of V (Q) \ {0} onto �(R),
[21, IV], [17, Ch. 2, §2]. We have an obvious G-equivariant embedding from V (Q) to V (R). Since
the norm on V (K ) is G-invariant, �(K ) is a G-invariant subspace of V (K ). It is clear that �(K ) is a
closed subspace of V (K ) and that the metric on V (K ) restricts to give a metric on �(K ) [21, II]; since
we are working with vectors of norm 1 in V (K ), this metric gives the same topology on �(K ) as that
coming from the angular metric defined in [17, Ch. 2, §2, p. 59]. In particular, �(R) is the completion
of �(Q). There is a natural notion of opposition of points in �(K ) inherited from V (K ); x and y
are opposite if and only if d(x, y) = 2. Given any two points in �(K ) that are not opposite, there is
a unique geodesic between them; this is the projection of the corresponding line segment in V (K )

onto the unit sphere. We define the apartments of �(K ) to be the intersections of the apartments of
V (K ) with �(K ); we set �T (K ) := �(K ) ∩ V T (K ). Each apartment �T (K ) is the unit sphere centred
at the origin in the Euclidean space V T (K ). We denote the projection map from V (K ) \ {0} to �(K )

by ξ and we define

ζ : Y (K ) \ {0} → �(K )

to be the composition ξ ◦ ϕ (again, here we use the same letter for these maps in both cases K = Q
and K = R).

If Σ ⊆ �(K ), then we define ΣT := Σ ∩ �T (K ). We say that Σ is convex if whenever x, y ∈ Σ are
not opposite, then Σ contains the geodesic between x and y [23, §2.1]. It follows that Σ is convex if
and only if ΣT is a convex subset of �T (K ) for every maximal torus T of G .
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The spherical building �(K ) has a simplicial structure. It is the geometric realization over K of
an abstract building, whose simplices correspond to the parabolic subgroups of G (ordered by reverse
inclusion). In our notation, given a proper parabolic subgroup P of G , we can recover the correspond-
ing topological simplex as σP = {ζ(λ) | λ ∈ Y (K ) \ {0}, P ⊆ Pλ}. Since ‖‖ is G-invariant, the action of
G on V (K ) restricts to give an action of G on �(K ) by isometries; this action preserves the simpli-
cial structure. Note that ζ, ξ and ϕ are G-equivariant. For any λ ∈ Y (K ) \ {0}, the stabilizer in G of
ϕ(λ) ∈ V (K ) and the stabilizer in G of ζ(λ) ∈ �(K ) are both equal to Pλ .

Let f : V (K ) → V (K ) be a bijective function such that each apartment of V (K ) is mapped K -
linearly onto some other apartment of V (K ) and f preserves the simplicial structure. Then f gives
rise to a bijective function f : �(K ) → �(K ). We call a function of this form an automorphism
of �(K ).

2.5. Cones in Y (K )

In this paper, we wish to move back and forth between Y (K ) and the building �(K ), using the
map ζ : Y (K ) \ {0} → �(K ). In particular, we study what happens to convex subsets of spherical
buildings when we pull them back to Y (K ). This leads to the following basic definitions:

Definition 2.4. Given a subset C of Y (K ) and a maximal torus T of G , we set CT := C ∩ Y T (K ).

(i) We say that C is convex if CT is a convex subset of Y T (K ) for every maximal torus T of G .
(ii) We say that C is saturated if whenever λ ∈ C , then u · λ ∈ C for all u ∈ Ru(Pλ).

(iii) We say that C is a cone if CT is a cone for every maximal torus T of G . In this case we say
that C is polyhedral if every CT is polyhedral, and that C is of finite type if for every T , the set
{g · (C g−1 T g) | g ∈ G} is finite.

Definition 2.5. Let Σ be a convex subset of �(K ) and let C = ζ−1(Σ) ∪ {0}. From the definition of ζ ,
it is clear that C is a saturated cone in Y (K ). We say that Σ is polyhedral if C is polyhedral, and in
this case we say Σ is of finite type if C is of finite type.

The next lemma shows how these definitions allow us to translate back and forth between Y (K )

and �(K ).

Lemma 2.6. Let Σ be a subset of �(K ) and let C be any saturated cone in Y (K ) such that ζ(C \ {0}) = Σ .
Then the following hold:

(i) C = ζ−1(Σ) ∪ {0};
(ii) Σ is convex if and only if C is convex;

(iii) Σ is polyhedral if and only if C is polyhedral;
(iv) Σ is of finite type if and only if C is of finite type.

Proof. (i). Since ζ(C \ {0}) = Σ , we have C ⊆ ζ−1(Σ) ∪ {0}. On the other hand, suppose λ ∈ ζ−1(Σ).
Then there exists μ ∈ C such that ζ(μ) = ζ(λ). By definition of ζ , this implies that there exists
u ∈ Ru(Pμ) such that λ is a positive multiple of u · μ. But C is a saturated cone, so we must have
λ ∈ C .

Now (ii), (iii) and (iv) follow from the definitions. �
We now show that subcomplexes of the building fit into this framework.

Lemma 2.7. Let Σ be a convex subcomplex of �(K ). Then Σ is closed, polyhedral, and of finite type.

Proof. It follows from Lemma 2.3(ii) that a convex subcomplex is closed in �(K ). Let C = ζ−1(Σ) ∪
{0}; then C is a saturated convex cone in Y (K ). Let P be a parabolic subgroup of G such that σP ∈ Σ .
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Let T be a maximal torus of P and let B be a Borel subgroup of P with B ⊇ T . Let Π = {α1, . . . ,αr}
be the base for the root system Ψ (G, T ) corresponding to B . Then Π is a basis for the space XT (K ).
Let {λ1, . . . , λr} denote the corresponding dual basis of Y T (K ), so that 〈λi,α j〉 = δi j for 1 � i � r.

Now there exists a subset Π ′ ⊆ Π such that P is of the form P (Π ′) in the notation of [10, IV,
14.17] (this means that the Levi subgroup of P containing T has root system spanned by the sub-
set Π ′ , and the unipotent radical of P contains all the root groups Uα with α ∈ Π \ Π ′). Now for any
λ ∈ Y T (K ), P ⊆ Pλ if and only if 〈λ,αi〉 = 0 for αi ∈ Π ′ and 〈λ,αi〉 � 0 for αi /∈ Π ′ .

Let C P = ζ−1(σP ) ∪ {0}. Then C P
T = C P ∩ Y T (K ) consists of all the λ ∈ Y T (K ) such that P ⊆ Pλ .

We claim that C P
T is the cone in Y T (K ) generated by the set {λ j | α j /∈ Π ′}. This follows easily from

the characterization of parabolic subgroups containing P given in the previous paragraph. This shows
that C P

T is a finitely generated cone in Y T (K ) for every maximal torus T of G contained in P .
Now suppose T is a maximal torus of G not contained in P , and let Q denote the subgroup

of G generated by P and T . Since Q contains P , Q is also a parabolic subgroup of G , and C P
T =

C P ∩Y T (K ) = C Q
T is a finitely generated cone in Y T (K ) by the above arguments applied to Q . We have

now shown that C P
T is a finitely generated cone in Y T (K ) for every maximal torus T of G .

It is clear that CT = C ∩ Y T (K ) is the union of the cones C P
T as P runs over the parabolic subgroups

of G containing T with σP ∈ Σ . Since there are only finitely many parabolic subgroups of G containing
any given maximal torus and each C P

T is finitely generated, we can conclude that because CT is
convex, CT is also finitely generated. Hence, by the Minkowski–Weyl Theorem, CT is polyhedral for
each T , and hence C is polyhedral.

It remains to show that C is of finite type. This also follows from the fact that for any maximal
torus T of G , the set of parabolic subgroups of G that contain T is finite. So there are only finitely
many possibilities for g · (C g−1 T g) as g ranges over all the elements of G . Hence C is of finite type, as
required. �
2.6. Tits’ Centre Conjecture

Suppose Σ is a closed convex subset of �(R). If there exists a point of Σ which has no opposite
in Σ , then Σ is contractible: that is, Σ has the homotopy type of a point. The converse is also true:
if every point of Σ has an opposite in Σ , then Σ is not contractible. For these results, and further
characterizations of contractibility, see [3, Thm. 1.1], and also [23, §2.2]. This dichotomy leads to the
following definitions, where our terminology is motivated by that of Serre [23, Def. 2.2.1]:

Definition 2.8. Recall that K =Q or R.

(i) Let Σ be a convex subset of �(K ). We say that Σ is �(K )-completely reducible (or �(K )-cr) if
every point in Σ has an opposite in Σ .

(ii) Let C be a convex, saturated cone in Y (K ). We say that C is Y (K )-completely reducible (or Y (K )-cr)
if for every λ ∈ C , there exists u ∈ Ru(Pλ) such that −(u · λ) ∈ C (note that it is automatic that
u · λ ∈ C for all u ∈ Ru(Pλ), since C is saturated).

Recall from Definition 2.5 that C := ζ−1(Σ) ∪ {0} is a saturated convex cone; it is immediate that
Σ is �(K )-cr if and only if C is Y (K )-cr.

Definition 2.9. Let Σ be a subset of �(K ) and let c ∈ Σ . Let Γ be a group acting on �(K ) by building
automorphisms. We say that c is a Γ -centre of Σ if c is fixed by NΓ (Σ).

The following is a version of the so-called “Centre Conjecture” by J. Tits, cf. [25, Lem. 1.2], [22, §4],
[23, §2.4], [27], [17, Ch. 2, §3], [21, Conj. 3.3], [16,15,19].

Conjecture 2.10. Let Σ be a closed convex subset of �(K ). Then at least one of the following holds:

(i) Σ is �(K )-cr;
(ii) Σ has an Aut �(K )-centre.
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Conjecture 2.10 often appears in the literature with the assumption that Σ is a subcomplex
of �(K ), rather than an arbitrary closed convex subset. In this form, the conjecture is known; this is
the culmination of work of B. Mühlherr and J. Tits [16] (G of classical type or type G2), B. Leeb and
C. Ramos-Cuevas [15] (G of type F4 or E6) and C. Ramos-Cuevas [19] (G of type E7 or E8).

Theorem 2.11. If Σ is a convex subcomplex of �(K ), then Conjecture 2.10 holds.

When Σ is a closed convex subset of �(K ) but not a subcomplex, very few cases of Conjec-
ture 2.10 are known. If the dimension of Σ is at most 2, then the conjecture is true [2].

The proofs of the various cases of Theorem 2.11 in [16,15,19] rely on the extra simplicial structure
carried by a subcomplex, and it is not clear whether these methods can be extended to arbitrary
convex subsets of �(K ) [19, Sec. 1]. One area in which relevant cases of the Centre Conjecture have
been known for some time is Geometric Invariant Theory, see [14,21,17]. It is our intention in this
paper to elucidate and extend the methods of [14,21,17] with particular reference to Conjecture 2.10.
In doing this, we are able to consider a wider class of convex subsets of a spherical building �(K ) and
show how to reformulate the Centre Conjecture for a subset of this class. This class consists precisely
of the convex subsets of �(K ) that are polyhedral and of finite type, cf. Definition 2.5.

Remark 2.12. It is worth pointing out that in Conjecture 2.10 the subset Σ is assumed to be closed
in �(K ), whereas in most of our results in the sequel we do not require this hypothesis of closedness.
Thus, in some sense, we are looking at a slightly generalized version of the conjecture. However, we
do need to impose the extra conditions that Σ is polyhedral and of finite type, and we restrict
attention in this paper to finding G-centres, rather than Aut�(K )-centres, so this narrows the field
again. Note that a convex subcomplex of a spherical building, being both closed and polyhedral of
finite type by Lemma 2.7 above, fits into either camp.

2.7. G-complete reducibility

We briefly recall some definitions and results concerning Serre’s notion of G-complete reducibility
for subgroups of G , see [22,23,4,7,8] for more details. A subgroup H of G is called G-completely re-
ducible (G-cr) if whenever H is contained in a parabolic subgroup P of G , there exists a Levi subgroup
of P containing H . This concept can be interpreted in the building �(K ) of G: let

�(K )H :=
⋃

H⊆P

σP ,

the fixed point set of H in �(K ). Then �(K )H is a convex subcomplex of �(K ), which is �(K )-cr if
and only if H is G-cr [23, §3]. The study of G-complete reducibility motivated much of the work in
this paper; for a direct application of (the known cases of) the Centre Conjecture 2.10 to G-complete
reducibility, see [6].

In the proof of Theorem 5.14 below, we require a piece of terminology introduced in [8, Def. 5.4].
Let H be a subgroup of G , let G → GLm be an embedding of algebraic groups, and let n ∈ N. We call
h ∈ Hn a generic tuple of H if the components of h generate the associative subalgebra of Matm

spanned by H . Generic tuples always exist if n is sufficiently large. Now G acts on Gn by simulta-
neous conjugation, and H is G-cr if and only if the G-orbit of h ∈ Hn is closed in Gn , where h is a
generic tuple of H [8, Thm. 5.8(iii)].

2.8. Instability in GIT

Many of the results in this paper are inspired by constructions of Kempf [14] and Hesselink [13],
and also by our generalization of their work in [8]. We briefly recall some of the main definitions
which are relevant to our subsequent discussion (see especially Section 5 below). Throughout this
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section, G acts on an affine variety A, and S is a non-empty G-stable closed subvariety of A. We de-
note the G-orbit of x in A by G · x. For any λ ∈ Y , there is a morphism φx,λ : k∗ → A, given by
φx,λ(a) = λ(a) · x for each a ∈ k∗ . If this morphism extends to a morphism φ̂x,λ : k → A, then we say
that lima→0 λ(a) · x exists, and we set this limit equal to φ̂x,λ(0). In this case we say that λ desta-
bilizes x, and we say that λ properly destabilizes x if the limit does not belong to G · x; we call the
corresponding parabolic subgroup Pλ a (properly) destabilizing parabolic subgroup for x.

The following are [8, Def. 4.2 and Def. 4.4].

Definition 2.13. For each non-empty subset U of A, define |A, U | as the set of λ ∈ Y such that
lima→0 λ(a) · x exists for all x ∈ U . We define

|A, U |S =
{
λ ∈ |A, U |

∣∣∣ lim
a→0

λ(a) · x ∈ S for all x ∈ U
}
.

If λ ∈ |A, U |S , then we say λ destabilizes U into S or is a destabilizing cocharacter for U with respect to S .
Extending Hesselink [13], we call U uniformly S-unstable if |A, U |S is non-empty; if, in addition, U � S ,
we call U properly uniformly S-unstable. We write |A, U |s instead of |A, U |{s} if S = {s} is a singleton,
and we write |A, x|S instead of |A, {x}|S if U = {x} is a singleton. By the Hilbert–Mumford Theorem
[14, Thm. 1.4], x ∈ A is S-unstable if and only if G · x ∩ S �=∅. Note that if U is properly uniformly S-
unstable, then |A, U |S is a proper subset of |A, U | (we could have λ ∈ |A, U | such that lima→0 λ(a) · x
does not lie in S for some x ∈ U ; the zero cocharacter gives an example of this phenomenon).

Suppose U is properly uniformly S-unstable. In [8, Thm. 4.5], we constructed a so-called optimal
class of cocharacters contained in |A, U |S which enjoys a number of useful properties. That construc-
tion consisted of a strengthening of arguments of Kempf and Hesselink; one of the main goals of this
paper is to extend these ideas even further and interpret them in the language of buildings, where
they give new positive results for Conjecture 2.10. The central idea is that the subset |A, U | of Y gives
rise to a convex subset of the building �(K ), and if λ belongs to the optimal class, then ζ(λ) is a
G-centre of this subset; see Section 5 for precise details. Indeed, many of the results of Kempf [14]
and Hesselink [13], and our uniform S-instability results in [8, Sec. 4], can be recovered as special
cases of the general constructions presented in this paper; see for example Remark 5.9 below.

3. Quasi-states and optimality

In this section we generalize some of the results of Kempf from [14], concerning states. We then
translate these results into the language of buildings, and show how they can be used to prove Con-
jecture 2.10 in various cases. Our core result is Theorem 3.23, which generalizes Kempf’s key theorem
[14, Thm. 2.2].

The main point of the material at the start of this section is that many results in [14] go through
under considerably weaker hypotheses; this allows us to extend Kempf’s formalism to cover important
new cases, as demonstrated in Sections 4 and 5. We start by introducing quasi-states, generalizing
Kempf’s notion of a state [14, Sec. 2].

Definition 3.1. A real quasi-state Ξ of G is an assignment of a finite (possibly empty) set Ξ(T ) of
elements of XT (R) for each maximal torus T of G . If Ξ(T ) ⊆ XT (Q) for every T , then we call Ξ a
rational quasi-state, and if Ξ(T ) ⊆ XT for every T , then we call Ξ an integral quasi-state. If K = Q
or R, then K -quasi-state has the obvious meaning. Given a real quasi-state Ξ and g ∈ G , we define a
new real quasi-state g∗Ξ by

(g∗Ξ)(T ) := g!Ξ
(

g−1T g
) ⊆ XT (K ).

This defines a left action of G on the set of real quasi-states of G . Note that if Ξ is rational (resp.
integral), then so is g∗Ξ for any g ∈ G . For each real quasi-state Ξ , we write CG(Ξ) = {g ∈ G |
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g∗Ξ = Ξ} for the centralizer of Ξ in G . We say that Ξ is bounded if for every maximal torus T
of G , the set

⋃
g∈G(g∗Ξ)(T ) is finite. Note that if Ξ is a bounded Q-quasi-state, then there exists

some n ∈ N such that for all maximal tori T of G and any α ∈ Ξ(T ), we have nα ∈ XT ; i.e., scaling a
bounded rational quasi-state by a suitably large positive integer, we can ensure it becomes integral.

Definition 3.2. Associated to a real quasi-state Ξ and a maximal torus T of G , we have the function
μ(Ξ, T , ·) : Y T (R) →R∪ {∞} defined by

μ(Ξ, T , λ) := min
α∈Ξ(T )

〈λ,α〉.

We call μ(Ξ, T , ·) the numerical function of Ξ and T . Note that for a fixed maximal torus T of G ,
Ξ(T ) is empty if and only if μ(Ξ, T , λ) = ∞ for some λ ∈ Y T (R) if and only if μ(Ξ, T , λ) = ∞ for
all λ ∈ Y T (R). Note also that if Ξ is rational (resp. integral), then the associated numerical function
takes rational (resp. integer) values on Y T (Q) (resp. Y T ), wherever it is finite.

Suppose λ ∈ Y (R). We say that Ξ is admissible at λ if for any maximal torus T of G with λ ∈ Y T (R)

and any x ∈ Pλ , we have

μ
(
Ξ, xT x−1, x · λ) = μ(Ξ, T , λ).

By extension, for any subset S of Y (R), we say that Ξ is admissible on S if Ξ is admissible at every
point of S . If Ξ is admissible on all of Y (R), then we simply call Ξ an admissible quasi-state (note
that this agrees with the definition of admissibility given in [14, Sec. 2]).

We say that Ξ is quasi-admissible if for any maximal torus T of G , any λ ∈ Y T (R), and any x ∈ Pλ ,
we have

μ(Ξ, T , λ) � 0 ⇒ μ
(
Ξ, xT x−1, x · λ)

� 0.

Note that if Ξ is admissible, then Ξ is quasi-admissible.

Remark 3.3. Our concept of a quasi-state is weaker than Kempf’s notion of a state [14, Sec. 2]. How-
ever, Kempf’s main result [14, Thm. 2.2] goes through with his bounded admissible states replaced
by bounded admissible quasi-states. The real difference between our results and Kempf’s is that we
replace admissibility with the weaker notions of admissibility at a point and quasi-admissibility; this
gives us genuinely new results.

We also note that it is rather important for our purpose of translating results into the language of
buildings to be able to use admissibility at a point, rather than Kempf’s stronger notion of admissibil-
ity; see especially Theorem 4.5 and the subsequent Remark 4.6(ii) below.

We collect some useful properties of quasi-states in the next lemma.

Lemma 3.4. Suppose Ξ is a real quasi-state of G.

(i) Suppose T is any maximal torus of G, and suppose that λ1, λ2 ∈ Y T (R) are such that μ(Ξ, T , λi) > 0 for
i = 1,2. Then μ(Ξ, T , ν) > 0 for any ν = a1λ1 + a2λ2 , where a1,a2 ∈ R�0 are not both 0.

(ii) For any maximal torus T of G, any λ ∈ Y T (R), and any g ∈ G, we have

μ(Ξ, T , λ) = μ
(

g∗Ξ, gT g−1, g · λ)
.

(iii) If Ξ is admissible at λ ∈ Y (R), then the value of μ(Ξ, T , λ) is independent of the choice of maximal
torus T with λ ∈ Y T (R).
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(iv) If Ξ is quasi-admissible and λ ∈ Y (R), then whether μ(Ξ, T , λ) is non-negative or not is independent of
the choice of maximal torus T with λ ∈ Y T (R).

(v) If Ξ is admissible at λ ∈ Y (R), then g∗Ξ is admissible at g · λ for any g ∈ G.
(vi) If Ξ is quasi-admissible, then g∗Ξ is quasi-admissible for any g ∈ G.

Proof. (i). For i = 1,2, we have μ(Ξ, T , λi) > 0 if and only if 〈λi,α〉 > 0 for all α ∈ Ξ(T ). If this holds,
and if a1,a2 ∈ R�0 are not both 0, then 〈a1λ1 + a2λ2,α〉 > 0 for all α ∈ Ξ(T ). This gives the result.

(ii). By definition, (g∗Ξ)(gT g−1) = g!Ξ(T ). The result now follows from (2.1).
(iii) and (iv). Suppose T and T ′ are maximal tori of G and λ ∈ Y T (R) ∩ Y T ′(R). Then xT x−1 = T ′

for some x ∈ Lλ ⊆ Pλ . So if Ξ is admissible at λ, we have

μ(Ξ, T , λ) = μ
(
Ξ, xT x−1, x · λ) = μ

(
Ξ, T ′, λ

)
,

which proves (iii). Similarly, if Ξ is quasi-admissible, then

μ(Ξ, T , λ) � 0 ⇐⇒ μ
(
Ξ, xT x−1, x · λ)

� 0 ⇐⇒ μ
(
Ξ, T ′, λ

)
� 0,

which proves (iv).
(v) and (vi). Suppose g ∈ G , λ ∈ Y T (R) and x ∈ Pλ . Set λ′ = g · λ, T ′ = gT g−1 and y = gxg−1. Then

λ′ ∈ Y T ′ (R) and y ∈ Pλ′ . By part (ii), in this situation we have

μ
(

g∗Ξ, T ′, λ′) = μ(Ξ, T , λ). (3.5)

Moreover, for the same reason, we also have

μ
(

g∗Ξ, yT ′ y−1, y · λ′) = μ
(
Ξ, xT x−1, x · λ)

. (3.6)

Now suppose Ξ is admissible at λ. Then μ(Ξ, T , λ) = μ(Ξ, xT x−1, x · λ). Combining (3.5) and (3.6)
shows that g∗Ξ is admissible at λ′ , which proves (v).

Finally, suppose Ξ is quasi-admissible. Then by (3.5), we have μ(g∗Ξ, T ′, λ′) � 0 if and only if
μ(Ξ, T , λ) � 0, so g∗Ξ is also quasi-admissible, by (3.6), which proves (vi). �
Definition 3.7. If Ξ is a quasi-admissible K -quasi-state, then we can define a subset Z(Ξ) of Y (K ) by
setting

Z(Ξ) := {
λ ∈ Y (K )

∣∣ ∃ a maximal torus T of G with λ ∈ Y T (K ) and μ(Ξ, T , λ) � 0
}
.

Here we use the convention that ∞ > 0, so that in particular if Ξ(T ) = ∅ for every maximal torus T
of G , then Z(Ξ) = Y (K ). By Lemma 3.4(iv), the quasi-admissibility of Ξ implies that whether or not
λ belongs to Z(Ξ) is independent of which maximal torus T of G we choose with λ ∈ Y T (K ).

Our next two results show how to make new quasi-states by taking unions, and how to exert some
control over the stabilizer of a quasi-state.

Lemma 3.8. Let I be an arbitrary indexing set. For each i ∈ I , let Ξi be a K -quasi-state. We define Ξ :=⋃
i∈I Ξi by setting Ξ(T ) := ⋃

i∈I Ξi(T ) for each maximal torus T of G. Then:

(i) If Ξ(T ) is finite for all maximal tori T of G, then Ξ is a K -quasi-state.
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(ii) If for some maximal torus T of G (and hence for every maximal torus T of G),

⋃
i∈I

( ⋃
g∈G

(g∗Ξi)(T )

)

is finite, then Ξ is a bounded K -quasi-state.
(iii) If Ξ is a K -quasi-state and every Ξi is admissible at λ ∈ Y (R), then Ξ is admissible at λ. Similarly, if each

Ξi is quasi-admissible, then so is Ξ .
(iv) Suppose Ξ is a K -quasi-state. If T is a maximal torus of G, λ ∈ Y T (K ) and μ(Ξi, T , λ) > 0 for all i, then

μ(Ξ, T , λ) > 0.
(v) Suppose Ξ is a K -quasi-state. Let T be a maximal torus of G and suppose that for every i ∈ I , there exists

λi ∈ Z(Ξ)T such that μ(Ξi, T , λi) > 0. Then there exists γ ∈ Z(Ξ)T such that μ(Ξ, T , γ ) > 0.

Proof. (i) and (ii) are immediate. For (iii), suppose each Ξi is admissible at λ, and choose a maximal
torus T of G such that λ ∈ Y T (K ). Then for x ∈ Pλ , we can write

μ
(
Ξ, xT x−1, x · λ) = min

i∈I
μ

(
Ξi, xT x−1, x · λ) = min

i∈I
μ(Ξi, T , λ) = μ(Ξ, T , λ),

where the admissibility of each Ξi tells us that μ(Ξi, xT x−1, x · λ) = μ(Ξi, T , λ) for each i, and
(i) implies that to calculate each “min” we only need to consider a finite set of these values.
This proves (iii). For (iv), note that Ξ(T ) = ⋃

i∈ J Ξi(T ) for some finite subset J of I , so we have
μ(Ξ, T , λ) = mini∈ J μ(Ξi, T , λ) > 0.

Now we consider (v). Let χ ∈ Ξ(T ). Then χ ∈ Ξi(T ) for some i ∈ I . By hypothesis, there exists
λi ∈ Z(Ξ)T such that μ(Ξi, T , λi) > 0. Then 〈λi,χ 〉 > 0. Set λχ := λi . Set γ := ∑

χ λχ ∈ Z(Ξ)T (this
makes sense, because Ξ(T ) is finite). Now a simple calculation shows that μ(Ξ, T , γ ) > 0. �
Lemma 3.9. Let Ξ be a bounded K -quasi-state and let H be a subgroup of G. Then Θ := ⋃

h∈H h∗Ξ is
a bounded K -quasi-state, which is admissible wherever Ξ is and quasi-admissible if Ξ is. Moreover, H ⊆
CG (Θ).

Proof. That Θ is a bounded K -quasi-state with the required admissibility properties follows from
Lemma 3.8, setting I = H , and Ξh = h∗Ξ for each h ∈ H , and from Lemma 3.4(v) and (vi). That
H ⊆ CG(Θ) is obvious from the definition of Θ . �

The motivation for our definition of a quasi-state is that it is precisely what is needed to capture
the properties of saturated convex polyhedral cones in Y (K ). This is the content of our next results.

Lemma 3.10. For Ξ a quasi-admissible K -quasi-state of G and g ∈ G, we have g · Z(Ξ) = Z(g∗Ξ). In par-
ticular, CG(Ξ) ⊆ NG(Z(Ξ)).

Proof. Let λ ∈ Y T (K ). Then, by Lemma 3.4(ii), we have μ(g∗Ξ, gT g−1, g · λ) = μ(Ξ, T , λ). Therefore,
λ ∈ Z(Ξ) if and only if g · λ ∈ Z(g∗Ξ) and the result follows. �
Lemma 3.11. Let C ⊆ Y (K ) be a saturated convex polyhedral cone of finite type. Then there exists a bounded
quasi-admissible K -quasi-state Ξ(C) such that C = Z(Ξ(C)) and NG(C) = CG(Ξ(C)). Moreover, if K = Q,
then we can take Ξ(C) to be integral.

Proof. Fix a maximal torus T0 of G . Since C is of finite type, the set {g · C g−1 T0 g | g ∈ G} gives a finite
number of cones in Y T0 (K ): call these cones C1, . . . , Cr . Since C is polyhedral, for each Ci we can find
a finite set Di ⊂ XT0(K ) such that Ci is the cone defined by Di . Moreover, if K = Q, then we can pick
each Di to be a subset of XT0 .
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We define a quasi-state Ξ0 as follows: For each maximal torus T of G , let H(T ) be the transporter
of the fixed torus T0 to T ; i.e., the set of g ∈ G such that gT0 g−1 = T . Note that for any g,h ∈ H(T ),
we have gh−1 ∈ NG(T ) and h−1 g ∈ NG(T0). For each g ∈ H(T ), we have g−1 · CT = Ci for some
1 � i � r, and we set D g = g!Di , which gives a finite subset of XT (K ). Note that if g,h ∈ H(T ) are
such that gh−1 ∈ T , then D g = Dh , since T is abelian. So there are only finitely many different subsets
D g arising in this way (we get a number less than or equal to the order of the Weyl group of G).
Moreover, for any g ∈ H(T ), we see by construction that CT is the cone defined by D g in Y T (K ).
Define a quasi-state Ξ0 by

Ξ0(T ) :=
⋃

g∈H(T )

D g for each maximal torus T of G.

Note that this is a finite set for each T , so Ξ0 is a K -quasi-state, and Ξ0 is integral if K = Q. Also,
since each D g defines the cone CT , we have that Ξ0(T ) defines the cone CT in Y T (K ).

We claim that Ξ0 is bounded. To see this, let T be a maximal torus of G , and let g ∈ G . Then we
have H(g−1T g) = g−1 H(T ), so

(g∗Ξ0)(T ) = g!
(
Ξ0

(
g−1T g

)) = g!
( ⋃

h∈H(g−1 T g)

Dh

)
= g!

( ⋃
x∈H(T )

D g−1x

)
. (3.12)

Now each D g−1x has the form (g−1x)!Di for some 1 � i � r, so g!D g−1x has the form x!Di for some

1 � i � r. Further, if x, y ∈ H(T ) are such that y−1x ∈ T0, we have x!Di = y!Di for all i. Hence there
are only finitely many possibilities for x!Di as x runs over H(T ) and i runs over the indices 1, . . . , r.
Since each Di is a finite set, we can conclude that the set

⋃
1�i�r

⋃
x∈H(T )

x!Di

is finite. Since (3.12) shows that (g∗Ξ0)(T ) is contained in this set for all g ∈ G , we see that Ξ0 is
bounded, as claimed.

We claim further that Ξ0 is quasi-admissible. To see this, suppose T is a maximal torus of G , and
λ ∈ Y T (K ) is such that μ(Ξ0, T , λ) � 0. Then, since Ξ0(T ) defines the cone CT in Y T (K ), we have
λ ∈ C . Now for any x ∈ Pλ , we have x · λ ∈ C , since C is saturated. Thus x · λ ∈ CxT x−1 , which is the
cone in YxT x−1 (K ) defined by Ξ0(xT x−1). Thus μ(Ξ0, xT x−1, x · λ) � 0, as required. Moreover, since
Ξ0(T ) defines the cone CT in each Y T (K ), we have C = Z(Ξ0).

Finally, we can prove the result claimed. We define a new quasi-state

Ξ := Ξ(C) :=
⋃

g∈NG (C)

g∗Ξ0.

Then, by Lemma 3.9, since Ξ0 is a bounded quasi-admissible K -quasi-state, Ξ is a bounded quasi-
admissible K -quasi-state, and NG(C) ⊆ CG(Ξ). Moreover, if K = Q, then Ξ is integral, since Ξ0 is.
Since C = Z(Ξ0), thanks to Lemma 3.10 we have Z(g∗Ξ0) = g · Z(Ξ0) = g · C = C for each g ∈ NG(C),
so C = Z(Ξ). Lemma 3.10 also shows that CG(Ξ) ⊆ NG(C), so we are done. �
Remark 3.13. Note that the construction of the quasi-state Ξ(C) associated to the cone C in
Lemma 3.11 depends on the choice of the sets Di in the first paragraph of the proof, and differ-
ent choices here may give rise to different quasi-states. However, Ξ(C) does enjoy the following
“functorial” property: for any g ∈ G , the quasi-state g∗(Ξ(C)) defines the cone g · C in Y (K ), and
NG(g · C) = CG(g∗Ξ(C)).
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Corollary 3.14. Let Ξ be a bounded quasi-admissible K -quasi-state. Then Z(Ξ) is a saturated convex poly-
hedral cone of finite type in Y (K ). In addition, CG(Ξ) ⊆ NG(Z(Ξ)). Conversely, let C ⊆ Y (K ) be a saturated
convex polyhedral cone of finite type. Then there exists a bounded quasi-admissible K -quasi-state Ξ(C) such
that C = Z(Ξ(C)). Moreover, we can choose Ξ(C) so that NG(C) = CG(Ξ(C)).

Proof. Let C = Z(Ξ). Since μ(Ξ, T , λ) = minα∈Ξ(T )〈λ,α〉, we have μ(Ξ, T , λ) � 0 if and only if
〈λ,α〉 � 0 for all α ∈ Ξ(T ). Hence CT is the convex polyhedral cone defined by the finite set Ξ(T ).
It follows easily from the boundedness of Ξ that C is of finite type, and the quasi-admissibility of Ξ

implies that C is saturated.
The remaining statements follow from Lemma 3.11. �

Definition 3.15. Corollary 3.14 provides us with the key link between cones and quasi-states. In view
of this corollary, given a convex cone C in Y (K ) and a quasi-admissible K -quasi-state Ξ , we say that
Ξ defines C , or C is defined by Ξ , if C = Z(Ξ).

Remark 3.16. Suppose C = Z(Ξ) is a convex cone defined by the quasi-admissible quasi-state Ξ .
If C is not Y (K )-cr, one might hope that this is reflected in the values of the numerical func-
tions μ(Ξ, T , ·): for example, if there exists λ ∈ C such that 0 < μ(Ξ, T , λ) < ∞ for some maximal
torus T , then we have μ(Ξ, T ,−λ) < 0, so −λ /∈ C . The quasi-admissibility of Ξ then implies that
−(u · λ) /∈ C for any u ∈ Ru(Pλ), so C is not Y (K )-cr. However, it can happen that the numerical
functions μ(Ξ, T , ·) are identically zero on C — we might have 0 ∈ Ξ(T ) for every maximal torus T ,
for example — and this doesn’t give us enough information to work with. In order to get around
this problem, we are forced to consider two quasi-states: one defining C , and one picking out certain
points of C without an opposite in C . This is the reason that our results below (and those in [14])
involve two quasi-states Ξ and Υ .

We continue by recalling an important lemma of Kempf [14, Lem. 2.3].

Lemma 3.17. Let E be a finite-dimensional real vector space with a norm ‖‖ arising from a positive definite
R-valued bilinear form. Let A and B be finite subsets of E∗ . Define a,b : E → R by a(v) = minα∈A α(v) and
b(v) = minβ∈B β(v). Assume that the cone C = {v ∈ E | a(v) � 0} contains more than just the zero vector.
Then the following hold:

(i) The function v �→ b(v)/‖v‖ attains a maximum value M on C \ {0}.
(ii) If the maximum value from (i) is finite and positive, then there is a unique ray R in C such that for all

v ∈ C, we have b(v)/‖v‖ = M if and only if v ∈ R.

Suppose further that the inner product and each function in A and B are integer-valued on some lattice L in E.
Then the following hold:

(iii) L ∩ R is non-empty.
(iv) L ∩ R consists of all positive integral multiples of the unique shortest element in L ∩ R.

Remark 3.18. Note that if the set B in Lemma 3.17 is empty, we have M = ∞. Parts (ii)–(iv) do not
apply in this case, because M is not finite.

Translating the above result into our setting gives the following corollary.

Corollary 3.19. Let Ξ and Υ be real quasi-states and let T be a maximal torus of G. Let CT = {λ ∈ Y T (R) |
μ(Ξ, T , λ) � 0}. Then the following hold:

(a) The function λ �→ μ(Υ, T , λ)/‖λ‖ has a maximum value M(T ,Ξ,Υ ) on CT \ {0}, if this set is non-empty.
(b) If the maximum value from (i) is finite and positive, then the following hold:
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(i) There exists a unique ray R in CT \ {0} such that μ(Υ, T , λ)/‖λ‖ = M(T ,Ξ,Υ ) if and only if λ ∈ R.
(ii) If Ξ and Υ are rational quasi-states, then R ∩ Y T (Q) is a ray in Y T (Q).

(iii) If Ξ and Υ are integral quasi-states, then R ∩ Y T is non-empty and consists of all positive integer
multiples of the shortest element in R ∩ Y T .

Proof. Parts (a) and (b)(i) follow from Lemma 3.17(i) and (ii), setting E = Y T (R) with the norm ‖‖
we have fixed, and with A = Ξ(T ) and B = Υ (T ).

For (b)(ii), first note that the norm on Y T (R) arises from an integer-valued form on Y T (by Def-
inition 2.2). If Ξ and Υ are Q-quasi-states, then their numerical functions take rational values on
Y T and there is a sublattice of Y T upon which they take integer values. By parts (iii) and (iv) of
Lemma 3.17, the ray defined by λ intersects this lattice, and so R ∩ Y T (Q) is non-empty, and is hence
a ray in Y T (Q).

For (b)(iii), we can apply Lemma 3.17(iii) and (iv) with L = Y T . �
Remark 3.20. The previous result shows that if Ξ is a quasi-admissible quasi-state, C = Z(Ξ), and
Υ is another quasi-state, then Υ can be used to pick out certain rays in the subsets CT of C as T
ranges over the maximal tori of G . Roughly speaking, each such ray is the set of points in Y T (R)

where the numerical function μ(Υ, T , ·) attains a maximum, for some maximal torus T of G; we call
these points local maxima. The key to Kempf’s constructions in [14], and to our generalizations in this
paper, is to impose an extra condition on Υ to ensure that these local maxima patch together nicely
inside all of Y (R); this is where the notion of admissibility becomes important. We formalize these
ideas in the following definition.

Definition 3.21. Let Ξ and Υ be bounded real quasi-states, and suppose Ξ is quasi-admissible. Let
C = Z(Ξ) ⊆ Y (R). For each maximal torus T of G , if CT = {0}, then set M(T ) = −∞. Otherwise, let
M(T ) = M(T ,Ξ,Υ ) be the maximum value provided by Corollary 3.19. We call a point λ ∈ C a local
maximum of Υ in C if there exists a maximal torus T of G such that λ ∈ CT and 0 < μ(Υ, T , λ)/‖λ‖ =
M(T ) < ∞.

Remark 3.22. Note that if C = Z(Ξ) and Υ are as in Definition 3.21, then Υ has a local maximum
on C if and only if there exists a maximal torus T of G and some λ ∈ CT such that 0 < μ(Υ, T , λ) < ∞.

We now present a generalization of Kempf’s central result [14, Thm. 2.2]. Kempf’s proof goes
through almost word for word if one replaces the bounded admissible states Ξ and Υ with bounded
admissible quasi-states. The essential difference between our result and Kempf’s is that in Theo-
rem 3.23(b) we just require that the quasi-state Ξ is quasi-admissible, and that the quasi-state Υ

is admissible at its local maxima in C = Z(Ξ), cf. Definition 3.21.

Theorem 3.23. Let Ξ and Υ be bounded real quasi-states, and suppose Ξ is quasi-admissible. Let C =
Z(Ξ) ⊆ Y (R). For each maximal torus T of G such that CT �= {0}, let M(T ) = M(T ,Ξ,Υ ) be as in Defi-
nition 3.21. Then the following hold:

(a) The set {M(T ) | T is a maximal torus of G, M(T ) < ∞} is finite, and hence has a maximum value M.
(b) Suppose M from (a) is positive, so that Υ has local maxima in C . If Υ is admissible at its local maxima in C ,

then the set Λ := Λ(Ξ,Υ ) of λ ∈ C such that ‖λ‖ = 1 and μ(Υ, T , λ) = M for some maximal torus T
of G has the following properties:

(i) Λ is non-empty;
(ii) there is a parabolic subgroup P = P (Ξ,Υ ) of G such that P = Pλ for any λ ∈ Λ;

(iii) Ru(P ) acts simply transitively on Λ;
(iv) for each maximal torus T ′ of P there is a unique λ ∈ Λ ∩ Y T ′ (R);
(v) if Ξ and Υ are rational quasi-states, then some positive multiple of each λ ∈ Λ lies in Y .

Proof. We follow the idea of Kempf’s proof [14, Thms. 2.2 and 3.4] closely. Fix a maximal torus
T0 of G , and let T be any other maximal torus. Then T = g−1T0 g for some g ∈ G . Since
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Lemma 3.4(ii) implies that g ·CT = {λ ∈ Y T0 (R) | μ(g∗Ξ, T0, λ)� 0} = Z(g∗Ξ)T0 and that μ(Υ, T , λ) =
μ(g∗Υ, gT g−1, g · λ) for any λ ∈ Y T (R), the maximum values of the function λ �→ μ(Υ, T , λ)/‖λ‖ on
CT and the function λ �→ μ(g∗Υ, T0, λ)/‖λ‖ on g · CT are equal, and this maximum value is M(T ).
Since Ξ and Υ are bounded, there are only finitely many possibilities for g∗Ξ and g∗Υ , and so there
is only a finite number of values M(T ) arising. This proves (a).

Now assume that M is positive, so that Υ has local maxima in C , and suppose that Υ is admissible
at its local maxima in C . Choose a local maximum λ1 ∈ Y (R) \ {0} such that λ1 ∈ CT1 for some
maximal torus T1 and μ(Υ, T1, λ1)/‖λ1‖ = M . Multiplying λ1 by a positive scalar, we can ensure that
‖λ1‖ = 1. This proves part (b)(i).

Now suppose that λ2 is any other element of Λ, and let T2 be a maximal torus for which
λ2 ∈ CT2 , ‖λ2‖ = 1 and μ(Υ, T2, λ2) = M . We can choose a maximal torus T ⊆ Pλ1 ∩ Pλ2 . There ex-
ists x1 ∈ Pλ1 such that x1T1x−1

1 = T , and hence x1 · λ1 ∈ Y T (R). Likewise there exists x2 ∈ Pλ2 such
that x2T2x−1

2 = T , and hence x2 · λ2 ∈ Y T (R). Note that we have 0 � μ(Ξ, T , xi · λi) for i = 1,2, by
the quasi-admissibility of Ξ , so xi · λi ∈ CT for i = 1,2. Moreover, we have μ(Υ, T , xi · λi)/‖xi · λi‖ =
μ(Υ, Ti, λi)/‖λi‖ = M for i = 1,2, by Eq. (2.1), the admissibility of Υ at local maxima of C , and the
G-invariance of the norm. But M is the maximum possible finite value of μ(Υ, T ′, λ)/‖λ‖ on CT ′ as T ′
ranges over all maximal tori of G , hence is the maximum value on CT . By the uniqueness statement
in Corollary 3.19(b)(i), we conclude that, as ‖x1 · λ1‖ = ‖x2 · λ2‖ = 1, we have x1 · λ1 = x2 · λ2. Thus
Pλ1 = Px1·λ1 = Px2·λ2 = Pλ2 . This proves parts (b)(ii) and (iv).

The arguments of the previous paragraph show that P acts transitively on Λ. Given λ1, λ2 ∈ Λ

and x ∈ P such that λ2 = x · λ1, we can write x = ul with u ∈ Ru(P ) and l ∈ Lλ1 = CG(λ1). Then
λ2 = u · λ1, hence Ru(P ) acts transitively on Λ. Now if u · λ1 = u′ · λ1 for u, u′ ∈ Ru(P ), then u−1u′ ∈
Lλ1 ∩ Ru(P ) = {1}, hence u = u′ . This proves part (b)(iii).

For the final statement (b)(v), pick some λ ∈ Λ and some maximal torus T such that λ ∈ Y T (R).
Then by Corollary 3.19(b)(ii), the ray of all positive multiples of λ intersects Y T (Q) in a ray. Any
element of Y T (Q) can be scaled by a positive integer to give an element of Y T . �
Definition 3.24. We call Λ(Ξ,Υ ) ⊆ Y (R) from Theorem 3.23(b) the class of optimal cocharacters afforded
by the pair of R-quasi-states (Ξ,Υ ). Similarly, we call the parabolic subgroup P (Ξ,Υ ) of G the optimal
parabolic subgroup afforded by the pair (Ξ,Υ ).

Remark 3.25. Let Ξ and Υ be bounded real quasi-states as in Theorem 3.23(b) and let P (Ξ,Υ )

be the optimal parabolic subgroup of G afforded by the pair (Ξ,Υ ) from Definition 3.24. It
is clear that the map (Ξ,Υ ) �→ P (Ξ,Υ ) is functorial in the following sense: for any g ∈ G ,
g ·Λ(Ξ,Υ ) = Λ(g∗Ξ, g∗Υ ); hence g P (Ξ,Υ )g−1 = P (g∗Ξ, g∗Υ ). In particular, if g ∈ CG(Ξ)∩ CG (Υ ),
then g stabilizes the optimal class Λ(Ξ,Υ ) and normalizes the parabolic subgroup P (Ξ,Υ ); hence
CG (Ξ) ∩ CG(Υ ) ⊆ P (Ξ,Υ ).

4. Quasi-states and G-centres

In this section, we translate our results into the language of spherical buildings. The principal
result of the paper is Theorem 4.5 which gives a complete characterization of the existence of a G-
centre of a convex polyhedral subset of finite type Σ in �(K ) in terms of the existence of a bounded
integral quasi-state which admits local maxima on ζ−1(Σ) ∪ {0}.

Recall the notation from Section 2.4. The key tool is the link between convex subsets of �(K ) and
quasi-admissible K -quasi-states, which we briefly discuss now. We first consider the special case of
quasi-states which are admissible.

Definition 4.1. Let Υ be a bounded admissible K -quasi-state of G . By Lemma 3.4(iii), for any λ ∈ Y (K )

the value of μ(Υ, T , λ) is independent of the choice of maximal torus T with λ ∈ Y T (K ). Hence we
can define a numerical function μ(Υ, ·) on all of Y (K ) without ambiguity by setting

μ(Υ,λ) := μ(Υ, T , λ),
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where T is any maximal torus of G such that λ ∈ Y T (K ). Moreover, since μ(Υ,λ) = μ(Υ, u ·λ) for any
u ∈ Ru(Pλ), this function descends to give a K -valued function on V (K ), which we also denoted by
μ(Υ, ·). Finally, we can also restrict to get a K -valued function on �(K ).

Now let Ξ be a bounded quasi-admissible K -quasi-state of G . If Ξ is not admissible, the nu-
merical functions μ(Ξ, T , ·) on Y (K ) do not descend to give a well-defined function on �(K ) as in
Definition 4.1, since the value of μ(Ξ, T , λ) may depend on the choice of T with λ ∈ Y T (K ). How-
ever, we can still form Z(Ξ), which is a saturated convex polyhedral cone of finite type in Y (K ), by
Corollary 3.14. So ζ(Z(Ξ) \ {0}) is a convex polyhedral set of finite type in �(K ). This is analogous
to considering the Zariski topology on projective varieties: a homogeneous polynomial in n + 1 vari-
ables does not give a well-defined function on projective n-space, but its vanishing set is well defined.
Likewise, the numerical function of the quasi-admissible quasi-state Ξ does not give a well-defined
function on V (K ) or �(K ), but it does make sense to speak of the set of points in V (K ) or �(K )

where the numerical function is non-negative.
Our next result is one of the main results of the paper. It provides the promised link between the

quasi-state formalism in Section 3 and Conjecture 2.10, and shows how to use this link to find centres
for convex subsets of �(K ).

Theorem 4.2. Let Σ be a convex polyhedral set of finite type in �(K ) and let C = ζ−1(Σ) ∪ {0}. Suppose
that Υ is a bounded K -quasi-state of G such that Υ has local maxima on C and Υ is admissible at these local
maxima. Then there exists a bounded quasi-admissible K -quasi-state Ξ defining C with NG(C) = CG(Ξ).
Moreover, for any such K -quasi-state Ξ we have:

(i) ζ(Λ(Ξ,Υ )) is a singleton set {c}, where Λ(Ξ,Υ ) is the class of optimal cocharacters afforded by the
pair (Ξ,Υ );

(ii) c from part (i) is a CG (Υ )-centre of Σ .

Proof. The set C = ζ−1(Σ) ∪ {0} is a saturated convex polyhedral cone of finite type in Y (K ), thanks
to Lemma 2.6. So, by Corollary 3.14, there is a quasi-admissible bounded K -quasi-state Ξ such that
C = Z(Ξ), and we can choose Ξ in such a way that CG(Ξ) = NG(C), which proves the first assertion
of the theorem.

Now suppose Ξ is any bounded quasi-admissible K -quasi-state defining C with NG(C) = CG(Ξ).
Since Υ has local maxima on C , and Υ is admissible at these local maxima, the hypotheses of The-
orem 3.23(b) hold, so we can define the optimal class Λ(Ξ,Υ ). If K = R, then ζ(Λ(Ξ,Υ )) is a
singleton set {c}, by Theorem 3.23(b)(iii), which gives (i). Now Remark 3.25 implies that c is fixed by
CG(Ξ) ∩ CG(Υ ). Since CG(Ξ) = NG(C) = NG(Σ), part (ii) follows.

In the case K = Q, we have to be a little bit more careful. We first move into Y (R) by looking
at the cone Z(Ξ) ⊆ Y (R) (this is just the closure in Y (R) of the corresponding cone in Y (Q)). Now,
by Theorem 3.23(b)(v), since Ξ and Υ are Q-quasi-states, we have {c} = ζ(Λ(Ξ,Υ )) ⊆ �(Q) so
c ∈ Σ . �
Corollary 4.3. Suppose that Σ is a convex polyhedral subset of finite type in �(K ), and let C = ζ−1(Σ)∪ {0}.
Suppose there is a bounded admissible K -quasi-state Υ of G such that μ(Υ, ·) attains a finite positive value
on C. Then Σ has a CG(Υ )-centre. If further NG(Σ) ⊆ CG(Υ ), then Σ has a G-centre.

Proof. Since Υ attains a finite positive value on C , it has local maxima on C . Since Υ is admissible,
it is certainly admissible at local maxima in C , so we can apply Theorem 4.2. The second assertion
follows immediately. �
Remark 4.4. Let Σ be a convex polyhedral subset of finite type in �(K ). Note that in Theorem 4.2,
Theorem 4.5 and Corollary 4.3, we do not assume that Σ is not �(K )-cr, and yet we still find a
centre. However, the assumptions on the existence of Υ do restrict the possibilities for Σ in practice.
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For example, in Corollary 4.3, we have that μ(Υ,λ) > 0 for some λ ∈ C = ζ−1(Σ)∪{0}. This implies
that λ ∈ Z(Υ ) ∩ C , but −λ /∈ Z(Υ ) ∩ C (cf. Remark 3.16). Thus the image of (Z(Υ ) \ {0}) ∩ C in �(K ),
which is ζ(Z(Υ ) \ {0}) ∩ Σ , is a subset of �(K ) which is not �(K )-cr, and our centre actually lies in
this set.

Our final theorem of this section is the central result of the paper. It shows that not only do our
methods involving quasi-states suffice to guarantee the existence of a G-centre of a convex polyhedral
subset of �(K ), but that the existence of a suitable quasi-state is actually necessary.

Theorem 4.5. Let Σ be a convex polyhedral subset of finite type in �(K ), and let C = ζ−1(Σ) ∪ {0}. Then Σ

has a G-centre if and only if there is a bounded integral quasi-state Υ such that Υ has local maxima on C, Υ is
admissible at these local maxima, and NG(Σ) ⊆ CG(Υ ).

Proof. Suppose Σ has a G-centre c. Let λ ∈ Y (K ) be such that ζ(λ) = c. Fix a maximal torus T0
of G such that λ ∈ Y T0(K ), and let P = Pλ be the (proper) parabolic subgroup of G attached to λ.
We construct Υ with the desired properties directly; the construction is similar to that employed in
Lemmas 3.11 and 2.7.

First, let Ψ = Ψ (G, T0) be the root system of G with respect to T0, and define

Υ (T0) := {
α ∈ Ψ

∣∣ Uα ⊆ Ru(P )
} = Ψ

(
Ru(P ), T0

)
.

Now, for any other maximal torus T of G such that T ⊂ P , choose g ∈ P such that gT0 g−1 = T , and
set Υ (T ) = g!Υ (T0). Finally, for any maximal torus T of G which is not contained in P , set Υ (T ) = ∅.

We first claim that Υ is well defined. This amounts to showing that the construction of Υ (T ) for
T ⊂ P is independent of the choice of g ∈ P with gT0 g−1 = T . To see this, suppose that h ∈ P is such
that hT0h−1 = T . Then h−1 g ∈ N P (T0), and N P (T0) stabilizes the set of roots Ψ (Ru(P ), T0) = Υ (T0),
so we have g!Υ (T0) = h!Υ (T0), as required.

Now, it is clear that Υ is an integral quasi-state. The fact that Υ is bounded follows from argu-
ments similar to those in the proof of Lemma 3.11.

To show that Υ is admissible at local maxima, we first look at the stabilizer of Υ . Let T be any
maximal torus of P , and find g ∈ P such that gT0 g−1 = T ; then by construction Υ (T ) = g!Υ (T0).
Now for any x ∈ P , we have x−1 g ∈ P and (x−1 g)T0(x−1 g)−1 = x−1T x, so Υ (x−1T x) = (x−1 g)!Υ (T0).
Thus we have

(x∗Υ )(T ) = x!Υ
(
x−1T x

) = x!
((

x−1 g
)
!Υ (T0)

) = g!Υ (T0) = Υ (T ),

which shows that (x∗Υ )(T ) = Υ (T ) for all x ∈ P . On the other hand, if T is a maximal torus of G
not contained in P , then Υ (T ) = ∅ and Υ (x−1T x) = ∅ for all x ∈ P , so we have (x∗Υ )(T ) = Υ (T ) in
this case as well. This shows that P ⊆ CG(Υ ). Now suppose x ∈ CG(Υ ). Then Υ (T0) = (x∗Υ )(T0) =
x!Υ (x−1T0x). This implies that Υ (x−1T0x) is non-empty, so x−1T0x ⊂ P . Find g ∈ P such that
gT0 g−1 = x−1T0x; then xg ∈ NG(T0) and

Υ (T0) = x!Υ
(
x−1T0x

) = x!Υ
(

gT0 g−1) = x!g!Υ (T0) = (xg)!Υ (T0).

Consequently, xg is in the subgroup of NG(T0) consisting of the elements that stabilize Υ (T0) =
Ψ (Ru(P ), T0). But Ru(P ) is generated by the root groups Uα with α ∈ Ψ (Ru(P ), T0), so xg ∈
NG(Ru(P )) = P . Since g ∈ P , we have x ∈ P , and thus CG(Υ ) ⊆ P . Combining these inclusions, we get
CG (Υ ) = P .

Now suppose ν ∈ Y (K ) is such that 0 < μ(Υ, T , ν) < ∞ for some maximal torus T of G with
ν ∈ Y T (K ). Then T ⊂ P , because μ(Υ, T , ν) has a finite value, so there exists g ∈ P such that
gT0 g−1 = T and Υ (T ) = g!Υ (T0). Now μ(Υ, T , ν) > 0 implies that 〈ν,α〉 > 0 for all α ∈ Υ (T ),
which implies that 〈ν, g!β〉 = 〈g−1 · ν,β〉 > 0 for all β ∈ Υ (T0) = Ψ (Ru(P ), T0). So we have Ru(P ) ⊆
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Ru(P g−1·ν), so P g−1·ν ⊆ P . But g ∈ P , so we conclude that Pν ⊆ P . Therefore, for any x ∈ Pν , we have
x ∈ P , so (x∗Υ )(T ) = Υ (T ) by the previous paragraph. Thus

μ
(
Υ, xT x−1, x · ν) = μ

(
x−1∗ Υ, T , ν

) = μ(Υ, T , ν)

for all x ∈ Pν , by Lemma 3.4(ii). This shows that Υ is admissible at all points where its numerical
function takes a finite positive value.

Let C = ζ−1(Σ) ∪ {0}. By construction, 0 < μ(Υ, T0, λ) < ∞, so Υ has local maxima on C , and by
the previous paragraph Υ is admissible at these local maxima. Moreover, since NG(Σ) fixes c, and
the function ζ : Y (K ) \ {0} → �(K ) is G-equivariant, we must have that NG(Σ) normalizes P = Pλ ,
and hence NG(Σ) ⊆ P = CG(Υ ). This proves the forward implication of the result.

The other direction follows immediately from Corollary 4.3. �
Remarks 4.6. (i). Note that Theorem 4.5 says that proving Conjecture 2.10 (or at least finding a G-
centre) for a convex polyhedral subset Σ of finite type in �(K ) is equivalent to finding a suitable
quasi-state Υ whose numerical function is sufficiently well-behaved on ζ−1(Σ). It also says that, in
theory at least, it is enough to look at integral quasi-states. Moreover, given Υ , we can construct
a centre explicitly — it is the image under ζ of the optimal class of cocharacters Λ(Ξ,Υ ) in the
building �(K ). In Section 5 below, we show how to find such a quasi-state Υ in some specific cases
arising from GIT.

(ii). The quasi-state Υ in the proof of Theorem 4.5 is admissible at local maxima of C in our sense,
but is not necessarily admissible on all of Y (K ). This result shows why it is important to weaken
Kempf’s original notions in Definition 3.2, cf. Remark 3.3. Despite this difficulty, in our applications in
Section 5 below, we are usually able to find quasi-states Υ which are admissible.

(iii). The G-centre provided by the quasi-state Υ may not be the same as the original G-centre
given in the statement of Theorem 4.5. For a simple example of this, consider a proper parabolic
subgroup P of G , and let Σ = �(K )P be the subcomplex consisting of the simplices in �(K ) that are
contained in σP . Then it is easy to see that NG(Σ) = P . Now, given any λ ∈ Y (K ) such that Pλ = P ,
we have that ζ(λ) is fixed by NG(Σ); hence ζ(λ) is a G-centre of Σ , and Σ has infinitely many
G-centres in general. However, the quasi-state Υ constructed in the proof of Theorem 4.5 depends
only on P , and so picks out just one of these G-centres, whatever our initial choice of λ was.

5. GIT and the Centre Conjecture

We now recall how Kempf’s results on GIT and optimal parabolic subgroups follow from his result
[14, Thm. 2.2] on states, and we recast his proof in the language of buildings and centres. We use
Theorem 3.23 — our extension of [14, Thm. 2.2] — to strengthen Kempf’s results. This allows us to
deal with a special case of the Centre Conjecture in which the subset Σ of �(K ) comes from a
set of destabilizing cocharacters for some G-action. We then illustrate these ideas by proving some
further cases of the Centre Conjecture (Theorems 5.5 and 5.14); these last two results provide ap-
plications of the GIT-methods in this paper to situations which have no apparent connection with
GIT. This is rather striking, and supports our view that these methods provide valuable insight into
Conjecture 2.10.

Recall the notation and terminology set up in Section 2.8. In particular, fix an affine G-variety A,
a subset U of A and a closed G-stable subvariety S of A. We introduce one further piece of notation to
help elucidate the connection between the approach of [14,13,8] and our building-theoretic approach.

Definition 5.1. Let A, U and S be as above. We define

D A,U (Q) := {
aλ

∣∣ a ∈Q�0, λ ∈ |A, U |} ⊆ Y (Q),

and we define D A,U (R) by letting D A,U (R)T be the closure of D A,U (Q)T in Y T (R). In both cases, we
let E A,U (K ) := ζ(D A,U (K ) \ {0}) ⊆ �(K ).
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We now show that D A,U (K ) is a convex polyhedral cone in Y (K ), by associating a bounded ad-
missible quasi-state to |A, U |. The ideas in this lemma and the next follow closely those in [14, Sec. 3]
and [8, Sec. 4], but we reproduce many of the details for the convenience of the reader.

Lemma 5.2. There exists a bounded admissible integral quasi-state Θ = ΘA,U such that Z(Θ) = D A,U (K ).
In particular, D A,U (K ) is a convex polyhedral cone of finite type in Y (K ). Moreover, D A,U (K ) ∩ Y = |A, U |
and NG(D A,U (K )) = NG(|A, U |) ⊆ NG(|A, U |S).

Proof. We begin by setting up some notation, following ideas in [13] and [8, Sec. 4]. By [14,
Lem. 1.1(a)], we can embed A G-equivariantly into a finite-dimensional rational G-module V . Now
for each x ∈ U we define an integral quasi-state ΘV ,x as follows: for each maximal torus T of G ,
let ΘV ,x(T ) be the set of weights χ of T on V such that the projection of x on the weight space
Vχ is non-zero (cf. [14, Lem. 3.2]). It is standard that for λ ∈ Y T , lima→0 λ(a) · x exists if and only if
〈λ,χ 〉 � 0 for all χ ∈ ΘV ,x(T ). By [14, Lem. 3.2], each ΘV ,x is a bounded admissible integral quasi-
state. Now we define

Θ := ΘA,U :=
⋃
x∈U

ΘV ,x. (5.3)

Since for each maximal torus T of G , the set of all weights of T on V is finite, Lemma 3.8(ii) im-
plies that Θ is still a bounded quasi-state. Moreover, since each ΘV ,x is admissible, so is Θ , by
Lemma 3.8(iii). Now, for any λ ∈ Y , we have μ(Θ,λ) � 0 if and only if μ(ΘV ,x, λ) � 0 for all x ∈ U
if and only if lima→0 λ(a) · x exists for all x ∈ U . This shows that Z(Θ) ∩ Y = |A, U |. Note also that
if λ ∈ Y and qλ ∈ |A, U | for some q ∈ Q, then λ ∈ |A, U |, which shows that D A,U (Q) ∩ Y = |A, U |.
It follows straight away that we also have D A,U (R) ∩ Y = |A, U |.

To see that D A,U (K ) = Z(Θ), first suppose that K = Q. If λ ∈ Y (Q), then nλ ∈ Y for some
n ∈ N, and we have λ ∈ Z(Θ) (resp. λ ∈ D A,U (Q)) if and only if nλ ∈ Z(Θ) (resp. nλ ∈ D A,U (Q)).
But D A,U (Q) ∩ Y = |A, U | = Z(Θ) ∩ Y , so we are done in case K = Q. The result for K = R now
follows from the definition of D A,U (R)T as the closure of D A,U (Q)T for each maximal torus T
of G , and from the basic properties of cones laid out in Section 2.3. The final statement that
NG(D A,U (K )) = NG(|A, U |) ⊆ NG(|A, U |S) is now immediate. �
Remark 5.4. Let ΘA,U be as in Lemma 5.2, and suppose g ∈ G . Then, for any maximal torus T of G ,
χ ∈ ΘA,U (T ) if and only if g!χ ∈ ΘA,g·U (gT g−1) if and only if χ ∈ (g−1∗ ΘA,g·U )(T ). This shows that
g∗ΘA,U = ΘA,g·U . In particular, NG(U ) ⊆ CG(ΘA,U ).

We now show how one can use the quasi-state in Lemma 5.2 to prove another special case of
Conjecture 2.10. As we remark below, there are other ways to approach Theorem 5.5, but our proof
serves as a first illustration of how methods from GIT can be applied to situations which apparently
do not relate to this set-up.

Theorem 5.5. Suppose Σ is a convex polyhedral subset of finite type in �(Q) which is contained within a
single apartment of �(Q). If Σ is not �(Q)-completely reducible, then Σ has a G-centre.

Proof. Let C = ζ−1(Σ) ∪ {0}. Then C is a saturated convex polyhedral cone of finite type in Y (Q). Let
T be a maximal torus of G such that Σ is contained in the apartment corresponding to T . Then CT
is a convex polyhedral cone in Y T (Q), and ζ(CT \ {0}) = Σ . Since CT ⊆ Y T (Q), we can find a subset
{α1, . . . ,αr} ⊂ XT defining CT ; i.e., CT = {λ ∈ Y T (K ) | 〈λ,αi〉 � 0 for all i}. Suppose Σ is not �(Q)-cr;
then there exists y ∈ Σ such that y has no opposite in Σ , so there exists λ ∈ CT corresponding to y
such that −λ /∈ CT . It follows that 〈λ,αi〉 > 0 for some i. To ease notation, let β = αi .

Now let V be a finite-dimensional representation of G such that the weight space Vβ with respect
to T is non-zero. Let U be the set of vectors x ∈ V such that μ(ΘV ,x, ·) is non-negative on C and
takes a finite positive value somewhere on C , where ΘV ,x is the admissible quasi-state defined in the
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proof of Lemma 5.2 (taking A to be V ). We have 〈ν,β〉 � 0 for all ν ∈ CT , and 〈λ,β〉 > 0, so for any
0 �= x ∈ Vβ , we have x ∈ U . Thus U is a non-empty subset of V , and U �= {0}.

We claim that NG(Σ) ⊆ NG(U ). To see this, let g ∈ NG(Σ) and x ∈ U . Then for all ν ∈ C , we have
g−1 · ν ∈ C and thus μ(ΘV ,x, g−1 · ν) � 0, so

μ(ΘV ,g·x, ν) = μ
(

g−1∗ ΘV ,g·x, g−1 · ν) = μ
(
ΘV ,x, g−1 · ν)

� 0,

where the first equality follows from Lemma 3.4(ii) and the second from Remark 5.4. Moreover, there
exists ν ∈ C for which these values are all positive, and this shows that g · x ∈ U , as required.

Let ΘV ,U be the admissible quasi-state given by Lemma 5.2. Then ΘV ,U is the union of the quasi-
states ΘV ,x as x runs over U , so we can find γ ∈ CT such that 0 < μ(ΘV ,U , γ ) < ∞, by Lemma 3.8(v).
Moreover, NG(Σ) ⊆ NG(U ) ⊆ CG(ΘV ,U ), by the previous paragraph and Remark 5.4. We have now
verified all the hypotheses necessary to apply Corollary 4.3, which finishes the proof. �
Remark 5.6. If one is working over R instead of Q, so that it makes sense to ask whether a subset
is contractible or not, then it is known that a closed convex contractible subset of a sphere contains
a centre, and this centre is fixed by all the isometries of the sphere that stabilize the subset (this
follows for example from [29, Lem. 1]). Now suppose Σ is a closed convex contractible subset of
a single apartment �T (R) of �(K ). Then for any other apartment �T ′(K ) of �(R) containing Σ ,
there exists an isomorphism �T ′(R) → �T (R) fixing Σ pointwise, by [1, Prop. 4.101]. Thus any
�(R)-automorphism stabilizing Σ actually stabilizes �T (R), modulo an automorphism which fixes
Σ pointwise. Now �T (R) is a sphere, so the result follows.

If Σ ⊆ �(R) is a convex polyhedral subset of finite type which is contained in a single apart-
ment �T (R), then it is easily seen that Σ is closed. Thus if Σ is not �(R)-completely reducible,
then the argument of the previous paragraph shows that Σ has an Aut(�(R))-centre c. Hence Theo-
rem 5.5 also holds when Q is replaced by R. The above argument does not, however, tell us that if
Σ is defined by a Q-quasi-state, then c belongs to �(Q). Our proof of Theorem 5.5 is therefore of
independent interest.

Remark 5.7. Note that for ΘA,U as in Lemma 5.2 above, we have μ(ΘA,U , λ) > 0 if and only if
lima→0 λ(a) · x = 0 for all x ∈ U . In Theorem 5.5 above, μ(ΘA,U , ·) attains a positive value on the
cone C . However, we may find ourselves in a situation where μ(ΘA,U , λ) = 0 for all λ ∈ D A,U (K ).
This happens, for example, if U = {x} is a singleton and the closure of the G-orbit G · x does not
contain 0.

Since our methods rely on optimizing over quasi-states whose numerical functions attain strictly
positive values, we have to introduce further quasi-states to the analysis. In particular, we have to
consider the quasi-state Υ in Proposition 5.8 below. See also Remark 3.16.

Proposition 5.8. Suppose U is properly uniformly S-unstable. Then there exist bounded admissible integral
quasi-states Ξ = ΞA,U and Υ = ΥA,U ,S such that:

(i) D A,U (K ) = Z(Ξ) and NG(D A,U (K )) = CG (Ξ).
(ii) |A, U |S = {λ ∈ |A, U | | μ(Υ,λ) > 0}.

(iii) NG(D A,U (K )) ⊆ CG(Υ ).

Proof. Let H := NG(D A,U (K )), and note that H = NG(|A, U |), by Lemma 5.2. Define

Ξ := ΞA,U :=
⋃
h∈H

h∗Θ,

where Θ is the integral quasi-state given in Lemma 5.2. Then, by Lemma 3.9, Ξ is a bounded ad-
missible integral quasi-state and H ⊆ CG (Ξ). Moreover, Z(Θ) = D A,U (K ), so by Lemma 5.2, for every
h ∈ H we have
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Z(h∗Θ) = h · Z(Θ) = h · D A,U (K ) = D A,U (K ) = Z(Θ),

by Lemma 3.10. So Z(Ξ) = D A,U (K ) and CG(Ξ) ⊆ H . This completes the proof of part (i).
For (ii) and (iii), we find a G-equivariant morphism f : A → W , where W is a finite-dimensional

rational G-module and f −1({0}) = S (scheme-theoretic preimage), as in [14, Lem. 1.1(b)]. We then
let Υ0 = ΘW , f (U ) , in the notation of (5.3). Now it is easy to see that |A, U |S = |A, U | ∩ |W , f (U )|0.
Moreover, |W , f (U )|0 = {λ ∈ Y | μ(ΘW , f (U ), λ) > 0}. Now, if we define

Υ := ΥA,U ,S :=
⋃
h∈H

h∗Υ0,

part (iii) follows from Lemma 3.9.
If λ ∈ |A, U |, then λ ∈ |A, U |S if and only if μ(Υ0, λ) > 0 (cf. Remark 5.7). Since H normalizes

|A, U |, clearly H normalizes |A, U |S , and it follows that if λ ∈ |A, U | and h ∈ H , then μ(Υ0, λ) > 0 if
and only if μ(Υ0,h−1 · λ) > 0 if and only if μ(h∗Υ0, λ) > 0, where the last equivalence comes from
Lemma 3.4(ii). Part (ii) now follows from Lemma 3.8(iv). �
Remark 5.9. Using the quasi-states Ξ and Υ from Proposition 5.8, we can now recover many of the
existing optimality results from the literature by applying Theorem 3.23. For example, to get Kempf’s
[14, Thm. 3.4], we consider the case that U = {x} is a singleton: then Theorem 3.23 supplies us with
an optimal class Λ of cocharacters attached to x, and the corresponding optimal parabolic subgroup
P of G contains the stabilizer CG(x), by Proposition 5.8 and Remark 3.25. If λ ∈ Λ, then nλ ∈ |A, U |
for some n ∈ N; Proposition 5.8(ii) ensures that nλ actually belongs to |A, U |S , as is required in [14,
Thm. 3.4]. In the more general setting that U is an arbitrary subset of A, we obtain results on uniform
S-instability from [8]. In this case, again thanks to Theorem 3.23 and Proposition 5.8, we obtain [8,
Thm. 4.5].

We have now also set up all the necessary preliminaries to fully interpret the results of Kempf
[14] and Hesselink [13] in the language of buildings. Recall that we set E A,U (K ) = ζ(D A,U (K ) \ {0}) ⊆
�(K ). Now Lemma 5.2 says that E A,U (K ) is a convex polyhedral subset of finite type in �(K ), and
Theorem 4.5 combined with Proposition 5.8 says that E A,U (K ) has a G-centre if U is properly uni-
formly S-unstable. Note that in this case, we also have that E A,U (K ) is not �(K )-cr. This follows
using similar arguments to those in Remark 3.16: there is an admissible quasi-state whose numerical
function attains a finite positive value on the cone D A,U (K ). Thus, interpreted in the building �(K ),
Kempf’s result [14, Thm. 3.4] really is proving a special case of the Centre Conjecture 2.10.

Remark 5.10. Keeping the notation from the previous remark, it is worth stressing here that E A,U (K )

is not a subcomplex of �(K ) in general, so the methods in this section apply to cases of Conjec-
ture 2.10 not covered by Theorem 2.11.

For an easy example of this, let G = SL3(k) acting on its natural module V = k3, and let v =
(1,1,0) ∈ V . Consider the cocharacters λ and μ ∈ Y given by λ(a) = diag(a2,a,a−3) and μ(a) =
diag(a3,a−1,a−2) for a ∈ k∗ . Then Pλ = Pμ is the Borel subgroup of G consisting of upper triangular
matrices, but λ destabilizes v whereas μ does not. Hence E V ,v(K ) does not contain the whole simplex
corresponding to Pλ , and hence cannot be a subcomplex of �(K ).

Theorem 5.11. Let Σ be a convex polyhedral subset of finite type of �(K ), and let C = ζ−1(Σ)∪{0}. Let A be
an affine G-variety, S a non-empty closed G-stable subvariety of A, and U a subset of A. If Υ attains a finite
positive value on C , where Υ = ΥA,U ,S is the quasi-state from Proposition 5.8(ii), then Σ has a CG(Υ )-centre.
If, further, μ(Υ, ·) takes finite positive values on the whole of some NG(Σ)-orbit in C , then Σ has a G-centre.

Proof. For the first assertion, just apply Corollary 4.3. For the second, replace Υ with Υ ′ :=⋃
g∈NG (Σ) g∗Υ and note that Υ ′ is admissible and NG(Σ) ⊆ CG (Υ ′), by Lemma 3.9. Since μ(Υ, ·) takes

finite positive values on the whole of some NG(Σ)-orbit in C , so does μ(Υ ′, ·), by Lemmas 3.4(ii)
and 3.8(iv). Now apply Corollary 4.3 to Σ and Υ ′ . �
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Remark 5.12. We have two different settings where Theorem 5.11 is useful. First, suppose we have a
convex polyhedral subset Σ of �(K ) such that Σ is not �(K )-cr. Then we want to find a G-centre
of Σ . Roughly speaking, Theorem 5.11 says that we can do this by finding suitable A, S and U such
that some element of ζ−1(Σ) properly destabilizes U into S . For an example of this, see Theorem 5.14
below and Theorem 5.5.

Second, suppose that we have suitable A, S and U , as above, and we want to find a G-centre of
E A,U (K ) subject to the extra condition that this centre also lies in some convex subset Σ ⊆ �(K ).
Theorem 5.11 helps us to do this. For example, suppose H is a reductive subgroup of G . Then Σ =
ζ(Y H (K ) \ {0}) is a convex subset of �(K ), and if Theorem 5.11 applies, it provides a G-centre of
E A,U (K ) which “comes from” a cocharacter of H . See [9] for similar ideas.

We finish this section by describing how to apply our results to another case of the Centre Conjec-
ture 2.10 which does not appear to have anything to do with GIT (Theorem 5.14 below). The idea is
that finding a suitable G-action on an affine variety A can help to establish the existence of a centre.

Recall the material on G-complete reducibility introduced in Section 2.7. Theorem 5.14 asserts the
existence of a G-centre of the convex non-�(K )-cr subset Σ of �(K ), provided Σ is fixed pointwise
by a suitable subgroup of G . We make this precise in our next definition.

Definition 5.13. Let Σ be a convex polyhedral subset of �(K ), and let H be a subgroup of G . We
say that H witnesses the fact that Σ is not �(K )-cr if Σ ⊆ �(K )H and there is a y ∈ Σ which has no
opposite in �(K )H . Note that, in this case, neither Σ nor �(K )H is �(K )-cr, so in particular, H is not
G-cr [23, §3].

Theorem 5.14. Let Σ ⊆ �(K ) be a convex polyhedral subset of finite type. If there exists a subgroup of G
which witnesses the fact that Σ is not �(K )-cr, then Σ has a G-centre.

Proof. Let H be a subgroup of G such that Σ ⊆ �(K )H and let y ∈ Σ such that y has no opposite
in �(K )H . Let C = ζ−1(Σ) ∪ {0}. We may replace H with the subgroup

⋂
ν∈C Pν without affecting

the hypotheses of the theorem; this replacement ensures that NG(Σ) ⊆ NG(H). Let λ ∈ C such that
y = ζ(λ) ∈ Σ , and let T be a maximal torus of G such that λ ∈ Y T (K ). Let P = Pλ and L = Lλ . Note
that since y has no opposite in Σ , −(u · λ) /∈ C for any u ∈ Ru(Pλ). We want to apply Theorem 5.11,
so we need to verify the conditions there.

We have H ⊆ P . Suppose H is contained in a Levi subgroup M of P . Then M is of the form
M = Lu·λ for some u ∈ Ru(P ), so H fixes u ·λ, so H fixes −(u ·λ). But y has no opposite in �(K )H , so
we have a contradiction. Thus H is not contained in any Levi subgroup of P . Let H ′ denote the image
of H under the canonical projection P → L. Then H and H ′ are not conjugate, by [8, Thm. 5.8].

Now pick n ∈ N such that H admits a generic n-tuple (see Section 2.7), and recall that G acts
on Gn by simultaneous conjugation. There exists ν ∈ Y T (a genuine cocharacter) such that Pν = P
and Lν = L. Taking the limit along ν moves this generic tuple for H into (H ′)n . Thus, if we set
S = G · (H ′)n ⊆ Gn , we see that Hn is uniformly S-unstable. Moreover, since H and H ′ are not G-
conjugate, it follows from the proof of [8, Thm. 5.16] that dim CG(s) > dim CG(H) for any s ∈ S . This
means that Hn is not contained in S , and thus Hn is properly uniformly S-unstable.

By Proposition 5.8, there is a bounded quasi-state Υ such that |Gn, Hn|S = {ν ∈ |Gn, Hn| |
μ(Υ,ν) > 0}, and NG(H) = NG(Hn) ⊆ CG(Υ ). Since ν ∈ |Gn, Hn|S for all ν ∈ Y T with Pν = P , and
since we can scale any point of Y T (Q) by a positive integer to give an element of Y T , we can con-
clude that every ν ∈ Y T (Q) with Pν = P satisfies μ(Υ,ν) > 0. Hence μ(Υ,λ) > 0 if K = Q. If K = R,
then we need a more complicated argument. It follows from the proof of Lemma 2.7 that for some r,
the cone C P

T is generated by cocharacters τ1, . . . , τr ∈ Y T with the property that for any ν ∈ Y T (R), we
have Pν = P if and only if ν = ∑

aiτi with all the ai > 0. In particular, we have λ = ∑
aiτi with ai > 0

for each i. Let ε1, . . . , εr be positive rational numbers and define τ ′
1, . . . , τ

′
r by τ ′

i = τi + ∑
j �=i ε jτ j . If

we choose the εi to be sufficiently small, then we have λ = ∑r
i=1 a′

iτ
′
i for some a′

1, . . . ,a′
r > 0. Since

Pτ ′
i
= P for all i, and each τ ′

i ∈ Y T (Q), we have μ(Υ,τ ′
i ) > 0 for all i by the arguments above. Re-

peated application of Lemma 3.4(i) gives μ(Υ,λ) > 0.
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Finally, note that NG(Σ) ⊆ NG(H) ⊆ CG(Υ ), so μ(Υ, ·) takes positive values on the orbit NG(Σ) ·λ.
We have now put all the conditions in place to apply Theorem 5.11, which finishes the proof. �
Remark 5.15. Theorem 5.14 generalizes the main result from [5] and also [8, Thm. 5.31]. In [5,
Thm. 3.1], we proved the special case of Theorem 5.14 when Σ = �(K )H . Note that, under the
hypotheses of Theorem 5.14, �(K )H is a convex non-�(K )-cr subcomplex of �(K ). Thus by Theo-
rem 2.11, �(K )H admits an Aut �(K )-centre. However, it does not follow in general that this centre
lies in Σ , so Theorem 2.11 cannot be applied to find a centre of Σ .

6. Extensions

In this section, we briefly discuss various ways in which our work in this paper can be extended.
We will return to these ideas in future work.

6.1. Reductive groups

For simplicity, we have restricted attention in this paper to the case when the group G is semisim-
ple. However, in the setting of GIT, one often considers a reductive group acting on an affine variety
such that the centre does not act trivially (just consider the action of GL(V ) on the natural mod-
ule V ). Many of our results go through under the weaker assumption that G is a reductive group. In
particular, Theorem 3.23 works for a reductive group G , and so the later results that rely on it also go
through.

One reason for restricting attention to the case that G is semisimple is that this facilitates our
construction of the building �(K ) of G from the set of cocharacters Y (K ) in Section 2.4. If G is
reductive but not semisimple, then the object �(K ) we construct actually contains a contribution
from the centre of G (see [21, Sec. IV, Remarques]). Considering convex subsets of this new object
suggests a generalization of the Centre Conjecture 2.10. Our results are easily seen to go through in
this case (in particular, see Theorems 4.2, 4.5, and the material in Section 5 above).

6.2. Automorphisms of G

As remarked in the previous section, if one is primarily interested in the building of G , it is no real
loss to assume that G is semisimple. Further, the isogeny class of G does not change the structure of
the building, so we can also assume G is adjoint. This allows us to view G as a subgroup of Aut(G),
the (algebraic) group of all algebraic automorphisms of G . Many of our constructions extend to give
Aut(G)-centres rather than G-centres. The crucial observations that allow us to make this transition
are that the actions of G on Y and X extend naturally to actions of Aut(G), and that we can take
the norm ‖‖ on Y in Definition 2.2 to be Aut(G)-invariant; see [20, Sec. 7]. The functoriality of our
constructions under the action of G noted in Remark 3.25 extends to Aut(G)-functoriality.

These facts allow us to extend our results about G-centres to results about Aut(G)-centres without
much effort. In particular, under the assumption that G is semisimple and adjoint, we can suitably
modify Theorems 4.5, 5.11, 5.14, and 5.5 so that they provide Aut(G)-centres for the subsets Σ in-
volved. This is another step towards the full version of Conjecture 2.10 for the buildings �(K ) in this
paper, as Aut �(K ) is usually made up of Aut(G) together with field automorphisms if G is simple
[26, Ch. 5]. See also [5] and [8] for constructions involving Aut(G).

6.3. Field automorphisms

It is clear from the existing literature that our optimality constructions behave well with respect
to the induced action of Galois groups; see [14,21,13,8]. More precisely, let k be a field and let G
be defined over k. Let Γ denote the Galois group Gal(ks/k), where ks denotes the separable closure
of k in its algebraic closure. Then Γ also acts on the set of cocharacters Y of G and we can ensure
that the norm is invariant under this action, cf. [8, Def. 4.1]. Following [26, 5.7.1], any γ ∈ Γ induces
an automorphism of the building �(K ), and the Γ -invariance of the norm ensures that, where this
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makes sense, the G-centres we find in this paper are also Γ -invariant. We can thus make further
progress towards proving the existence of Γ -centres of convex subsets of �(K ).

6.4. Non-algebraically closed fields

We now indicate briefly how our work carries over to the case of a non-algebraically closed field.
Let k be an arbitrary field and let k be the algebraic closure of k. Let G be a semisimple algebraic
group defined over k. If H is a subgroup of G , then we denote by Y H,k the subset of Y H consisting of
the k-defined cocharacters of H , and by XH,k the subset of XH consisting of the k-defined characters
of H . We write simply Yk for YG,k and Xk for the union of the XT ,k as T runs over the (k-defined)
maximal tori of G . We have a spherical building �k = �G,k associated to G: the simplices corre-
spond to the k-defined parabolic subgroups of G , ordered by reverse inclusion, and the apartments
correspond to the maximal k-split tori of G [26]. It is clear from this combinatorial description that
�k is a subbuilding of �. This inclusion holds at the level of geometric realizations as well, as we
now explain. The construction of Y (Q) and Y (R) carries over without problems to give spaces Yk(Q)

and Yk(R), and we can construct vector buildings Vk(Q) and Vk(R) and spherical buildings �k(Q)

and �k(R). The obvious maps from Yk(K ) to Y (K ), Vk(K ) to V (K ) and �k(K ) to �(K ) are all in-
clusions. To see this, note that if P is a k-defined parabolic subgroup of G , then there exists λ ∈ Yk
such that P = Pλ [24, 15.1.2(ii)], and there is a maximal k-split torus T of G such that λ ∈ Yk(T );
moreover, if x ∈ Pλ (resp. x ∈ Ru(Pλ)) such that x · λ is k-defined, then there exists y ∈ Pλ(k) (resp.
y ∈ Ru(Pλ)(k)) such that x · λ = y · λ.

If G is k-split, then any maximal k-split torus T of G is k-split. In this case, the notions and
properties of states and quasi-states carry over in a natural way, since every character and cocharacter
of T is then automatically k-defined. For problems involving centres, one can often reduce to this case.
One takes a Galois extension k′/k and works in the spherical building �k′ ; having found a natural
centre c ∈ �k′ , one then shows that c is invariant under Gal(k′/k) and deduces that c lies in the
subbuilding �k of �k′ (cf. Section 6.3 and the proof of Theorem 6.2).

Many of our results carry over to the non-algebraically closed case with minor modifications. Some
subtleties occur, however, when considering the results from Section 5. These were studied in [8], but
in the language of cocharacters and GIT. Here we translate them into the language of buildings. Let G
act on an affine variety A over k and let U ⊆ A. We define subsets D A,U ,k(K ) of Yk(K ) and E A,U ,k(K )

of �k(K ) by D A,U ,k(K ) = D A,U (K ) ∩ Yk(K ) and E A,U ,k(K ) = E A,U (K ) ∩ �k(K ) = ζ(D A,U ,k(K ) \ {0}).
Hesselink formulated Kempf’s results over an arbitrary field. In particular, he proved the following

theorem, which generalizes [14, Thm. 3.4] (cf. [13, Thm. 4.5], [8, Thm. 5.5]).

Theorem 6.1. Let A be an affine G-variety over k and let x ∈ A(k). Suppose there exists λ ∈ Yk such that λ

properly destabilizes x. Then E A,x,k(Q) has a G(k)-centre.

The proof follows immediately from Theorem 3.23 and Proposition 5.8 in the algebraically closed
case: we simply note that we may regard E A,x,k(Q) as a convex subset of �(Q) = �k(Q) and that a
G-centre of E A,x,k(Q) is also a G(k)-centre of E A,x,k(Q).

This is not, however, an exact counterpart of [14, Thm. 3.4] for an arbitrary k. We see this most
easily using the language of buildings. Let A, x be as in Theorem 6.1 and let λ ∈ Yk such that λ

properly destabilizes x. It follows easily using [8, Lem. 2.12] that ζ(λ) has no opposite in E A,x(Q).
This implies that E A,x(Q) is not �(Q)-cr and that E A,x,k(Q) is not �k(Q)-cr. There exist examples of
A and x where E A,x,k(Q) is not �k(Q)-cr but E A,x(Q) is �(Q)-cr (cf. [8, Rem. 5.10]). It is natural to
ask whether the weaker hypothesis that E A,x,k(Q) is not �k(Q)-cr alone implies that E A,x,k(Q) has a
G(k)-centre; this would be the most natural extension of [14, Thm. 3.4] to an arbitrary field. We do
not know the answer in general, but we finish by giving the answer in the case of a perfect field.

Theorem 6.2. Suppose k is perfect. Let A be an affine G-variety over k and let x ∈ A(k). If E A,x,k(Q) is not
�k(Q)-completely reducible, then E A,x,k(Q) has a G(k)-centre.
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Proof. Suppose E A,x,k(Q) is not �k(Q)-completely reducible. Then there exists λ ∈ Yk such that λ

destabilizes x and ζ(λ) has no opposite in E A,x,k(Q). Set x′ := lima→0 λ(a) · x. Let u ∈ Ru(Pλ)(k). Then
−(u · λ) does not destabilize x, so u · λ does not fix x, so x′ �= u−1 · x, by [8, Lem. 2.12]. Hence x′ is
not Ru(Pλ)(k)-conjugate to x. Since k is perfect, [8, Thm. 3.1] implies that x′ is not Ru(Pλ)-conjugate
to x. Hence by [8, Thm. 3.3], x′ is not G-conjugate to x. This means that λ properly destabilizes x. The
result now follows from Theorem 6.1. �
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