Reocclusion: The Flip Side of Coronary Thrombolysis

FREEK W. A. VERHEUGT, MD, FACC, ALBERT MEIJER, MD,* WIM K. LAGRAND, MD,† MACHIEL J. VAN EENIGE, MSEET
Nijmegen, Maastricht and Amsterdam, The Netherlands

Since the introduction of thrombolytic therapy for acute myocardial infarction, the incidence of coronary artery reocclusion has been intensively studied. Also, the prediction and diagnosis of reocclusion by angiographic and clinical variables, as well as its invasive and pharmacologic prevention, have gained much attention.

By angiographic definition, reocclusion requires three angiographic observations: one with an occluded artery, one with a reperfused artery and a third for the assessment of subsequent occlusion (true reocclusion). Since the introduction of early intravenous reperfusion therapy, most studies use only two angiograms: one with a patent and one with a nonpatent infarct-related artery. A search for all published reocclusion studies revealed 61 studies (6,061 patients) with at least two angiograms. The median time interval between the first angiogram after thrombolysis and the second was 16 days (range 0.1 to 365). Reocclusion was observed in 666 (11%) of 6,061 cases. Interestingly, the 28 true reocclusion studies showed an incidence of reocclusion of 16 ± 18% (mean ± SD), and the 33 studies with only two angiograms 10 ± 8% (p = 0.04), suggesting that proven initial occlusion of the infarct-related artery is a risk factor for reocclusion after successful thrombolysis. The other predictors for reocclusion are probably severity of residual stenosis of the infarct-related artery after thrombolysis and perhaps the flow state after lysis. Reocclusion is most frequently seen in the early weeks after thrombolysis. The clinical course in patients with reocclusion is more complicated than in those without this complication. Left ventricular contractile recovery after thrombolysis is hampered by reocclusion.

Routine invasive strategies have not been proven effective against reocclusion. In the prevention of reocclusion, both antiplatelet and antithrombin strategies have been tested, including hirudin and hirulog, but the safety of these agents in thrombolysis is still questionable.

Thus, reocclusion after thrombolysis is an early phenomenon and is more frequent after proven initial occlusion of the infarct-related artery. Reocclusion can be predicted by angiography after thrombolysis. Because reocclusion is detrimental, strategies to prevent it should be developed and carried out after thrombolytic therapy for acute myocardial infarction as soon as they are deemed safe.

Definition of Reocclusion

The angiographic definition of coronary reocclusion is literally that it occurs after 1) angiographically proven initial occlusion of the infarct-related vessel, 2) angiographically proven subsequent successful coronary recanalization, and 3) angiographically proven subsequent occlusion of the infarct-related vessel. Although angiography is still the reference standard for defining reocclusion, its snapshot characteristic makes it almost useless in clinical practice. Clinical signs of reperfusion and reocclusion are better guidelines, but they lack sensitivity and specificity. Interestingly, in patients with chest pain and ST segment elevation, angiographic "spontaneous" reperfusion is seen in 18% to 20% of cases (2,3). Since the introduction of early intravenous thrombolysis, angiography is mostly performed after initial treatment. Loss of coronary patency between two angiographic observations is usually called reocclusion. Because of these reasons, single angiographic observations showing an occluded infarct-related artery after thrombolysis can hardly represent reocclusion, although sometimes clinicians erroneously call lack of patency reocclusion.

The angiographic classification of patency is important to note. Two grading systems have been used: the European Cooperative Study Group (4) and the Thrombolysis in Myocardial Infarction (TIMI) flow grade classification (2). Currently the TIMI flow grade classification is most widely used, and recently it was shown that insufficient flow, like TIMI flow grade 2, is clinically almost identical to TIMI flow grade 0 to 1.
Cardiac infarction. Through EMBASE a search for reocclusion of thrombotic material at the site of the coronary lesion. Because the nidus of coronary thrombus usually is not removed, rethrombosis can easily occur. Because thrombosis and thrombolysis probably represent a subtle balance, reestablishment of the thrombotic state may lead to coronary rethrombosis. Remarkably, plasminogen activation with exogenous compounds has the paradoxic effect of activating both platelets and thrombin in the acute phase (7-10). Also, incomplete lysis of thrombus (11) and plaque swelling after thrombolysis (12) may be stimuli for rethrombosis.

The natural history of residual stenosis after thrombolysis shows decremental stenosis severity in the majority of patients, suggesting ongoing thrombus resolution and plaque repair (13). Platelets cannot only be activated by reexposure to the damaged vessel, but also by high shear rates (14). After thrombolysis a high grade residual stenosis might activate platelets by this mechanism. Experimental studies have shown that fibrin-rich thrombus may be replaced by platelet-rich thrombus that may be highly resistant to lysis (7). However, other processes like inflammation and tissue proliferation caused by growth factors cannot be excluded, although they have not been studied in the setting of reocclusion.

Reocclusion is probably a time-dependent process. However, some vessels show total obstruction early after thrombolytic therapy and are patent when studied later. Therefore, it seems likely that prothrombotic and antithrombotic processes continue long after thrombolytic therapy vessel wall repair is finished.

Incidence of Reocclusion

The incidence of reocclusion has been intensively studied since the introduction of thrombolytic therapy for acute myocardial infarction. Through EMBASE a search for reocclusion studies was done using the key words reocclusion and thrombolytic therapy. Between 1980 and 1994, 60 studies with at least one follow-up angiogram after angiographically successful thrombolytic therapy have been published. They included 6,061 patients, of whom 666 (11%) sustained reocclusion of the infarct-related artery. The median time between the first postthrombolysis angiogram and the follow-up angiogram was 16 days (range 0.1 to 365). The postthrombolysis angiogram showed an "open" infarct-related artery or "successful" reperfusion and the follow-up angiogram an "occluded" artery. Studies with three angiograms (one with an occluded artery, one with a reperfused artery and a third for the assessment of reocclusion) are true reocclusion studies. The 28 true reocclusion studies (1,037 patients) show an incidence of reocclusion of 16 ± 10% (mean ± SD). The 33 studies (5,024 patients) with only two angiograms (one with an open artery and a second for the assessment of reocclusion) report a reocclusion incidence of 10 ± 8% (p = 0.04 vs. true reocclusion studies). This indicates that angiographically proven initial occlusion of the infarct-related artery is a risk factor for reocclusion. Two of the studies with three angiograms have specifically analyzed the difference in reocclusion after angiographically proven initial occlusion and angiographically proven initial patency. Serruys et al. (15) showed reocclusion of 2 (6%) of 36 initially open vessels compared with 19 (21%) of 91 initially occluded vessels (p < 0.05). For TIMI-I (2), these figures were 2 (5%) of 40 and 19 (21%) of 91 (p < 0.05).

Because of the snapshot characteristic of the angiographic approach, other diagnostic criteria (see later) are eagerly awaited. In the meantime, reocclusion can only be detected by angiography, with its important limitations, such as cost and safety. The time window for the diagnosis of reocclusion is very important. The first observation of patency is usually performed between 60 and 180 min after initiation of thrombolytic therapy. Follow-up angiography can be performed as early as 24 h after the first angiogram. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) trial, the largest study reporting on in-hospital reocclusion comprised 642 patients, demonstrated reocclusion of ~9% after successful thrombolytic therapy and 17% reocclusion after initially failed thrombolytic therapy followed by coronary angioplasty (16). Another reported large study of in-hospital reocclusion was GUSTO trial, which showed a low reocclusion rate of ~6% (6).

Reocclusion in the first year after thrombolysis is more frequent. Probably the large time window between which the angiograms are obtained (e.g., the first days of thrombolysis followed by angiography at 3 months) forms the explanation for the high incidence. Reocclusion diagnosed at 3 months might be as high as 18% to 32% (17-19). Data on vessel patency 1 year after thrombolytic therapy revealed about the same incidence (20).

To study reocclusion over time, the incidence of reocclusion and the time of the second angiogram are plotted in Figure 1. Because reocclusion occurs in a minority of patients treated with thrombolysis, only the larger studies were taken into account. A cutoff point of 75 patients was chosen. Table 1 summarizes the 20 studies fulfilling these criteria (2,5,16,18,
Recurrent of chest pain and ST segment elevation and reinfarction are probably indicators of recollection. Also, continuous 12-lead ST segment monitoring might be a more sensitive indicator of recollection after coronary thrombolysis (37). Other diagnostic tools like thallium-201 or technetium sestamibi have not been tested in the diagnosis of recollection.

Prediction of Recollection

After thrombolysis, smoking and the continuation of smoking have been identified as the only independent predictors of reinfarction (38), not of recollection, and because reinfarction is only a part of the spectrum of recollection, no clearcut clinical variables can be identified as risk determinants for recollection.

Angiographic predictors of recollection may include flow status, stenosis severity and morphology of the culprit lesion. Studies specifically aimed at identifying the incidence of recollection, not recurrent ischemia (39), are the TAMI (16), TIMI-4 (33), Aspirin Versus Coumadin Trial (APRICOT) (40) and GUSTO (41) studies and the study by White et al. (20). A poor flow state (TIMI flow grade 0 or 1) of the infarct-related artery at 90 min after thrombolysis initiation was a significant predictor of subsequent recollection in the TAMI trials and the TIMI-4 study. However, this finding could not be confirmed in the GUSTO angiographic study (41). In the APRICOT study, recollection was the primary end point in 284 patients, and only patients with TIMI flow grade 3 were included. All patients with TIMI flow grade 2 or less were regarded as showing recollection on the second angiogram. It was clearly shown that stenosis severity is an independent risk factor (odds ratio 2.3) for the occurrence of recollection. Interestingly, a smooth morphology of the culprit lesion is also associated with recollection. Also, in the trial by White et al. (20) and the TIMI-4 study (33), residual stenosis severity proved to be a predictor of recollection in the year after successful thrombolysis.

As stated previously, angiographically proven initial occlusion of the infarct-related artery seems to be a risk factor for subsequent recollection. Thus, the risk of recollection can probably be predicted by early angiographic observation both before and after thrombolytic therapy.

Consequences of Recollection

The presence of both an initially open artery and salvaged myocardium may determine the clinical manifestations of recollection. Recollection may be associated with recurrent angina, reinfarction, pump failure and death. It may also occur without symptoms. Symptomless recollection may be associated with the presence of collateral channels protecting the salvaged myocardium against renewed damage at the time of recollection. In contrast, symptomless recollection may also indicate a lack of initially salvaged myocardium. This question has not yet been answered, and no conclusive studies evaluating the presence of myocardial viability and consequences of

Figure 1. Incidence of recollection after thrombolysis in the published studies with >75 patients. The x axis represents the time between the initiation of thrombolytic therapy and the time of follow-up angiography.

Noninvasive Indicators of Recollection

Clinical variables have been intensely tested in the prediction and diagnosis of coronary reperfusion. In the absence of angiography, successful reperfusion is as difficult to diagnose as subsequent recollection. Relief of chest pain, disappearance of ST segment elevation and the occurrence of accelerated idioventricular rhythm are all indicators, but no proof of successful reperfusion. When they are combined, they are more indicative of reperfusion, and when none of them are present, persistent occlusion is likely. The introduction of continuous 12-lead ST segment monitoring has made the noninvasive diagnosis of failed reperfusion much more sensitive than the other clinical variables (36).
Table 1. Reocclusion Rates After Successful Thrombolysis (summary of trials with at least 75 patients)

<table>
<thead>
<tr>
<th>First Author or Study Name (ref no.)</th>
<th>No. of Pts*</th>
<th>Angiogram</th>
<th>Angiographic Time Window</th>
<th>Thrombolytic Agent</th>
<th>Average Reocclusion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serruys (15)</td>
<td>91</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IC (+IV) SK</td>
<td>21</td>
</tr>
<tr>
<td>Tamminx (21)</td>
<td>95</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IC SK</td>
<td>14</td>
</tr>
<tr>
<td>TIMI-1 (2)</td>
<td>91</td>
<td>1st</td>
<td>Acute, serial</td>
<td>SK, tPA</td>
<td>19</td>
</tr>
<tr>
<td>TAM1-I (22)</td>
<td>197</td>
<td>1st</td>
<td>Acute, serial</td>
<td>tPA</td>
<td>12</td>
</tr>
<tr>
<td>Uebis-1 (23)</td>
<td>106</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IC SK</td>
<td>6</td>
</tr>
<tr>
<td>Uebis-2 (23)</td>
<td>76</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IC SK</td>
<td>25</td>
</tr>
<tr>
<td>Anderson et al. (24)</td>
<td>77</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IC SK</td>
<td>5</td>
</tr>
<tr>
<td>PRIMI (30)</td>
<td>213</td>
<td>1st</td>
<td>Acute, serial</td>
<td>pro-UK</td>
<td>3</td>
</tr>
<tr>
<td>Ohman (16)</td>
<td>419</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IV UK, tPA</td>
<td>9</td>
</tr>
<tr>
<td>TAM1-1-5 (26)</td>
<td>607</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IV UK, tPA</td>
<td>11</td>
</tr>
<tr>
<td>TEAM-2 (25)</td>
<td>190</td>
<td>1st</td>
<td>Acute, serial</td>
<td>SK, APSAC</td>
<td>2</td>
</tr>
<tr>
<td>ARMS (28)</td>
<td>102</td>
<td>1st</td>
<td>Acute, serial</td>
<td>APSAC</td>
<td>4</td>
</tr>
<tr>
<td>TAM1-7 (27)</td>
<td>157</td>
<td>1st</td>
<td>Acute, serial</td>
<td>IV UK, tPA</td>
<td>7</td>
</tr>
<tr>
<td>TAPS-1 (29)</td>
<td>339</td>
<td>1st</td>
<td>Acute, serial</td>
<td>APSAC, tPA</td>
<td>6</td>
</tr>
<tr>
<td>TAPS-2 (29)</td>
<td>339</td>
<td>1st</td>
<td>Acute, serial</td>
<td>APSAC, tPA</td>
<td>11</td>
</tr>
<tr>
<td>HART (31)</td>
<td>98</td>
<td>1st</td>
<td>Acute, serial</td>
<td>tPA</td>
<td>9</td>
</tr>
<tr>
<td>APRICOT (18)</td>
<td>248</td>
<td>1st</td>
<td>Acute, serial</td>
<td>SK, APSAC</td>
<td>29</td>
</tr>
<tr>
<td>GUSTO (6)</td>
<td>586</td>
<td>1st</td>
<td>Acute, serial</td>
<td>SK, tPA</td>
<td>6</td>
</tr>
<tr>
<td>TIMI-5 (32)</td>
<td>183</td>
<td>1st</td>
<td>Acute, serial</td>
<td>SK+tPA</td>
<td>4</td>
</tr>
<tr>
<td>White (20)</td>
<td>154</td>
<td>1st</td>
<td>Acute, serial</td>
<td>SK, tPA</td>
<td>25</td>
</tr>
<tr>
<td>TIMI-1 (33)</td>
<td>278</td>
<td>1st</td>
<td>Acute, serial</td>
<td>APSAC, tPA</td>
<td>5</td>
</tr>
</tbody>
</table>

*With angiographically successful thrombolysis and with one or more follow-up angiograms. APRICOT = Antithrombotic in the Prevention of Reocclusion in Coronary Thrombolysis; APSAC = anisoylated plasminogen streptokinase activator complex; ARMS = APSAC Reocclusion Multicenter Study; d = day; GUSTO = Global Utilization of Streptokinase and tPA for Occluded Coronary Arteries; HART = Heparin-Aspirin Reperfusion Trial; IC = intracoronary; IV = intravenous; PRIM1 = Pro-Urokinase in Myocardial Infarction; pro-UK = pro-ukrinase; Pts = patients; ref = reference; SK = streptokinase; TAM1 = Thrombolysis and Angioplasty in Myocardial Infarction; TAPS = t-PA APSAC Patency Study; TEAM = Trial of Eminase Versus Alteplase in Myocardial Infarction; TIMI = Thrombolysis in Myocardial Infarction; tPA = tissue-type plasminogen activator; UK = urokinase.

collateral channels after reocclusion are available. Some large-studies showed that reocclusion precludes left ventricular contractile recovery (16,20,42), especially in the infarcted region of the left ventricle. This occurs also in the absence of clinical reinfarction (41). Reocclusion in the anterior region of the left ventricle has the worst consequences for global left ventricular function (42). Apparently, reocclusion is deleterious for long-term left ventricular function and indirectly indicates that myocardial viability exists after successful thrombolysis.

Recurrent angina is a poor indicator of reocclusion. Angina is a symptom notoriously difficult to interpret. Reinfarction
early after thrombolytic therapy is probably due to reocclusion because its incidence is twice as high as that for with control treatment (3,34,44). Depending on the definition, the reinfarction rate can be as high as 13% (45). To our knowledge, a hard correlation between reocclusion and reinfarction has never been made. This correlation is scarcely possible because in the search for reocclusion, one is forced to use the snapshot approach. It is likely that reinfarction is the result of reocclusion. Because reocclusion impedes recovery of left ventricular function, it is understandable that mortality is higher with than without reocclusion (16). In the thrombolysis-only arms of the TIMI studies 5 (12.8%) of 39 patients with reocclusion died versus 15 (4%) of 380 patients without reocclusion (p < 0.02).

Prevention of Reocclusion

Strategies to prevent reocclusion may be invasive or noninvasive. Invasive strategies consisting of early angiography followed by angioplasty have been tested extensively in the prevention of reocclusion after successful coronary thrombolysis (46). The largest study, carried out in the United States, prospectively analyzed a routine invasive versus a routine conservative strategy after thrombolysis with tissue-type plasminogen activator (t-PA) (47). It was clearly shown that a routine invasive strategy does not prevent recurrent ischemia, reinfarction or death, nor does it preserve residual left ventricular function after thrombolytic therapy for acute myocardial infarction. Also, the long-term efficacy of this strategy has not been proven. Apparently, manipulation by angioplasty of a postthrombolytic coronary lesion, which contains or has contained thrombotic material, exposes the patient to untoward effects of angioplasty, like total occlusion or vessel dissection. Another invasive strategy to prevent reocclusion is some balloon counterpulsation immediately after thrombolysis. In one large trial (48), this proved to be effective, but these results should be confirmed in another study.

Noninvasive methods to prevent reocclusion have also been evaluated and seem to be partially effective. However, in analyzing the data, one should clearly discriminate between early coronary patency and proven coronary reocclusion. For the diagnosis of early patency, one needs only one angiogram. For the diagnosis of reocclusion, one needs at least two angiograms: one with a patent and one with a subsequently occluded coronary lesion.

Heparin has been extensively tested after thrombolysis, especially with t-PA. Coronary patency evaluated in the first hours or days after thrombolytic therapy with t-PA is better with than without intravenous heparin (31,49,50). These data do not necessarily prove that heparin, when used in conjunction with t-PA, actually prevents reocclusion. Randomized, controlled studies on the effect of intravenous heparin in the prevention of reocclusion after angiographically proven successful coronary thrombolysis are scarce and have a negative outcome (Table 2). Intravenous heparin followed by warfarin sodium (Coumadin) does not prevent long-term reocclusion either (18). Heparin infusion after t-PA for acute myocardial infarction is probably necessary during a short time and can be discontinued 24 h after thrombolytic therapy (51). Heparin therapy is notoriously difficult to monitor, which might be the reason for its apparent ineffectiveness in preventing reocclusion. Partial activated thromboplastin time is the usual measure for heparin anticoagulation. There is a correlation between adequacy of heparinization and coronary patency (49), but its relation to reocclusion after successful thrombolysis has not been systematically studied. Close monitoring of heparin therapy after thrombolysis is mandatory not only for patency and possibly reocclusion but also for the prevention of bleeding. Partial activated thromboplastin time values >90 s after thrombolysis are correlated with an unacceptable risk of cerebral bleeding (52,53). Hirudin and hirulog, highly specific antithrombin agents, seem to be more effective than heparin in the prevention of reocclusion after t-PA (32) or streptokinase (54) (Table 3). However, patient numbers in these trials are small, and although more simple than with heparin, hirudin

Table 2. Randomized, Controlled Trials With Two Angiograms for Prevention of Reocclusion With Heparin After Successful Coronary Thrombolysis

<table>
<thead>
<tr>
<th>Study (ref no.)</th>
<th>No of Pts</th>
<th>1st Angiogram</th>
<th>2nd Angiogram</th>
<th>Reocclusion With Heparin</th>
<th>Reocclusion With Control</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR/ICTT (18)</td>
<td>155</td>
<td>23 h (median)</td>
<td>3 mu</td>
<td>24/80 (30%) *</td>
<td>24/74 (32%) #</td>
<td>NS</td>
</tr>
<tr>
<td>HART (31)</td>
<td>89</td>
<td>18 h (mean)</td>
<td>7 d</td>
<td>70/60 (12%) #</td>
<td>2/38 (5%) #</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Patients were not receiving aspirin; warfarin was started with heparin; heparin was discontinued when thromboplastin time was therapeutic. #Patients were not receiving aspirin. *Patients were receiving aspirin, 80 mg/day. Abbreviations as in Table 1.

Table 3. Randomized, Heparin-Controlled Trial With Two Angiograms for Prevention of Reocclusion With Hirudin or Hirulog After Successful Coronary Thrombolysis

<table>
<thead>
<tr>
<th>1st Author or Study Name (ref no.)</th>
<th>No of Pts</th>
<th>Agent</th>
<th>1st Angiogram</th>
<th>2nd Angiogram</th>
<th>Reocclusion With Agent</th>
<th>Reocclusion With Heparin</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMI-5 (32)</td>
<td>165</td>
<td>Hirudin</td>
<td>90 min</td>
<td>16–36 h</td>
<td>1/105 (1%)</td>
<td>4/60 (7%)</td>
<td>0.05</td>
</tr>
<tr>
<td>Lidon (54)</td>
<td>45</td>
<td>Hirulog</td>
<td>90 min</td>
<td>5 d</td>
<td>0/30 (0%)</td>
<td>1/15 (7%)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Abbreviations as in Table 1.
after thrombolytic therapy are being clinically tested. Although more data from randomized trials are necessary. and does not seem to differ from reocclusion after thrombolysis. eliminate factors in the culprit lesion leading to reocclusion. viability exists even after the occurrence of reocclusion. If diagnosed, thrombolytic therapy for acute myocardial infarction (18,20,57) (Table 4).

However, as stated before, the reocclusion rate after thrombolysis cannot be recommended for routine clinical practice. The optimal time for angiography after thrombolytic therapy for acute myocardial infarction is probably several days before hospital discharge. The patency of the infarct-related vessel can be used for risk stratification for either reocclusion or further left ventricular functional recovery. Culprit lesion severity tends to diminish over time (13) and a not severely stenosed infarct-related artery will not reocclude easily (40). When the infarct-related vessel is open but severely stenosed, revascularization seems to be indicated, because these vessels tend to reocclude (13,20). If the infarct-related vessel is occluded, angioplasty can be carried out to allow left ventricular contractile recovery (58). Patients with minimal infarction in relation to estimated risk area and those in whom viable myocardium can be shown to be present with nuclear techniques (59,60) or dobutamine stress echocardiography (61,62) might benefit from this procedure. Angioplasty of the infarct-related artery a few days before hospital discharge is feasible because the vascular occlusion must be very recent, and is probably also safer than angioplasty early after thrombolysis. However, a strategy of predischarge angiography with subsequent revascularisation of severely stenosed or occluded infarct-related arteries supplying viable myocardium has not been tested yet in a large randomized trial. For this purpose at least 300 patients should be randomized to show, with a power of 80%, a statistically significant 50% reduction of an expected 25% reocclusion of very tightly stenosed or occluded infarct vessels that are dilated at hospital discharge. As yet, invasive strategies in the prevention and treatment of reocclusion after thrombolysis cannot be recommended for routine clinical practice.

Conclusions

Reocclusion after thrombolytic therapy for acute myocardial infarction remains a major problem in everyday cardiology. It is probably thrombosis in origin and its incidence varies strongly at the time of diagnosis: from 5% to 30%. The highest incidence is seen after proven initial occlusion of the infarct-related artery. The incidence is -5% to 10% during the hospital stay for the index infarction and levels off to -30% in the first year. Reocclusion interferes with left ventricular contractile recovery and also seems to be associated with high.
morbidity and mortality. It might be predicted by early angiography, but so far invasive strategies have failed to prevent it. Whether reclosure can be prevented by the use of antithrombotic agents is still unclear. Both heparin and aspirin are associated with better patency, but randomized, controlled trials with these agents in the prevention of angiographically proven reclosure are small and inconclusive. More anti-thrombotic and antiplatelet drugs need to be tested in the treatment of coronary reclosure.

Because reclosure is often silent, it is possible that viable myocardium remains even after reclosure. Therefore, invasive treatment of coronary reclosure may be an option in the further improvement of thrombolytic therapy, but this should be tested first in a randomized trial. Both the prevention and treatment of reclosure after thrombolytic therapy are main fields of future clinical research.

References