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Abstract

We have computed the full next-to-leading (NLO) QCD corrections to the differential distributionsd2σ/(dpT dy) for pseudo-
scalar Higgs (A) production at large hadron colliders. This calculation has been carried out using the effective Lagrangian
approach which is valid as long as the mass of the pseudo-scalar Higgs bosonmA and its transverse momentumpT do not
exceed the top-quark massmt . The shape of the distributions hardly differ from those obtained for scalar Higgs (H) production
because, apart from the overall coupling constant and mass, there are only small differences between the partonic differential
distributions for scalar and pseudo-scalar production. Therefore, there are only differences in the magnitudes of the hadronic
differential distributions which can be mainly attributed to the unknown mixing angleβ describing the pseudo-scalar Higgs
coupling to the top quarks.
 2002 Elsevier Science B.V.

The scalar Higgs boson H, which is the corner stone of the standard model, is the only particle which has not
yet been observed. Its discovery or its absence will shed light on the mechanism how particles acquire mass as well
as answer questions about super-symmetric extensions of the standard model or about the compositeness of the
existing particles and the Higgs boson. Among these two alternatives super-symmetry is the most appealing one, in
particular, the minimal super-symmetric extension of the standard model. The latter version contains two complex
Higgs doublets instead of one and it is therefore called the Two-Higgs-Doublet Model (2HDM). Here the scalar
particle spectrum contains both the Higgs boson H and another neutral scalar boson h. Furthermore, it contains
two charged scalar bosons H± and a neutral pseudo-scalar Higgs boson A. The tree-level masses are expressed in
two independent parameters, namely, the massmA and the ratio of the vacuum expectation values of the two Higgs
doublets defined by tanβ = v2/v1 (see, e.g., [1]). According to the experiments at LEP their parameter ranges are
restricted so thatmA < 91.9 GeV/c2 and 0.5< tanβ < 2.4 [2] are excluded. In this Letter we study A-production
which in lowest order proceeds via gluon–gluon fusion where the gluons are coupled to the A via a heavy flavour
triangular loop. This is similar to H-production except that now the coupling constant describing the interaction
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of the A with the quarks depends on both the masses of the quarks and on the angleβ . This follows from the
2HDM where the coupling constants of the up and down quarks behave likegup ∼mu cotβ andgdown∼md tanβ ,
respectively [1]. Since the effective Lagrangian approach below is only valid in the case the mass of the quark
appearing in the triangular loop satisfies the conditionmq �mA, the bottom quark is excluded. However, then we
have to require that in the 2HDM the coupling of the A to the top-quark is stronger than to the bottom-quark which
implies the condition

(1)
mt

mb

� tan2β.

If we choosemb = 4.5 GeV/c2 andmt = 173.4 GeV/c2 one obtains the inequality tanβ � 6.21. In view of the
experimental boundaries above one can conclude that the results of the calculation below can be only applied for
the regions tanβ < 0.5 and 2.4< tanβ < 6.21.

In the effective Lagrangian approach scalar H-production is described by the Lagrangian density [3,4]

(2)LH
eff =GHΦH(x)O(x), with O(x)= −1

4
Ga
µν(x)G

a,µν(x),

whereas pseudo-scalar A-production is obtained from [5–7]

LA
eff =ΦA(x)

[
GAO1(x)+ G̃A O2(x)

]
,

(3)with O1(x)= −1

8
εµνλσ G

µν
a (x)Gλσ

a (x) , O2(x)= −1

2
∂µ

nf∑
i=1

q̄i(x)γµγ5qi(x),

whereΦH(x) andΦA(x) are the scalar and pseudo-scalar fields, respectively, andnf denotes the number of
light flavours. Up to NLO the second operatorO2(x) contributes and in the case of massless quarks it cannot
be neglected in higher orders. The effective couplingsGB (B = H,A) are determined by the top-quark triangular
graph describing the decay processB → g + g in the limit mt → ∞

(4)G2
B = 4

√
2

(
αs(µ

2
r )

4π

)2

GF τ
2
B F

2
B(τB)C2

B

(
αs(µ

2
r ),

µ2
r

m2
t

)
, τB = 4m2

t

m2
B

, B = H,A,

and the functionsFB are defined by

FH(τ )= 1+ (1− τ )f (τ ), FA(τ )= f (τ)cotβ,

(5)f (τ)= arcsin2
1√
τ
, for τ � 1, f (τ )= −1

4

(
ln

1− √
1− τ

1+ √
1− τ

+ πi

)2

, for τ < 1.

In the largemt -limit F(τ) behaves as

(6)lim
τ→∞FH(τ )= 2

3τ
, lim

τ→∞FA(τ )= 1

τ
cotβ.

Herem andmt denote the masses of the (pseudo-)scalar Higgs boson and the top quark respectively. The running
coupling constant is given byαs(µ2

r ) whereµr denotes the renormalization scale andGF is the Fermi constant.
The coefficient functionsCB originate from the corrections to the top-quark triangular graph provided one takes
the limit mt → ∞. We have presented the couplingsGB in Eq. (4) for generalmt on the Born level only in order
to keep some part of the top-quark mass dependence. This is an approximation because the gluons which couple
to the (pseudo-)scalar Higgs boson via the top-quark loop in the partonic subprocesses are very often virtual. The
virtual-gluon momentum dependence is neither described byFB(τ ) nor byCB. For on-mass-shell gluons the latter
quantity has been computed in the largemt limit up to orderαs in [3,5,6] and up to orderα2

s in [4,7]. For our NLO
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calculations we only need these coefficient functions corrected up to orderαs and they read

(7)CH

(
αs(µ

2
r ),

µ2
r

m2
t

)
= 1+ α

(5)
s (µ2

r )

4π
(11)+ · · · ,

(8)CA

(
αs(µ

2
r ),

µ2
r

m2
t

)
= 1,

whereα(5)s is presented in a five-flavour number scheme. Notice that Eq. (8) holds in all orders because of the
Adler–Bardeen theorem [8]. The effective Lagrangian approach has been successfully applied to compute the total
cross section of scalar Higgs production in hadron–hadron collisions in NLO [3] and NNLO [9–13]. In the case of
pseudo-scalar Higgs production this cross section was computed in NLO in [5,6] and in NNLO in [14,15].

In this Letter we study the semi-inclusive reaction with one pseudo-scalar Higgs boson A in the final state which
is given by

(9)H1(p1)+ H2(p2)→ A(−p5)+′ X′,

where H1 and H2 denote the incoming hadrons andX represents an inclusive hadronic final state. Further we define
the following kinematical invariants

(10)S = (p1 + p2)
2, T = (p1 + p5)

2, U = (p2 + p5)
2.

The latter two invariants can be expressed in terms of the transverse momentumpT and rapidityy variables as

T =m2 − √
S

√
p2
T +m2 coshy + √

S

√
p2
T +m2 sinhy,

(11)U =m2 − √
S

√
p2
T +m2 coshy − √

S

√
p2
T +m2 sinhy,

wherem is the mass of the pseudo-scalar Higgs boson. The hadronic cross section is given by

S2 d
2σH1H2

dT dU
(S,T ,U,m2)=

∑
a,b=q,g

1∫
x1,min

dx1

x1

1∫
x2,min

dx2

x2
fH1
a (x1,µ

2)f
H2
b (x2,µ

2)s2d
2σab

dt du
(s, t, u,m2,µ2),

(12)with x1,min = −U

S + T −m2 , x2,min = −x1(T −m2)−m2

x1S +U −m2 ,

where s, t and u are the partonic analogues ofS, T andU in Eq. (10) wherep1 andp2 now represent the
incoming parton momenta. Furtherf Hi

a denotes the parton density corresponding to hadron Hi andµ stands for
the factorization scale which for convenience is set equal to the renormalization scaleµr appearing in Eq. (4).
The NLO corrections to the partonic cross sectiond2σ/(dt du) in the case of H-production based on the effective
Lagrangian in Eq. (2) are presented in [16] and [17]. Here we will give the corresponding results for the A described
by the Lagrangian in Eq. (3). The calculation proceeds in the same way as presented in [17]. We usen-dimensional
regularization in order to compute the loop and phase space integrals which contain ultraviolet, infrared and
collinear singularities. However, there is one extra complication in the pseudo-scalar case. This concerns the Levi-
Civita tensor in Eq. (3) which is essentially a four dimensional object. Here we follow the same prescription as in
Eq. (4) in [15] where the product of two Levi-Civita tensors is contracted inn dimensions if one sums over dummy
Lorentz indices. The LO subprocesses contributing to the partonic cross section are given by

(13)g + g → g + A, q + q̄ → g + A, q(q̄)+ g → q(q̄)+ A.

The matrix elements squared do not differ from those derived for the scalar H providedn = 4, see [5,6], which
implies that the LO double differential partonic cross sections are the same for both bosons except for an overall
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constant given byFB(τ ) in Eq. (5). In NLO one has to compute the one-loop virtual corrections to the processes in
Eq. (13) above and to add the contributions from the following two-to-three-body reactions

(14)g + g → g + g + A, g + g → qi + q̄i + A,

q + q̄ → g + g + A, q1 + q̄2 → q1 + q̄2 + A, q1 �= q2,

(15)q + q̄ → qi + q̄i + A, qi �= q, q + q̄ → q + q̄ + A,

(16)q1 + q2 → q1 + q2 + A, q1 �= q2, q + q → q + q + A,

(17)q(q̄)+ g → q(q̄)+ g + A.

After renormalization of the strong coupling constantαs and mass factorization which are carried out in theMS-
scheme we obtain the NLO corrected coefficient functions according to the procedure in [17]. The coefficient
functions are as long as in the case of H-production so that they cannot be explicitly presented. However, the
differences between the results for the H and the A are so small that we can show them below. If we put for
simplicity GH = GA = G andmH = mA = m the differences between the soft-plus-virtual differential cross
sections are given by

(18)s2
d2σS+V

gg→gA

dt du
− s2

d2σS+V
gg→gH

dt du
= πδ(s + t + u−m2)G2

(
αs(µ

2)

4π

)2
N

(N2 − 1)2

[
2
∣∣M(1)

gg→gB

∣∣2],
s2

d2σS+V
qq̄→gA

dt du
− s2

d2σS+V
qq̄→gH

dt du

(19)= π δ(s + t + u−m2)G2
(
αs(µ

2)

4π

)2 1

N2

[
2CA

∣∣M(1)
qq̄→gB

∣∣2 + (CF −CA)
∣∣MB

(1)
qq̄→gB

∣∣2],
s2

d2σS+V
qg→qA

dt du
− s2

d2σS+V
qg→qH

dt du

(20)= π δ(s + t + u−m2)G2
(
αs(µ

2)

4π

)2 1

N(N2 − 1)

[
2CA

∣∣M(1)
qg→qB

∣∣2 + (CF −CA)
∣∣MB

(1)
qg→qB

∣∣2].
The colour factors of the groupSU(N) are given byCA = N andCF = (N2 − 1)/(2N) and the Born matrix
elements squared belonging to the processes in Eq. (13) are equal to

(21)
∣∣M(1)

gg→gB

∣∣2 = N(N2 − 1)
1

stu

[
s4 + t4 + u4 +m8],

(22)
∣∣M(1)

qq̄→gB

∣∣2 = CACF
1

s

[
t2 + u2],

(23)
∣∣M(1)

qg→qB

∣∣2 = CACF
1

u

[−s2 − t2
]
.

The differences above can be wholly attributed to the virtual corrections and not to the soft gluon contributions
which are the same for both H- and A-production. These virtual corrections also entail some extra terms denoted
by

(24)
∣∣MB

(1)
gg→gB

∣∣2 = 2

3
N(N2 − 1)

m2

stu

[
stu+m2(st + su+ tu)

]
,

(25)
∣∣MB

(1)
qq̄→gB

∣∣2 = CACF (−t − u),

(26)
∣∣MB

(1)
qg→qB

∣∣2 = CACF (s + t).
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Denoting the two-to-three-body reactions by

(27)a(p1)+ b(p2)→ c(−p3)+ d(−p4)+ A(−p5), s4 = (p3 + p4)
2,

then the differences between the partonic cross sections due to the subprocesses in Eqs. (14)–(17) are equal to

s2
d2σHARD

gg→ggA

dt du
− s2

d2σHARD
gg→ggH

dt du

(28)= πG2
(
αs(µ

2)

4π

)2
N2

N2 − 1

[
−4 ln

tu−m2s4

(s4 − t)(s4 − u)
− 17

3

]
,

s2
d2σHARD

gg→qq̄A

dt du
− s2

d2σHARD
gg→qq̄H

dt du

(29)= πG2
(
αs(µ

2)

4π

)2 nf

N2 − 1

[
CA

{
2

3

}
+CF

{
2 ln

tu−m2s4

(s4 − t)(s4 − u)
+ 2

}]
,

s2
d2σHARD

qq̄→ggA

dt du
− s2

d2σHARD
qq̄→ggH

dt du

(30)= πG2
(
αs(µ

2)

4π

)2
CACF

N2

[
CA

{
2

3

}
+CF

{
2 ln

tu−m2s4

(s4 − t)(s4 − u)
+ 2

}]
,

(31)s2
d2σHARD

q1q̄2→q1q̄2A

dt du
− s2

d2σHARD
q1q̄2→q1q̄2H

dt du
= πG2

(
αs(µ

2)

4π

)2CACF

N2

[
−2 ln

tu−m2s4

(s4 − t)(s4 − u)
− 1

]
,

(32)s2
d2σHARD

q1q̄1→qi q̄iA

dt du
− s2

d2σHARD
q1q̄1→qi q̄iH

dt du
= πG2

(
αs(µ

2)

4π

)2 (nf − 1)CACF

N2

[
−2

3

]
,

s2
d2σHARD

qq̄→qq̄A

dt du
− s2

d2σHARD
qq̄→qq̄H

dt du

= πG2
(
αs(µ

2)

4π

)2
CF

N2

[
CA

{
−2 ln

tu−m2s4

(s4 − t)(s4 − u)
− 5

3

}
+ ss4((s −m2)2 + s2

4 − 2tu)

8(s4 − t)2(s4 − u)2

(33)+ (s −m2)2 + s2
4 − 2tu

4(s4 − t)(s4 − u)
+ (s −m2)2 + s2

4 − 2tu+ 6ss4
4ss4

ln
tu−m2s4

(s4 − t)(s4 − u)
+ 9

4

]
,

(34)s2
d2σHARD

q1q2→q1q2A

dt du
− s2

d2σHARD
q1q2→q1q2H

dt du
= πG2

(
αs(µ

2)

4π

)2
CACF

N2

[
−2 ln

tu−m2s4

(s4 − t)(s4 − u)
− 1

]
,

s2
d2σHARD

qq→qqA

dt du
− s2

d2σHARD
qq→qqH

dt du

= πG2
(
αs(µ

2)

4π

)2
CF

N2

[
CA

{
−2 ln

tu−m2s4

(s4 − t)(s4 − u)
− 1

}
(35)+ s2 + s2

4

4(s4 − t)(s4 − u)
ln

ss4

tu−m2s4
− 3

2
ln

tu−m2s4

(s4 − t)(s4 − u)

]
,

s2
d2 σHARD

qg→qgA

dt du
− s2

d2σHARD
qg→qgH

dt du

(36)= πG2
(
αs(µ

2)

4π

)2 1

N

[
CA

{
−2 ln

tu−m2s4

(s4 − t)(s4 − u)
− 1

}
+CF

{
ln

tu−m2s4

(s4 − t)(s4 − u)
− 1

2

}]
,
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Fig. 1. The ratioR in Eq. (37) plotted as a function ofpT for
√
S = 14 TeV andµ2 = p2

T
+m2

B with mH =mA = 120 GeV/c2; RLO(mt = ∞)

(dotted line),RLO(mt = 173.4) (solid line),RNLO(mt = ∞), (dot-dashed line)RNLO(mt = 173.4) (dashed line).

where the meaning of the superscript HARD is explained in [17]. From these expressions we infer that the partonic
cross sections (coefficient functions) for H and A are equal in LO and almost equal in NLO. This means that apart
from the overall normalization due to the constantGB there will not be any difference in the shapes of the double
differential cross sections. We show this in Fig. 1 where we plot the ratio

(37)R = dσA

dσH
,

for dσB = dσB/dpT and proton–proton collisions at the LHC with
√
S = 14 TeV. For these and the next plots we

have adopted the parton density set MRST98 (LO, lo05a.dat) [18] for the LO calculations with3NLO
5 = 130.5 MeV

as input for the leading log running coupling constant. For the NLO cross sections we have chosen the set MTST99
(NLO, cor01.dat) [19] with3NLO

5 = 220 MeV as input for the next-to-leading log running coupling constant.
Furthermore, the factorization/renormalization scale is chosen to beµ2 = µ2

r = p2
T + M2

B. For the masses of the
Higgs bosons we takemH =mA = 120 GeV/c2 and the top quark mass is set equal tomt = 173.4 GeV/c2. Further,
we have put tanβ = 1. In the case of an infinite top quark mass (here we choosemt = 173.4× 103 GeV/c2), we
getRLO = 9/4 irrespective of the values ofmH andmA. This follows from Eq. (6) and the fact that the LO partonic
cross sections are the same for H-production and A-production. A finitemt as given above introduces a small effect
and one getsRLO = 2.31 which amounts to a shift upwards of 0.06 (see Fig. 1). In NLO the partonic cross sections
differ a little bit andC2

H = [1 + 22αs/(4π)]C2
A (see Eqs. (7) and (8)). Therefore, we expect a deviation from the

RLO result whenmt is taken infinite in both the LO and NLO reactions. However, it turns out that both differences
compensate each other. The NLO corrected partonic cross section for A is larger than the one for H and one obtains
an upward shift4RNLO = 0.26. The shift due to the coefficient function in Eq. (7) is negative and amounts to
4RNLO = −0.24. Hence the actual value becomesRNLO = 2.27 (see Fig. 1) which is very close toRNLO = 9/4.
If mt is finite one gets again an upward shift of 0.06 like in LO andRNLO = 2.33 (see Fig. 1). One can make
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Fig. 2. The transverse momentum distributiondσA/dpT with µ2 = p2
T + m2

A , mA = 91.9 GeV/c2, tanβ = 0.5;
√
S = 14 TeV (solid line),√

S = 2 TeV (dashed line).

Fig. 3. The rapidity distributiondσA/dy calculated from the integral ofd2σA/(dpT dy) between 8pT,min > pT > pT,min and
pT,min = 30 GeV/c. Input parameters areµ2 = p2

T ,min + m2
A, mA = 91.9 GeV/c2, tanβ = 0.5;

√
S = 14 TeV (solid line),

√
S = 2 TeV

(dashed line).
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similar plots for the rapidityy distributions which yield the same ratios as shown in Fig. 1 for thepT distributions.
The most important feature is that the ratios are independent ofpT andy showing the shape independence of the
distributions on the parity of the Higgs boson (scalar versus pseudo-scalar). This behaviour was discovered for both
the (pseudo-)scalarpT distributions and for the opening angle distribution between the (pseudo-)scalar bosons and
the highestpT -jet in the reactionp + p → (H or A) + jet + jet +′ X′ in [20]. From Fig. 1 and the observations
made above it is clear that the ratios between the NLO and LO corrected cross sections (K-factors) are the same
for H-production and A-production. This also holds for the variation of the NLO cross sections with respect to
the mass factorization/renormalization scales. They are given for H-production in [16,17] and we do not have to
show them again for A-production. In Fig. 2 we present thepT distributions in NLO for A-production in proton–
antiproton collisions at

√
S = 2 TeV (Fermilab Tevatron, Run II) and in proton–proton collisions at

√
S = 14 TeV

(LHC). Further we have chosenmA = 91.9 GeV/c2 and tanβ = 0.5. The parton density set and the factorization
scale are given above. From Fig. 2 we infer that thepT -distributions decrease rather slowly aspT increases and
that the differential cross section for the Tevatron is two orders of magnitude smaller than the one predicted for
the LHC. The latter observation also holds for the corresponding rapidity distributions shown in Fig. 3. They are
obtained by integratingd2σA/(dpT dy) over the rangepT,min < pT < 8 pT,min with pT,min = 30 GeV/c. The
cross section forpT > 8 pT,min is negligible. Notice that the range of the rapidity for A-production at the Tevatron
is rather small. Finally, we want to comment on the relative importance of the partonic subprocesses contributing
to the hadronic differential cross section in Eq. (12). For the LHC (

√
S = 14 TeV) thegg-channel dominates

and theqg-subprocess contributes about one third of the cross section. This is because at these high energies the
x-values of the gluon densityf P

g (x) is so small that it becomes much larger than the quark densities. At lower
energies like

√
S = 2 TeV (Tevatron) thex-values are larger so that the valence quark densities also play a role.

This explains why the contribution of theqg-subprocess is of the same magnitude as the one from thegg-channel
for A-production at the Tevatron.
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