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Abstract

We explain how a four-body amplitude analysis of the D decay products in the mode B± → (K+K−π+π−)DK± is sensitive to the unitarity
triangle angle γ . We present results from simulation studies which show that a precision on γ of 15◦ is achievable with 1000 events and assuming
a value of 0.10 for the parameter rB .
© 2007 Elsevier B.V. Open access under CC BY license.
1. Introduction

A precise measurement of the unitarity triangle angle γ is
one of the most important goals of CP violation experiments.
γ is defined as arg(−V ∗

ubVud/V ∗
cbVcd), where Vij are the el-

ements of the Cabibbo–Kobayashi–Maskawa (CKM) mixing
matrix. In the Wolfenstein convention [1] γ = arg(V ∗

ub).
A class of promising methods to measure γ exists which ex-

ploits the interference between the amplitudes leading to the de-
cays B− → D0K− and B− → D̄0K− (Fig. 1), where the D0 and
D̄0 are reconstructed in a common final state. This final state
may be, for example, a CP eigenstate such as K+K− (‘GLW
method’) [2], or a non-CP eigenstate such as K+π−, which
can be reached both through a doubly Cabibbo-suppressed D0

decay and a Cabibbo-favoured D̄0 decay (‘ADS method’) [3].
Recent attention has focused on self-conjugate three-body fi-
nal states, in particular D → KSπ+π−.2 Here a Dalitz analysis
of the resonant substructure in the KSπ+π− system allows γ

to be extracted [4]. The B-factory experiments have used this
method to obtain the first interesting direct constraints on γ

[6,7].
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Here we explore the potential of determining γ through a
four-body amplitude analysis of the D decay products in the
mode B± → (K+K−π+π−)DK±. CP studies involving ampli-
tude analyses of four-body systems have been proposed else-
where [4], and strategies already exist for B± → DK± ap-
proaches exploiting singly Cabibbo-suppressed decays [5]. Our
method benefits from a final state that involves only charged
particles, which makes it particularly suitable for experiments
at hadron colliders, most notably LHCb.

This Letter is organised as follows. In Section 2 we sum-
marise the essential features of B± → DK± decays, and state
the present knowledge of the parameters involved, and of the
decay D → K+K−π+π−. In Section 3 a full model of B± →
(K+K−π+π−)DK± decays is developed, which is then used
within a simulation study to estimate the precision on γ which
may be obtained through a four-body amplitude analysis. We
conclude in Section 4.

2. B± → DK± decays and D → K+K−π+π−

Let us define the amplitudes of the two diagrams illustrated
in Fig. 1 as follows

(1)A
(
B− → D0K−) ≡ AB,

(2)A
(
B− → D̄0K−) ≡ ABrBei(δB–γ ).
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Fig. 1. The diagrams for B− → D0K− and B− → D̄0K− . There is a relative
phase of δB–γ between the two amplitudes, and a relative magnitude of rB .

Here the strong phase of AB is set to zero by convention, and
δB is the difference of strong phases between the two am-
plitudes. γ represents the weak phase difference between the
amplitudes, where contributions to the CKM elements of or-
der λ4 and higher (with λ being the sine of the Cabibbo angle)
have been neglected. In the CP-conjugate transitions γ → −γ ,
whereas δB remains unchanged. rB is the relative magnitude
of the colour-suppressed B− → D̄0K− process to the colour-
favoured B− → D0K− transition. Preliminary indications as
to the values of γ , δB and rB come from the B± → DK±,
D → KSπ+π− analyses performed at the B-factories [6,7]. Fits
to the ensemble of hadronic flavour data also provide indirect
constraints on the value of γ [8,9]. These results lead us to
assume values of γ = 60◦ and δB = 130◦ for the illustrative
sensitivity studies presented in Section 3. We set rB to 0.10,
which is the approximate average of the Dalitz results and the
lower values favoured by the ADS and GLW analyses [10,11].

Results have recently been reported from an amplitude
analysis of the decay D → K+K−π+π− [12], which shows that
the dominant contributions come from D → AP and D → VV
modes. Earlier measurements of D → K+K−π+π− were pub-
lished in [13]. Our sensitivity studies for the γ extraction,
presented in Section 3, are based on the results found in [12].

The branching ratio of the mode B± → (K+K−π+π−)DK±
can be estimated as the product of the two meson decays, and
found to be 9.2 × 10−7 [14]. This channel is particularly well
matched to the LHCb experiment, on account of the kaon–pion
discrimination provided by the RICH system, and the absence
of any neutrals in the final state, which allows for good recon-
struction efficiency and powerful vertex constraints. Consider-
ation of the trigger and reconstruction efficiencies of similar
topology decays reported in [15] leads to the expectation of
sample sizes of more than 1000 events per year of operation.

3. Estimating the γ sensitivity in
B± → (K+K−π+π−)DK± decays

In this section we formulate a model to describe B± →
(K+K−π+π−)DK± decays. This model neglects D0–D̄0 oscil-
lations and CP violation in the D system, which is a good ap-
proximation in the Standard Model. The model is then used in
a simulation study to estimate the sensitivity with which γ can
be determined from an analysis of B± → (K+K−π+π−)DK±
events.

3.1. Decay model

In the same way as the kinematics of a three-body decay
can be fully described by two variables (Dalitz plot), typically
s12 = (p1 +p2)

2, s23 = (p2 +p3)
2, where p1, p2, p3 are the 4-

momenta of the final state particles, so can a four-body decay be
described by five variables. In this Letter we use the following
convention for labelling the particles involved in the D decay
and their 4-momenta:

Decay: D → K+ K− π+ π−,

Label: 0 1 2 3 4,

4-mom.: p0 p1 p2 p3 p4.

We also define:

sij ≡ (pi + pj )
2,

sijk ≡ (pi + pj + pk)
2,

(3)tij ≡ (pi − pj )
2.

We then choose a set of five variables to describe the decay
kinematics: t01 = s234, s12, s23, s34 and t40 = s123. From these
variables all other invariant masses sij , sijk , and, for a given
frame of reference, all momenta pi can be calculated.

In contrast to the phase space density for three-body decays,
which is uniform in terms of the usual parameters s12, s23, four-
body phase space density, dφ/dt01 ds12 ds23 ds34 dt40, is not
flat in 5 dimensions, but proportional to the square-root of the
inverse of the 4-dimensional Grahm determinant [17]:

dφ

dt01 ds12 ds23 ds34 dt40

(4)= π2

32m2
0

⎛
⎝−

∣∣∣∣∣∣∣

s11 s12 s13 s14
s21 s22 s23 s24
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s41 s42 s43 s44

∣∣∣∣∣∣∣

⎞
⎠

− 1
2

.

The total decay amplitude for the D0 decay to the
K+K−π+π− final state is the sum over all individual ampli-
tudes Ak to each set of intermediate states k, weighted by a
complex factor |ck|eiφk

(5)AD0 =
∑

k

|ck|eiφkAk.

An analysis of the D0 → K+K−π+π− decay amplitude is re-
ported in [12], which fits 10 separate contributions. In this
analysis, however, no distinction is made between the modes
D0 → K1(1270)+K−, K1(1400)−K+ and K∗(892)0K−π+,
and those decays to the CP-conjugate final states. In our study
we base |ck| and φk on the values found in [12], but consider
different scenarios for the relative contributions of the above
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modes. In order to label these scenarios we make the defini-
tions

(6)RK1(1270)K ≡ |cK1(1270)+K−|2
|cK1(1270)−K+|2

and

(7)�φK1(1270)K ≡ φK1(1270)+K− − φK1(1270)−K+ .

We define similar variables for the D0 → K1(1400)±K∓
and D0 → K∗(892)0K±π∓ decays. Our default scenario as-
sumes the arbitrary values RK1(1270)K = RK1(1400)K =
RK∗(892)0Kπ = 1, �φK1(1270)K = 39◦, �φK1(1400)K = 211◦ and
�φK∗(892)0Kπ = 115◦.

The amplitudes Ak are constructed as a product of form fac-
tors (Fl), relativistic Breit–Wigner functions (BW), and spin
amplitudes (sl) which account for angular momentum conser-
vation, where l is the angular momentum of the decay vertex.
Therefore the decay amplitude with a single resonance is given
by

(8)A = Fl · sl · BW

(where the subscript k has now been omitted), and a decay am-
plitude with two resonances α and β is written

(9)A = sl · Flα · BWα · Flβ · BWβ.

For Fl we use Blatt–Weisskopf damping factors [16] and for
sl we use the Lorentz invariant amplitudes [18], which depend
both on the spin of the resonance(s) and the orbital angular mo-
mentum.

With these definitions, the total decay amplitude for B− →
DK−, D → K+K−π+π− is given by

A− = A
(
B− → (

K+K−π+π−)
DK−)

= AB

(
AD0 + rBei(δB−γ )AD0

)

= AB

(
AD0(t01, s12, s23, s34, t40)

(10)+ rBei(δB−γ ) · AD0(t02, s12, s14, s34, t30)
)
.

The corresponding expression for the CP conjugate decay is

A+ = A
(
B+ → (

K+K−π+π−)
DK+)

= AB

(
AD0 + rBei(δB+γ )AD0

)

= AB

(
AD0(t02, s12, s14, s34, t30)

(11)+ rBei(δB+γ ) · AD0(t01, s12, s23, s34, t40)
)
.

The total probability density function for a B− →
(K+K−π+π−)DK− event is then given by

(12)P − = N
∣∣A−∣∣2 dφ

dt01 ds12 ds23 ds34 dt40

(with an equivalent expression for B+ decays) where N is
an appropriate normalisation factor which may be obtained
through numerical integration.
3.2. Simulation study

To estimate the statistical precision achievable with this
method, we generated several simulation samples which we
then fitted to determine the parameters of interest, most no-
tably γ . The samples were generated neglecting background
and detector effects. Fig. 2 shows the projections of the chosen

Fig. 2. Distributions (left) of 200k simulated events for the 5 kinematical vari-
ables shown for B+ (solid) and B− (dashed) decays separately. Also shown
(right) are the asymmetries between the B+ and B− distributions, where the
asymmetry is defined as the number of B− decays minus the number of B+
decays normalised by the sum.
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Fig. 3. Negative log-likelihood shown for γ against δB (top) and γ against rB
(bottom) for a typical simulated experiment of 1000 events. The input values
are at γ = 60◦ , δB = 130◦ and rB = 0.10.

kinematical variables for 200k events, separately for B+ and
B− decays, and the CP-asymmetry, defined as the number of
B+ events minus the number of B− events, normalised by the
sum. In these projections the observable CP violation is small,
typically being at the few percent level only. Full sensitivity to
γ is obtained through a likelihood fit to all five variables.

A log-likelihood function is defined as:

(13)log(L) =
∑

all B−
log

(
P −

i

) +
∑

all B+
log

(
P +

j

)
,

where the probability density functions are defined as in ex-
pression (12), and the sums run over all B candidates in the
sample. The function was maximised for each sample using the
MINUIT package [19], with rB , δB and γ as the free parame-
ters. (It is assumed that all parameters associated with the D
decay model are known.) Each sample contained 1000 events.
A scan of the negative log-likelihood, plotted for γ against δB

is shown for a typical sample in Fig. 3. The function is well be-
haved with a minimum close to the input value and a second
solution at γ − 180◦ and δB − 180◦. Also shown is a scan for γ

against rB .
For each sample the fitted parameters and the assigned er-

rors were recorded. The reliability of the fit result was studied
Table 1
Result from 218 simulated experiments, showing the average assigned error,
and the mean and width of the pull distribution

Error Pull mean Pull width

γ 14.4±0.7◦ 0.13±0.07 1.10±0.05
δB 14.3±0.5◦ 0.10±0.07 1.09±0.05
rB 0.023±0.001 0.11±0.06 0.95±0.05

Table 2
Dependence of γ fit results on the value of rB , showing the average assigned
error and the means and widths of the pull distributions

rB Error Pull mean Pull width

0.05 24.4 ± 0.6◦ 0.12 ± 0.21 1.05 ± 0.15
0.10 14.4 ± 0.7◦ 0.13 ± 0.07 1.10 ± 0.05
0.15 8.8 ± 0.2◦ 0.00 ± 0.29 0.96 ± 0.21
0.20 7.2 ± 0.1◦ −0.06 ± 0.22 1.11 ± 0.16

for each variable by constructing the ‘pull distribution’, which
is the difference between the fitted and input parameter, di-
vided by the assigned error. The means and RMS widths of
the pull distributions are displayed in Table 1 and are seen to
be compatible with 0 and 1 respectively. This indicates that the
log-likelihood fit is unbiased and the returned errors are reli-
able. The fit errors are also included in Table 1, averaged over
all fits. γ is extracted with a precision of 14◦. There is very lit-
tle correlation between the three fit parameters, as is clear from
the contours in Fig. 3.

The size of the interference effects in B± → DK± decays,
and hence the sensitivity of the fit to γ , depends on the value of
rB . To investigate this dependence several 1000 event samples
were generated with different values of rB between 0.05 and
0.20. These samples were then fitted as previously. The fit result
on γ and associated uncertainty for each rB value are shown in
Table 2. It can be seen that the γ error varies approximately
linearly with the inverse of rB .

As explained in Section 3.1 the fitted model reported in [12]
does not distinguish between the relative contribution of certain
D decay amplitudes and their CP-conjugate final states. The im-
portance of this unknown information on the fit sensitivity was
assessed by generating and fitting 1000 event simulated datasets
with different values of the R and �φ parameters defined in
expressions (6) and (7). In varying these parameters the over-
all contribution of each mode and its CP-conjugate state, e.g.
|A(D0 → K1(1270)+K−) + A(D0 → K1(1270)−K+)|2, was
kept constant. The results for the uncertainty on γ are shown
in Table 3 in the case where a common value of R and �φ is
taken for the three final states under consideration. In a further
study the phase shift �φ was allowed to take different values
between the three modes. Four scenarios were considered with
the following arbitrary (randomly chosen) sets of values for
�φK1(1270)K, �φK1(1400)K and �φK
(892)0Kπ respectively:

(1) 39◦, 211◦ and 115◦ (default);
(2) 53◦, 108◦ and 15◦;
(3) 55◦, 344◦ and 173◦;
(4) 209◦, 339◦ and 87◦.
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Table 3
Statistical uncertainty on γ for various values of R and �φ. These parame-
ters are defined in expressions (6) and (7) with the same values being used for
K1(1270)K, K1(1270)K and K
(892)0Kπ

R �φ

0◦ 90◦ 180◦ 270◦

0 14◦ / / /
0.25 18◦ 14◦ 19◦ 13◦
0.50 27◦ 13◦ 18◦ 13◦
1.00 23◦ 13◦ / 13◦
2.00 21◦ 14◦ 19◦ 14◦

Table 4
Statistical uncertainty on γ for various R values and different �φ scenar-
ios. The same R values are being used for K1(1270)K, K1(1400)K and
K
(892)0Kπ . The scenarios for �φ are given in the text

R �φ scenario

1 2 3 4

0.25 14◦ 19◦ 14◦ 13◦
0.50 14◦ 17◦ 14◦ 15◦
1.00 12◦ 18◦ 26◦ 20◦
2.00 13◦ 14◦ 16◦ 19◦

The statistical uncertainties found on γ for these scenarios are
given in Table 4. For both Tables 3 and 4 only a single exper-
iment was performed at each point in parameter space, hence
the stated error carries an uncertainty of a few degrees. How-
ever any minor variation in result arising from the exact value
of the fitted rB parameter, experiment-to-experiment, has been
corrected for by using the dependence observed in the study re-
ported in Table 2.

It can be seen that the precision of the fit is fairly uniform
over parameter space, with a typical value of 15◦. In certain
cases however the precision is worse, particularly when R = 1
and/or �φ = 0. More detailed studies of D → K+K−π+π−
decays are therefore needed to reliably estimate the intrinsic
sensitivity of B± → (K+K−π+π−)DK± for a γ measurement.
However, variations in other aspects of the D → K+K−π+π−
decay structure were found to have limited consequences for
the fit precision.

Finally it was investigated what biases would be introduced
in the γ extraction through incorrect knowledge of the decay
model. Experiments were performed in which the datasets were
generated with the full model in the default scenario, but fit-
ted with a model which omitted all the decay amplitudes with
a contribution less than 3% to the overall rate. Shifts of up to
8◦ were observed in the measured value of γ . This value can
be considered as an upper bound to any final systematic uncer-
tainty, as it will be possible to accumulate very large samples
of D → K+K−π+π− events at the LHC, which will allow the
decay model to be refined and improved with respect to the
one assumed here. Additional information will also become
available from CP-tagged D decays at facilities operating at the
ψ(3770) resonance [20].
4. Conclusions

We have shown that the decay B± → (K+K−π+π−)DK±
can be used to provide an interesting measurement of the uni-
tarity triangle angle γ . With 1000 events and assuming a value
of rB = 0.10 it is possible to measure γ with a precision of
around 15◦. The exact sensitivity achievable depends on the
relative contributions of certain unmeasured modes in the D de-
cay model. The final state, involving only charged particles, and
kaons in particular, is well suited to LHCb. A full reconstruc-
tion study is necessary to estimate reliably the expected event
yields and the level of background.

Finally we remark that the same technique of a four-
body amplitude analysis in B± → DK± decays can be ap-
plied to other modes, most notably the ‘ADS’ channel D →
K±π∓π+π−.
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