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On multiple roots in Descartes’ Rule and their distance
to roots of higher derivatives
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Abstract

If an open interval I contains a k-fold root � of a real polynomial f, then, after transforming I to (0, ∞), Descartes’ Rule of Signs
counts exactly k roots of f in I, provided I is such that Descartes’ Rule counts no roots of the kth derivative of f. We give a simple
proof using the Bernstein basis.

The above condition on I holds if its width does not exceed the minimum distance � from � to any complex root of the kth
derivative. We relate � to the minimum distance s from � to any other complex root of f using Szegő’s composition theorem. For
integer polynomials, log(1/�) obeys the same asymptotic worst-case bound as log(1/s).
© 2006 Published by Elsevier B.V.
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1. Introduction

Let f (x) =∑n
i=0 fix

i be a polynomial of degree n with real coefficients. Descartes’ Rule of Signs states that the
number v = var(f0, . . . , fn) of sign variations in the coefficient sequence of f exceeds the number p of positive real
roots, counted with multiplicities, by an even non-negative integer. See [7, Theorem 2] for a proof with careful historic
references. Jacobi [5, IV] made the “little observation” that this statement on the interval (0, ∞) can be extended to
any open interval (l, r) by first composing f with the Möbius transform T (x) = (lx + r)/(x + 1) that takes (0, ∞) to
(l, r) and then inspecting the coefficients of g(x) = (x + 1)nf (T (x)). We call this the Descartes test for the number
of roots of f in (l, r). As this test counts roots with multiplicities, it cannot distinguish, say, two simple roots from one
double root. However, if multiplicities are known in advance, the Descartes test remains useful even in the presence of
multiple roots.

Consider the Bernstein basis Bn
0 , Bn

1 , . . . , Bn
n defined by

Bn
i (x) = Bn

i [l, r](x) =
(

n

i

)
(x − l)i(r − x)n−i

(r − l)n
. (1)
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The coefficients of f (x) = ∑n
i=0 biB

n
i (x) in the Bernstein basis and the coefficients of g(x) = ∑n

i=0 gix
i in the

monomial basis agree up to order and positive constants; that is, gi = (
n
i
)bn−i for 0� i�n. Hence the Descartes test

for f on (l, r) can equivalently be formulated to count the number of sign variations in the sequence (b0, . . . , bn) of
Bernstein coefficients. This relation was already known to Pólya and Schoenberg [11, p. 322; 14, Section 1]. It was
first applied in a root isolation algorithm by Lane and Riesenfeld [8].

Descartes’ Rule of Signs has an immediate geometric interpretation in terms of Bézier curves [4,12]. The graph of
f is a Bézier curve with control points (bi )

n
i=0 where bi = (i/n, bi). The Descartes test counts how many times the

control polygon b0b1 ∪ b1b2 ∪ · · · ∪ bn−1bn crosses the x-axis. Repeated de Casteljau subdivision is a corner-cutting
process on the control polygon, which, in the limit, converges to the graph of f. The number of intersections with the
x-axis can never grow and only drop by an even number during corner-cutting.

Let the open interval I contain a simple root � of f. If the Descartes test counts v = 1 in I, this implies that � is
the unique root of f in I. However, the converse implication does not hold in general. The use of the Descartes test
in algorithms for isolating the real roots of square-free polynomials [2,6,13,9] has motivated research on conditions
sufficient for the Descartes test to count v = 1. A particularly general sufficient condition was given by Ostrowski [10]
but has been overlooked until recently [7].

We remark that not every test for roots in an interval I has this property of yielding the exact count if the width of I is
small enough. The closely related Budan–Fourier test for roots in (l, r] computes v′ := var(f (l), f ′(l), . . . , f (n)(l))−
var(f (r), f ′(r), . . . , f (n)(r)), which is also known to exceed the number of roots in (l, r], counted with multiplicities,
by a non-negative even integer [1, Theorem 2.36]. But consider the example f (x) = x3 + x: Substitution into the
sequence (f (x), . . . , f ′′′(x)) yields the sign patterns (−, +, −, +) for x < 0 and (+, +, +, +) for x > 0. Hence v′ = 3
for any interval (l, r] containing the simple root 0 in its interior.

Our results: Let the open interval I contain a k-fold root � of f whose multiplicity k�1 is known. We present sufficient
conditions for the Descartes test to count v = k sign variations for f in I and thus to certify uniqueness of the root � in I.
Using the Bernstein basis, we can prove very easily in Section 2 that the Descartes test counts v = k for f whenever it
counts v(k) = 0 for the kth derivative f (k). This condition is met if the width of I does not exceed the minimum distance
� between � and any root of f (k). In Section 3, we relate � to the minimum distance s between � and any other complex
root of f. To do so, we use Szegő’s composition theorem in a way that generalizes an approach of Dimitrov [3] from
the first to higher derivatives of f, and we obtain a lower bound on the distance of � to roots of f (r) for any r �k. For
integer polynomials with �-bit coefficients, the resulting bound on log(1/�) has the same worst-case asymptotics as
log(1/s), namely O(n� + n log n).

2. A partial converse via differentiation

From now on, we assume w.l.o.g. [l, r] = [0, 1]. Differentiation of the ith Bernstein basis polynomial Bn
i (x) =

(
n
i
)xi(1 − x)n−i yields nBn−1

i−1 (x) − nBn−1
i (x), where Bn−1

−1 = Bn−1
n = 0 by convention. Hence the derivative of

f (x)=∑n
i=0 biB

n
i (x) is f ′(x)=∑n

i=0 n(bi+1 −bi)B
n−1
i (x). The coefficient vector (ci)

n−1
i=0 of 1/n ·f ′(x) is therefore

given by the following difference scheme.

b0 b1 b2 · · · bn−1 bn

c0 = −b0 + b1 c1 = −b1 + b2 · · · cn−1 = −bn−1 + bn (2)

The following lemma can be regarded as a piecewise linear analogue of Rolle’s Theorem.

Lemma 1. The numbers of sign variations in (2) satisfy var(c0, . . . , cn−1)�var(b0, . . . , bn) − 1.

Proof. Each sign variation in (b0, . . . , bn) is an index pair 0� i < j �n such that bibj < 0 and bi+1 = · · · = bj−1 = 0.
Let there be exactly v such pairs (i1, j1), . . . , (iv, jv) with indices i1 < j1 � i2 < j2 � · · · � iv < jv . Sign variations are
either “positive to negative” (bi > 0) or “negative to positive” (bi < 0). Obviously, these types alternate. If bi� > 0, then
bi�+1 �0 and thus ci� =−bi� +bi�+1 < 0. Similarly, if bi� < 0 then ci� > 0. Hence the sequence (c0, . . . , cn−1) contains
an alternating subsequence sgn(ci1) �= sgn(ci2) �= · · · �= sgn(civ ), demonstrating that (c0, . . . , cn−1) has at least v − 1
sign variations. �
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Theorem 2. Consider a polynomial f and an interval I. Let the Descartes test in I count v sign variations for f and
v(k) sign variations for f (k). Then v�v(k) + k.

Proof. Apply Lemma 1 repeatedly. �

Theorem 3. Let f have a root � of multiplicity k in the open interval I. Consider the roots of f (k) in the complex plane.
If none of them is situated inside the circle C with diameter I, then the Descartes test in I counts v(k) =0 sign variations
for f (k) and v = k sign variations for f.

Proof. The first claim is the well-known One-Circle Theorem [7, Theorem 22] applied to f (k). Regarding the second
claim, we have v�k by Descartes’ Rule and v�k by Theorem 2. �

Corollary 4. With notation as above, let � denote the minimum distance between � and any root of f (k). Clearly,
� > 0. If the width of I is � or less, then v = k.

Proof. Apply Theorem 3: any two points inside C have distance less than �, so no root of f (k) is among them. �

Remark 5. If � is the unique root of f in I, the possible values of v are k, k + 2, k + 4, . . . , hence v�k + 1 suffices to
guarantee v = k. In this case, we can therefore relax the condition v(k) = 0 to v(k) �1 or replace it by v(k+1) = 0.

For the case k=1, how does Theorem 3 compare to the Two-Circle Theorem [7, Theorem 21] arising from Ostrowski’s
condition [10]? For polynomials with only real roots, the Two-Circle Theorem reduces to the optimal statement, namely
that the Descartes test yields 1 if and only if there is exactly one real root in I, whereas Theorem 3 fails in the presence
of roots of f ′. However, there are also examples in which the Two-Circle Theorem fails but Theorem 3 works, e. g.,
f (x) = 400 000 000 000 x3 − 1 199 600 000 000 x2 + 1 323 455 609 000 x − 523 731 353 391.

3. The distance between complex roots of f and f (r)

The results of the preceding section motivate this question about complex polynomials and their complex roots:
Given a k-fold root � of f and a number r �k, how close can a root � �= � of f (r) be? The relative position of roots of f
and f (r) is invariant under translations, so we assume w.l.o.g. that � = 0. In this situation,

f (x) =
n∑

i=k

fix
i = xkg(x) with g(x) =

n−k∑
i=0

gix
i ,

f (r)(x) =
n−r∑

i=k−r

(i + r)!
i! fi+rx

i = n!
(n − r)!x

k−rh(x) with h(x) =
n−k∑
i=0

hix
i .

The polynomials g and h have exactly those roots of f and f (r), resp., different from �. The coefficients of h satisfy

hi = (n − r)!
n!

(i + k)!
(i + k − r)! fi+k =

(
r−1∏
d=0

k + i − d

n − d

)
gi . (3)

Following Dimitrov [3], we use Szegő’s composition theorem to track how multiplying the coefficients in (3) changes
the roots of g into those of h, necessitating this definition: A closed circular region in the plane is the closure of the
interior of a circle, the closure of the exterior of a circle, or a closed half-plane (its boundary line being a circle of
infinite radius).

Theorem 6 (Szegő’s composition theorem [15, Satz 2; 3, Theorem 3]). LetA(x)=∑n
i=0 ai(

n
i
)xi ,B(x)=∑n

i=0 bi(
n
i
)xi ,

and C(x) =∑n
i=0 aibi(

n
i
)xi . Let K be a closed circular region in the complex plane containing all roots of A. If � is a

root of C, there is w ∈ K and a root � of B such that � = −w�.
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The polynomial C(x) is called the composition of A(x) and B(x). According to (3), h(x) is the composition of g(x)

and

Tr(x) =
n−k∑
i=0

(
r−1∏
d=0

k + i − d

n − d

)(
n − k

i

)
xi . (4)

It remains to find a suitable circular region K enclosing the roots of Tr .

Lemma 7. All roots of Tr are real and contained in the interval [−1, −Tr(0)].

Proof. We start with a minor generalization of Lemma 1 of Dimitrov [3]: the polynomial

Ud(x) :=
n−k∑
i=0

k + i − d

n − d

(
n − k

i

)
xi =

(
x + k − d

n − d

)
(x + 1)n−k−1 (5)

has the roots −(k − d)/(n − d) and −1; both are elements of [−1, 0]. To verify (5), observe that the coefficient of xi

on the right is

k − d

n − d

(
n − k − 1

i

)
+
(

n − k − 1
i − 1

)
= (k − d)(n − k − i) + (n − d)i

n − d

(n − k − 1)!
i!(n − k − i)! = k + i − d

n − d

(
n − k

i

)
.

We need a second auxiliary result, namely a remark by Schur [15, p. 37] on Theorem 6: If the set K is a half-plane
containing 0, and if all roots � of B are elements of [−1, 0], then K contains not only w but also � = (−�) · w. By
intersecting families of such half-planes, it follows that any convex set containing 0 as well as all roots of A also contains
all roots of C.

Tr is the result of composing U0 with U1, U2, . . . , Ur−1. By Schur’s remark, the enclosure of all roots of U0 in
the convex set [−1, 0] is preserved by these compositions. Note that Tr,0 := Tr(0) = ∏r−1

d=0 (k − d)/(n − d) > 0 is
the product of all roots of Tr , up to sign. As none of them has magnitude larger than one, Tr,0 is a lower bound on
the magnitude of each of them, proving the claim. �

Theorem 8. Let � be a k-fold root of f , and let s > 0 be the minimum distance of � to any other root � of f. Let r �k.
If � �= � is a root of f (r), then |� − �|�sT r,0 where Tr,0 =∏r−1

d=0 (k − d)/(n − d).

Proof. W.l.o.g., � = 0. Let K be the closed disc with diameter [−1, −Tr,0]. It contains all roots of Tr , so Theorem 6
implies for the composition h(x) of Tr(x) and g(x) that its root � has the form � = −w� with w ∈ K and g(�) = 0.
One has |w|�Tr,0 and |�|�s, so that |�|�sT r,0. �

For k = r = 1, this bound is tight: B1
n(x) has a maximum at 1/n, cf. [3]. The following corollary combines

Theorem 8 with Corollary 4.

Corollary 9. Let I be an open interval enclosing a k-fold root � of the real polynomial f. Let s and Tr,0 be as above.
If the width of I is sT r,0 or less, then the Descartes test for f in I counts exactly k sign variations.

How good is this result? For k = 1, we have T1,0 = 1/n, so Corollary 9 requires I to have width |I |�1/n · s to
guarantee that the Descartes test counts v=1. The Two-Circle Theorem after Ostrowski [7, Theorem 21] already applies
if |I |�√

3/2 ·s. However, Ostrowski’s result is inapplicable for k > 1. Furthermore, the relevant quantity in the analysis
of root isolation by recursive bisection is log(1/|I |), and regarding that, we attain the same asymptotics: suppose that f
has integer coefficients of at most � bits (that is, with magnitude less than 2�) in the monomial basis. Its root separation
sep(f ), that is the minimum distance between any two different roots, satisfies log(1/sep(f )) = O(n� + n log n), see
[1, Proposition 10.21]. Using the estimate Tr,0 > n−n, Theorem 8 implies that the minimum distance � between any
k-fold root � of f and the nearest root of f (k) satisfies the same asymptotic bound: log(1/�)� log(1/sep(f ))+n log n=
O(n� + n log n). From this point of view, Corollary 9 improves upon the state of the art by removing the restriction on
� to be a simple root.
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4. Conclusion

We have given a new partial converse of Descartes’ Rule of Signs for k-fold roots based on roots of the kth derivative.
Using the Bernstein basis, the proof has been rather simple. To make the result quantitative, we have extended an
approach of Dimitrov and used Szeg′′o’s composition theorem to bound the minimum distance between a kth root and a
root of the rth derivative. This second result, which may also be of independent interest, has allowed us to extend the
asymptotic bound on the depth of recursive bisection needed to obtain isolating intervals certified by the Descartes test
from simple to multiple real roots of integer polynomials.
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