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Abstract

Let k be a global field andp any nonarchimedean prime ofk. We give a new and uniform
proof of the well known fact that the set of all elements ofk which are integral atp is
diophantine overk. Let kperf be the perfect closure of a global field of characteristicp>2.
We also prove that the set of all elements ofkperf which are integral at some primeq of
kperf is diophantine overkperf, and this is the first such result for a field which is not finitely
generated over its constant field. This is related to Hilbert’s Tenth Problem because for global
fields k of positive characteristic, giving a diophantine definition of the set of elements that are
integral at a prime is one of two steps needed to prove that Hilbert’s Tenth Problem fork is
undecidable.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Hilbert’s Tenth Problem in its original form was to find an algorithm to decide, given
a polynomial equationf (x1, . . . , xn) = 0 with coefficients in the ringZ of integers,
whether it has a solution withx1, . . . , xn ∈ Z. Matijasevǐc [10], building on earlier
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work by Davis et al.[2], proved that no such algorithm exists, i.e. Hilbert’s Tenth
Problem is undecidable.

Since then, analogues of this problem have been studied by asking the same question
for polynomial equations with coefficients and solutions in other commutative rings
R. We refer to this as Hilbert’s Tenth Problem overR. Perhaps the most important
unsolved question in this area is Hilbert’s Tenth Problem over the field of rational
numbers. Diophantine undecidability has been proved for several function fields of
characteristic 0: In [3], Denef proves the undecidability of Hilbert’s Tenth Problem for
rational function fields over formally real fields. In 1992, Kim and Roush [8] showed
that the problem is undecidable for the purely transcendental function fieldC(t1, t2),
and in [5] this is generalized to finite extensions ofC(t1, . . . , tn) for n�2.

Hilbert’s Tenth Problem for the function fieldk of a curve over a finite field is also
undecidable. This was proved by Pheidas fork = Fq(t) with q odd, and by Videla
[21] for Fq(t) with q even. In [19,20], Shlapentokh generalized Pheidas’ result to finite
extensions ofFq(t) with q odd and to certain function fields over possibly infinite
constant fields of odd characteristic, and the remaining cases in characteristic 2 are
treated in [4]. Before we can state the results of this paper we need the following
definition.

Definition 1.1. 1. If R is a commutative ring, adiophantine equation over Ris an
equationP(x1, . . . , xn) = 0 whereP is a polynomial in the variablesx1, . . . , xn with
coefficients inR.

2. A subsetSof Rk is diophantineif there is a polynomialP(x1, . . . , xk, y1, . . . , ym)

∈ R[x1, . . . , xk, y1, . . . , ym] such that

S = {(x1, . . . , xk) ∈ Rk : ∃ y1, . . . , ym ∈ R, (P (x1, . . . , xk, y1, . . . , ym) = 0)}.

When R is not a finitely generated algebra overZ, we restrict our attention to
diophantine equations whose coefficients are in a finitely generated algebra overZ.

For global fields of positive characteristic, Proposition1.2 below [19, p. 319] is
used to prove undecidability of Hilbert’s Tenth Problem. For the purposes of this
paper, global fields are algebraic number fields or finite extensions of the rational
function fieldsFq(t). A prime of a global fieldk is an equivalence class of nontrivial
absolute values ofk. A nonarchimedean prime is an equivalence class of nontrivial
nonarchimedean absolute values ofk. For a nonarchimedean primep of a global field
k we denote by ordp the associated normalized additive discrete valuation ordp : k∗�Z.

Proposition 1.2. Let k be a global field of positive characteristic, let p be a rational
prime, and let p be a prime ofk. Assume that the setsp(k) := {(x,w) ∈ k2 : ∃s ∈
N, w = xp

s } and INT(p) := {x ∈ k : ordp x�0} are diophantine. Then Hilbert’s Tenth
Problem fork is undecidable.

So for global fields of positive characteristic, a diophantine definition of the set of
elements which are integral at some primep is one of two main steps used to prove
undecidability of Hilbert’s Tenth Problem.
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In this paper we will prove two results. We give a different and more uniform proof
of the known fact that for any global fieldk and any nonarchimedean primep of k the
set of elements ofk which are integral atp is diophantine. For number fields the result
was already implicit in the work of Robinson[14,15], and explicitly written down in
[7, Proposition 3.1]. Their proof relies on the Hasse principle for quadratic forms. For
global function fields the result was proved in [18]. There is also another approach by
Rumely [16] that uses the Hasse norm principle. Our approach uses the Brauer group
of k. We also prove the following new result:

Theorem 1.3. Let k be a global field of characteristicp > 2, and let kperf be the
perfect closure ofk. Let p be a prime ofkperf. The set{x ∈ kperf : ordp x�0} is
diophantine overkperf.

The perfect closure of a fieldk of characteristicp is obtained by adjoiningpnth
roots of all elements ofk for all n�1. A prime p of kperf is an equivalence class of
nontrivial absolute values ofkperf. The associated additive valuation ordp is no longer
discrete since every element ofkperf is a pth power.

The perfect closure ofFq(t) is K := Fq(t, t
1/p, t1/p

2
, t1/p

3
, . . .). We will first prove

Theorem1.3 for K. Let k be any global field of characteristicp > 0. Then k is a
finite extension ofFq(t) for someq = pn. We will show in Section 4 that the perfect
closure kperf of k is also obtained by adjoiningpnth roots of t, and that the proof
for K generalizes tokperf. These perfect closures are not finitely generated over their
constant fields. This distinguishes them from all the function fields mentioned above.

2. Background

In this section, we will state some of the definitions and theorem about division
algebras and Brauer groups that are needed in the next two sections.

Definition 2.1 (Quaternion algebras). Let F be a field of characteristic
= 2. For
a, b ∈ F ∗, let H(a, b) be theF-algebra with basis 1, i, j, k (as anF-vector space) and
with multiplication rules

i2 = a, j2 = b, ij = k = −ji.

ThenH(a, b) is anF-algebra which is called aquaternion algebraover F.

One can show thatH(a, b) is either a division algebra or isomorphic toM2(F ).
(HereM2(F ) is the algebra of 2× 2 matrices.)

Definition 2.2. 1. An algebraA is said to becentral simpleover a fieldF if A is a
simple algebra havingF as its center.
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2. The matrix algebraMn(F) is called asplit central simple algebra overF. If A is
a finite-dimensional central simple algebra overF, then an extension fieldE of F is
called a splitting field forA if A ⊗F E�Mn(E) for somen.

Proposition 2.3. Let F be a field of characteristic
= 2. Every 4-dimensional central
simple algebra overF is isomorphic toH(a, b) for somea, b ∈ F ∗.

Proof. This is Proposition 1 in[1, p. 128]. �

In characteristic 2 something similar holds:

Proposition 2.4. Let F be a field of characteristic2. Let D be a central division
algebra overF such that for eachx ∈ D, we have[F(x) : F ]�2. ThenD admits a
basis (1, u, v,w) over F such that

u2 = a, v2 = v + b, uv = w, vu = w + u,w2 = ab, vw = bu,

wv = bu + w,wu = a + av, uw = av,

wherea, b ∈ F . We will denote this algebra again byH(a, b).

Proof. This is Exercise 4 in[1, p. 130]. �

Definition 2.5. Let k be a global field. Letp be a prime ofk, and let kp be the
completion ofk at p. A quaternion algebraA over k is said tosplit at p if

A ⊗k kp�M2(kp) as kp-algebras.

OtherwiseA is ramified atp.

Notation: For any fieldF, let F sep denote a separable closure ofF.
We have the following proposition.

Proposition 2.6. Let A be a finite-dimensional central simple algebra over a fieldF .
There exists anF sep-algebra isomorphism� : A⊗F F

sep→ Mr(F
sep). The characteristic

polynomialPa(x) ∈ F sep[x] of �(a ⊗ 1) is independent of the choice of�. Moreover,
Pa(x) ∈ F [x].

Proof. This is proved in[13, pp. 113–114]. �

Definition 2.7. Let A be as above. Thereduced tracetr(�) of � ∈ A is defined to be
the trace of�(� ⊗ 1), for any choice of� as above. Similarly, thereduced normnr(�)
is defined to be the determinant.

We can compute the following:
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Lemma 2.8. Let H(a, b) be a quaternion algebra over a fieldF of characteristic

= 2. The reduced tracetr(x1 + x2i + x3j + x4k) equals2x1, and the reduced norm
nr(x1 + x2i + x3j + x4k) equalsx2

1 − ax2
2 − bx2

3 + abx2
4 for any x1, . . . , x4 ∈ F .

Lemma 2.9. LetD be a4-dimensional division algebra over a fieldF of characteristic
2, so thatD = H(a, b) as in Proposition2.4 for somea, b ∈ F ∗. Let (1, u, v, uv) be
a basis ofD over F as in Proposition2.4. For an elementx1 + x2u+ x3v + x4uv we
have tr(x1 + x2u + x3v + x4uv) = x3 and nr(x1 + x2u + x3v + x4uv) = x2

1 + x1x3 +
bx2

3 + a(x2
2 + x2x4 + bx2

4).

Proof. This follows from Proposition 10 in [1, p. 144] and from Exercise 6 in [1,
p. 147]. �

Definition 2.10 (Brauer group). Let A and B be finite-dimensional central simple al-
gebras over a fieldF. We say thatA andB are similar,A ∼ B, if A⊗F Mn(F )�B⊗F

Mm(F) for somem and n. Define theBrauer groupof F, Br(F ), to be the set of
similarity classes of central simple algebras overF, and write [A] for the similarity
class ofA. For classes[A] and [B], define

[A][B] := [A ⊗F B].

This is well defined and makes Br(F ) into an abelian group.

Each similarity class of Br(F ) is represented by a central division algebra, and two
central division algebras representing the same similarity class are isomorphic[11,
p. 100].

Theorem 2.11.Let K be a nonarchimedean local field.

(1) The Brauer group ofK is isomorphic toQ/Z.

(2) Let D/K be a division algebra of degreen2. The order of[D] in Br(K) is n.

Proof.

(1) This is Theorem 9.22 in[6].
(2) This is Theorem 9.23 in[6]. �

Theorem 2.12.Let k be a global field. There is an exact sequence

0 → Br(k) →
⊕
v∈Mk

Br(kv) → Q/Z → 0,

whereMk denotes the set of nonequivalent nontrivial absolute values ofk.

Proof. This is Remark (ii) in[13, p. 277]. �
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Proposition 2.13. Let K be a nonarchimedean local field, and let D be a finite-
dimensional central division algebra overK. The valuation onK has a unique
extension toD.

Proof. This is proved in[17, p. 182]. �

3. Integrality at a prime for global fields

In this section we will prove the following

Theorem 3.1. Let k be a global field. Letp be a nonarchimedean prime ofk. The set
{x ∈ k : ordp x�0} is diophantine overk.

Proof. We will first prove this when the characteristic ofk is not 2 and then say how
the proof has to be modified in characteristic 2.

For any nonarchimedean primep of k let Rp := {x ∈ k : ordp x�0}.

Claim. Given two distinct nonarchimedean primesp and q of k there exists a subset
S ⊆ Rp ∩ Rq containing a subgroupG of finite index inRp ∩ Rq, such thatS is
diophantine overk.

Proof of Claim. By the approximation theorem we may choosep, q ∈ k such that
ordp p = 1, ordq p = 0, ordp q = 0, and ordq q = 1. By Theorem2.11 and Theo-
rem 2.12 we can find a central division algebraH that is ramified exactly atp and q
and which has degree 4 overk. By Proposition 2.3,H�H(a, b) for somea, b ∈ k∗.
Let Op be the valuation ring ofkp, wherekp is the completion ofk at the primep.
Let Ap be the valuation ring ofHp := H ⊗ kp. ThenAp is a freeOp-module of rank
4. SinceH(a, b)�H(ax2, by2) for x, y ∈ k∗, we can choosei, j ∈ H that are integral
at p and q, and then

prAp ⊆ Op + Opi + Opj + Opij, and

qrAq ⊆ Oq + Oqi + Oqj + Oqij for some r�0.

Now let

T := {x1 ∈ k : (∃ x2, x3, x4 ∈ k) : (x2
1 − ax2

2 − bx2
3 + abx2

4 = pq)}.

Then S = (pq)rT has the desired property. Supposex1 ∈ T . Then there exists� =
x1 + x2i + x3j + x4ij ∈ H whose reduced norm equalspq. Sincepq ∈ Op it follows
that � ∈ Ap. Thenprx1 ∈ Op. Similarly, we can show thatqrx1 ∈ Oq, so (pq)rx1 ∈
Op ∩ Oq. HenceS ⊆ Op ∩ Oq ∩ k = Rp ∩ Rq.
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Conversely assume thatx1 ∈ k and thatx1 ∈ pRp ∩ qRq. Then the equation

X2 − 2x1X + pq = 0

is Eisenstein atp and q, so a root� generates a quadratic field extension, and� also
generates a quadratic extensionkp(�) of kp and a quadratic extensionkq(�) of kq. By
Milne [11, Remark 4.4, p. 110] any quadratic extension field of the local fieldkp is
a splitting field forH over kp. Hencekp(�) splits H locally, and by Theorem 2.12
it follows that k(�) splits H. Sincek(�) splits H, k(�) can be embedded intoH [11,
Corollary 3.7, p. 103], and we can apply Proposition 10 in [1, p. 144] to conclude
that the image of� in D is c = c1 + c2i + c3ij + c4ij with reduced trace tr(c) = 2x1
and reduced norm nr(c) = pq. Hence 2c1 = 2x1, so c1 = x1 and x1 ∈ T . Then
(pq)rx1 ∈ S. Thus S ⊆ Rp ∩ Rq andS contains the subgroupG := pr+1Rp ∩ qr+1Rq
which has index(pq)r+1 in Rp ∩ Rq. This proves the claim.

Let s1, . . . , sl be coset representatives forG in Rp ∩ Rq. Then forx ∈ k,

x ∈ Rp ∩ Rq ⇔ (∃ s ∈ S)(x = s + s1) ∨ · · · ∨ (x = s + sl).

This proves thatRp ∩ Rq is diophantine overk.
We can repeat the same argument withp and some other finite prime) 
= q and

conclude thatRp ∩ R) is diophantine overk. By weak approximation we have

Rp = (Rp ∩ Rq) + (Rp ∩ R)).

This proves the theorem when the characteristic ofk is not 2.
Characteristic 2 case:Whenk has Characteristic 2, we can still find a 4-dimensional

central division algebra ramified exactly atp and q. We only have to change the
definition of T to

T := {x3 ∈ k : (∃ x1, x2, x4 ∈ k) : nr(x1 + x2u + x3v + x4uv) = pq)}.

Then we can still showT ⊆ Ap. For the other direction, givenx3 ∈ k with x3 ∈
pRp ∩ qRq, we look at the equation

X2 − x3X + pq = 0.

Then the proof proceeds exactly as before.�
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4. Integrality at a prime for the perfect closure of global fields of characteristic
p > 2

Notation: In the following Fq will be the finite field with q = pm elements of
characteristicp > 2, Fq(t) will denote the field of rational functions overFq and

K will denote the perfect closure ofFq(t), i.e. K = Fq(t, t
1/p, t1/p

2
, t1/p

3
, . . .). For

simplicity of notation we will first prove Theorem1.3 for the rational function field
Fq(t), and then say how the proof has to be modified for finite extensionsk of Fq(t).

Theorem 4.1. LetK be as above. Letp be a prime ofK. The set{x ∈ K : ordp x�0}
is diophantine overK.

Proof. Let p1 and p2 be two primes ofK and let ordp1
and ordp2

be the associated
additive valuations.

We will show that the set{x ∈ K : ordp1
x�0} is diophantine overK.

The restrictions ofp1 andp2 to Fq(t) are primes ofFq(t). For simplicity of notation
we will denote these restrictions again byp1 and p2. From Theorems2.12 and 2.11
it follows that we can find a central division algebraD/Fq(t) with [D : Fq(t)] = 4
which is ramified exactly at the primesp1 and p2.

Let OD := {z ∈ D : ordp1
(z)�0 and ordp2

(z)�0},

and O := {z ∈ Fq(t) : ordp1
(z)�0 and ordp2

(z)�0}.

The ring O is an intersection of discrete valuation rings, soO is a Dedekind domain
with finitely many primes. By Jacobson[6, Exercise 15, p. 625]O is a PID. The ring
OD is a finitely generated torsion-freeO-module. SinceO is a PID, it follows that
OD is a freeO-module of rank 4.

Let tr : OD → O be the reduced trace. Then tr(1) = 2, because[D : Fq(t)] = 4.
Since 2 is a unit inO, the reduced trace is surjective. SinceOD/O is free, the kernel
of the reduced trace is free of rank 3, so leta2, a3, a4 be a basis for the kernel. The
image of the trace is generated by tr(1), so a1 = 1, a2, a3, a4 are a basis ofOD/O.
Then a1, . . . , a4 are also a basis forOD ⊗O Fq(t) = D over Fq(t). Let

S := {x1 ∈ Fq(t) : (∃ x2, x3, x4 ∈ Fq(t)) : (nr(x1a1 + x2a2 + x3a3 + x4a4) = 1)}.

Then S ⊆ O.

Let Dperf := D ⊗Fq (t) K. Then Dperf is still ramified atp1 and p2, because only
elements of orderp) in Br(Fq(t)) get killed in the perfection,D has order 2 in
Br(Fq(t)), andp�3.

Let Operf := {z ∈ K : ordp1
(z)�0 and ordp2

(z)�0},

and ODperf := {z ∈ Dperf : ordp1
(z)�0 and ordp2

(z)�0}.
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We will prove thatOperf is diophantine overK. To do this let

T := {x1 ∈ K : (∃ x2, x3, x4 ∈ K) : (nr(x1a1 + x2a2 + x3a3 + x4a4) = 1)}.

We will prove that Operf is diophantine by showing that there exist finitely many
elements�1, . . . , �r ∈ K such that

Operf = (T + �1) ∪ (T + �2) ∪ · · · ∪ (T + �r ).

First we need the following claim:

Claim. ODperf is a freeOperf-module of rank4 with basisa1 ⊗ 1, . . . , a4 ⊗ 1. Also
a1 ⊗ 1, . . . , a4 ⊗ 1 are a basis forDperf overK.

Proof of Claim. For eachi ∈ N let

Di := D ⊗Fq (t) Fq(t
1/pi ),

Oi := {z ∈ Fq(t
1/pi ) : ordp1

(z)�0 and ordp2
(z)�0}, and

ODi
:= {z ∈ Fq(t

1/pi ) : ordp1
(z)�0 and ordp2

(z)�0} = OD ⊗O Oi .

Then ODi
is a freeOi-module of rank 4 with basisa1 ⊗ 1, . . . , a4 ⊗ 1 by Lang [9,

Proposition 4.1, p. 623].
We have thatODperf = OD ⊗O Operf, and hence the same proposition implies that

ODperf is free overOperf with basisa1 ⊗1, . . . , a4 ⊗1. These elements are still linearly
independent over the quotient field ofOperf, K, so they also form a basis forDperf

over K. This proves the claim.

By definition of T, we have thatT ⊆ Operf. Let k1 and k2 be the residue fields of
p1 andp2, respectively. The fieldsk1 andk2 are finite extensions ofFq . For x1 ∈ Operf

we have

x2
1 − 1 modpi /∈ (ki)

2 for i = 1,2

⇒ x2
1 − 1 /∈ (K∗

v )
2 locally at v = p1,p2 (1)

⇔
{
X2 − 2x1X + 1 is irreducible overKv for v = p1,p2
or x1 = ±1

(2)

⇔ x1 = ±1 or (∃ � ∈ Dperf s.t. K(�) splits Dperf,

and �2 − 2�x1 + 1 = 0) (3)
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⇔ x1 = ±1 or (∃ � ∈ Dperf s.t. tr(�) = 2x1,nr(�) = 1, (4)

and [K(�) : K] = 2)

⇔ ∃ � ∈ Dperf s.t. tr(�) = 2x1, and nr(�) = 1

⇔ x1 ∈ T .

The equivalence of (1) and (2) comes from solving the equationX2 − 2x1X+ 1 using
the quadratic formula. The equivalence of (3) and (4) follows from the fact that every
degree 2 field extensionK(�) ⊆ Dperf splits the 4-dimensional division algebraDperf.

There exists ana1 ∈ k1 such that(a2
1 −1) /∈ (k1)

2: If a2
1 −1 were a square for every

a1 ∈ k1, then we would havea2
1 − 1 = b2, so a2

1 − 2 = b2 − 1 = c2 is a square, so
repeating thisp times for every square we could show that the number of squares in
k1 is divisible by p. But k1 = Fpn for somen > 0 and the number of squares inFpn
is (pn + 1)/2 which is not divisible byp.

The same argument shows that there exists an elementa2 ∈ k2 such that(a2
2 − 1) /∈

(k2)
2.

Let a1 ∈ k1 and a2 ∈ k2 be such elements. By the approximation theorem there
exists an elementa ∈ Operf such thata ≡ a1 modp1 and a ≡ a2 modp2. From the
above equivalences it follows thata ∈ T . The approximation theorem implies that
for each i ∈ k1, j ∈ k2 we can find an element�i,j ∈ Operf with the property that
�i,j ≡ i modp1 and �i,j ≡ j modp2.

Claim.

Operf =
⋃

i∈k1,j∈k2

(T + �i,j ).

Proof of Claim. The setT contains all elements

{x ∈ K : x ≡ a1 modp1 and x ≡ a2 modp2}.

If y ∈ Operf, then for somei ∈ k1, j ∈ k2, y ≡ i modp1 and y ≡ j modp2, so then
y − �(i−a1),(j−a2) ∈ T . This proves the claim.

The claim implies thatOperf is diophantine overK. The same argument withp2
replaced by some other primep3 shows that the set̃Operf = {z ∈ K : ordp1

(z)�0 and
ordp3

�0} is diophantine overK. Then by weak approximation{x ∈ K : ordp1
(x)�0} =

Operf + Õperf. �

Lemma 4.2. Let k be any global field of characteristicp > 0 such that k is a
finite extension ofFq(t) for some q = pn. The perfect closure ofk is kperf :=
k(t1/p, t1/p

2
, t1/p

3
, . . .).
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Proof. Clearly kperf is contained in the perfect closure ofk. The field kperf is a finite
extension ofK = Fq(t, t

1/p, t1/p
2
, t1/p

3
, . . .). SinceK is perfect, and finite extensions

of perfect fields are perfect,kperf is perfect as well, so it must be equal to the perfect
closure ofk. �

Now we can state the general theorem:

Theorem 4.3. Let k be a global field of characteristicp > 2, and kperf its perfect
closure. Letp be a prime ofkperf. The set{x ∈ kperf : ordp x�0} is diophantine over
kperf.

Proof. We can repeat the proof of Theorem4.1 with Fq(t) replaced byk. Everything
works exactly as before, because the exact sequence of Theorem 2.12 works for all
global fieldsk. �
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