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Abstract

The subcellular location of a protein is an important characteristic with functional implications, and hence the problem of
predicting subcellular localization from the amino acid sequence has received a fair amount of attention from the
bioinformatics community. This review attempts to summarize the present state of the art in the field. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The general problem to predict the subcellular lo-
cation of a protein from its amino acid sequence has
long been a central one in bioinformatics. To date,
three conceptually different approaches have been
proposed: to look for the targeting signals that the
cell uses as ‘address labels’, to base the prediction on
the observation that proteins from different cellular
compartments tend to differ in subtle ways in their
overall amino acid composition, and to use evolu-
tionary relationships (based on the endosymbiotic
origin of organelles) to infer the subcellular localiza-
tion. There are even one or two ‘meta-methods’ in
which outputs from a range of ‘primary’ prediction/
analysis methods are combined in an optimal way.
Each approach has its strengths and weaknesses, and
since no across-the-board benchmarking tests have
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been performed, it is not yet possible to make a fair
comparison between all the different methods pro-
posed by different authors.

In this review, we have chosen to first discuss the
most commonly used methods for predicting individ-
ual subcellular localizations — the secretory pathway,
mitochondria, chloroplasts, and the nucleus — and
then describe a couple of attempts to construct inte-
grated predictors that try to ‘sort’ proteins between
multiple compartments. The reader is also referred to
a recent (and somewhat more ambitious) review by
Nakai [1] for further details.

2. Prediction of signal peptides for secretion

N-Terminal signal peptides target proteins to the
secretory pathway in eukaryotic cells, and for trans-
location across the cytoplasmic membrane in bacte-
ria. It has long been known that they have a tripar-
tite design with a short positively charged amino-
terminal segment (n-region), a central hydrophobic
segment (c-region), and a more polar C-terminal seg-
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ment that is recognized by the signal peptidase en-
zyme. The first methods to identify signal peptide
sequences were published already in the mid 1980s
[2-4], but the currently most widely used method is
the neural network-based SignalP predictor [5]. Sig-
nalP combines two different neural networks: one
that is trained to discriminate between residues that
belong and do not belong to a signal peptide (the S-
score), and one that is trained only to recognize sig-
nal peptidase cleavage sites (the C-score). The cleav-
age site is predicted by multiplying together the C-
score and the negative ‘derivative’ of the S-score (this
serves to focus the prediction on the region where the
S-score changes from high to low), while the discrim-
ination between proteins that have and do not have a
signal peptide is based on the mean S-score evaluated
from the N-terminus to the predicted cleavage site.
The current version of SignalP was trained on three
different signal peptide data sets — one with eukary-
otic signal peptides, one with signal peptides from
Gram-negative bacteria, and one from Gram-positive
bacteria — and hence is to some extent optimized for
different organisms.

SignalP-HMM is a new version of SignalP that is
based on a hidden Markov model formalism [6]. This
predictor was developed in order to improve the dis-
crimination between signal peptides and N-terminal
transmembrane anchor segments, but is in other re-
spects comparable to the original SignalP predictor.

According to a recent benchmarking study [7], Sig-
nalP and SignalP-HMM perform equally well when
it comes to discriminating between proteins with and
without signal peptides, although the neural network
version seems to be slightly better in predicting signal
peptidase cleavage sites, Table 1. SignalP-HMM is
however clearly superior for discriminating between
cleavable signal peptides and N-terminal anchors.
The two SignalP versions clearly outperformed the
other programs tested, and thus seem to be the
best signal peptide predictors available at the mo-
ment.

It should be mentioned that Chou recently re-
ported a method similar in spirit to a weight-matrix
method but including statistics on pairwise correla-
tions between the positions closest to the signal pep-
tidase cleavage site [8]; however, this method was not
included in the benchmarking study.

Table 1
Performance of the two versions of SignalP: hidden Markov
model version (HMM) and neural network version (NN)

SingalP  Cleavage site Discrimination, MCC
version location, % correct
Euk G- G+  SP/non-SP SP/SA
Euk G— G+ Euk

HMM 69.5 814 645 094
NN 724 834 675 097

093 096 0.74
0.89 0.96 0.39

The cleavage site location is measured in the percentage cor-
rectly assigned cleavage sites. The discrimination is measured in
Mathews’ correlation coefficient (MCC) which is one (1) for a
perfect prediction and zero (0) for a totally random assignment
[33]. The discrimination is given both between signal peptide-
containing (SP) and signal peptide-lacking (non-SP) proteins
and between secreted proteins (SP) and proteins anchored in
the membrane (SA). The table is adapted from [6].

3. Prediction of mitochondrial targeting peptides

Mitochondrial targeting peptides are enriched in
positively charged residues (Arg in particular), lack
negatively charged residues, and have the ability to
form amphiphilic o-helices [9]. The amphiphilic
structure is important for binding to receptors in
the outer mitochondrial membrane [10,11], and the
net positive charge may be needed during the AW-
driven import across the inner mitochondrial mem-
brane [12].

Three popular methods for predicting mitochon-
drial targeting peptides are TargetP [13], MitoProt
[14], and Predotar (see Table 3). Both Predotar and
TargetP are neural network predictors and are con-
ceptually similar to SignalP. They are not clear-cut
single location predictors since they also deal with
other presequences; both investigates chloroplast
transit peptide presence and in addition to this Tar-
getP handles signal peptide prediction. Predotar is
essentially aimed for plant sequences. The perform-
ance of Predotar and TargetP is discussed in Section
6 and summarized in Table 2.

MitoProt predicts localization of a protein by cal-
culating a number of physicochemical parameters
from its amino acid sequence, and then computing
a linear discriminant function (LDF) which is com-
pared to a cutoff for mitochondrial/non-mitochon-
drial localization prediction. Both MitoProt and Tar-
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Table 2

Comparison of localization prediction for three multi-category predictors

Predictor Location Plant set Non-plant set
% Correct Sensitivity Specificity % Correct Sensitivity Specificity
TargetP Chloro. 85.3 0.85 0.69 90.0 - -
Mito. 0.82 0.90 0.80 0.67
Secr. 0.91 0.95 0.96 0.92
PSORT Chloro. 69.8 0.47 0.69 82.5 - -
Mito. 0.66 0.87 0.81 0.60
Secr. 0.82 0.74 0.64 0.93
Predotar Chloro. 84.8 0.82 0.77 76.3 - -
Mito. 0.86 0.87 0.86 0.50
Secr. (0.80) n/a (0.65) n/a

The plant data set contains 940 proteins (from Swiss-Prot release 36) and the non-plant set contains 2738 proteins (from Swiss-Prot
release 37) with annotated localization. Note that Predotar is not intended for use on non-plant set, hence its partly poor performance
on this set. Sensitivity is the fraction of true positive predictions relative to the set of proteins known to be localized in respective
compartment. Specificity is the fraction of true positive predictions relative to the set of proteins predicted to respective compartment.
‘Percent correct’ refers to the fraction of all proteins in a set for which the correct location is predicted.

getP suggest a potential cleavage site of the predicted
mitochondrial targeting peptides.

Predotar, TargetP and MitoProt only predict N-
terminal mitochondrial targeting sequences, and no
method exists that will identify import signals present
elsewhere in the protein, although such signals are
known to exist [15,16].

4. Prediction of chloroplast transit peptides

N-Terminal chloroplast transit peptides have
highly variable lengths, contain very few negatively
charged residues, and are highly enriched for hy-
droxylated amino acids. Two neural-network based
predictors are available: ChloroP [17] and Predotar
(see Table 3). ChloroP also includes a separate mod-
ule (based on a weight matrix) for predicting the

Table 3
Web addresses of predictors

transit peptide cleavage site. A comparison of local-
ization prediction performance between Predotar and
TargetP (of which ChloroP is a part) using 940 plant
sequences from Swiss-Prot can be found in Table 2.

Many thylakoid proteins have composite targeting
signals with a typical transit peptide followed by a
thylakoid targeting signal. The latter is usually very
similar to the signal peptides found on secretory pro-
teins, and can be identified by SignalP or SignalP-
HMM (our unpublished data). A specialized weight
matrix for predicting the cleavage site is available for
thylakoid signal peptides [18].

5. Prediction of nuclear localization signals

Nuclear localization signals are composed of one
(monopartite) or a pair of (bipartite) short positively

Predictor Web address (URL)

ChloroP http://www.cbs.dtu.dk/services/ChloroP/

MitoProt http://www.mips.biochem.mpg.de/cgi-bin/proj/medgen/mitofilter
predictNLS http://maple.bioc.columbia.edu/predictNLS/

Predotar http://www.inra.fr/Internet/Produits/Predotar/

PSORT http://psort.nibb.ac.jp/

SignalP http://www.cbs.dtu.dk/services/SignalP/

TargetP http://www.cbs.dtu.dk/services/TargetP/

TMHMM http://www.cbs.dtu.dk/servicess TMHMM/
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charged stretches in the protein chain. The mono-
partite nuclear localization signal has a short consen-
sus sequence, K(K/R)X(K/R), and binds to a pocket
on the surface of the importin o receptor [19]. In
bipartite nuclear localization signals, the monopartite
motif is combined with a second small cluster of
basic residues, 10—12 residues N-terminal to the first.

The basic clusters can be found anywhere within
the protein chain, and are exposed on the surface of
the folded protein. Since the entire chain has to be
searched for nuclear localization signals, it is difficult
to avoid false positive predictions. The best predictor
available at the moment is based on a large collection
of mono- and bipartite motifs [20]. It is capable of
finding 43% of the known nuclear proteins with no
false positive predictions on the set of Swiss-Prot
entries (release 38) with unambiguously annotated
localization. This is achieved through collection of
known NLSs and their homologues, and applying
an ‘in silico mutagenesis’ to extend the motifs as
far as possible without matching any non-nuclear
proteins.

6. Integrated methods for predicting subcellular
localization

In these days of whole-genome sequencing, what is
obviously needed are integrated prediction methods
that somehow represent the entire protein sorting
potential of the cell and assign the most likely sub-
cellular localization to a protein based on its amino
acid sequence. This also includes sorting within an
organelle or a pathway: between, e.g., the mitochon-
drial outer membrane, intermembrane space, inner
membrane, and matrix, or between the different com-
partments along the secretory pathway. In eukary-
otic cells, the number of distinct compartments is
thus very large.

The pioneering work in this area is due to Nakai
and Kanehisa [21,22]. His PSORT program now dis-
tinguishes between 17 different subcellular localiza-
tions (10 for a newer, retrained version called
PSORT 2 that uses a slightly different decision algo-
rithm), and integrates a number of pre-existing pre-
diction programs as well as calculated characteristics
such as overall amino acid composition within a uni-
fied framework [23,24]. Drawid and Gerstein [25]

have recently presented a system that is similar in
spirit to PSORT but uses a different formalism
(Bayesian statistics) for integrating multiple kinds
of information (everything from SignalP predictions
to microarray expression profiles). The method was
applied to the full Saccharomyces cerevisiae pro-
teome, and thus provides estimates of the fraction
of all yeast proteins found in different compartments.
A predictor based only on overall amino acid com-
position and pairwise residue correlations has been
developed by Chou [26].

The TargetP predictor [13] has a more limited
scope than PSORT, and only differentiates between
secretory proteins, mitochondrial proteins, chloro-
plast proteins, and everything else. The method
looks for N-terminal sorting signals by feeding the
outputs from SignalP, ChloroP, and an analogous
mitochondrial predictor (not available as a stand-
alone predictor) into a ‘decision neural network’
that makes the final choice between the different
compartments. Although not yet integrated into
TargetP, membrane proteins can be predicted with
high reliability by programs such as TMHMM
[27,28]. TargetP predicts signal peptides with high
sensitivity and specificity but performs less well on
mitochondrial targeting peptides and chloroplast
transit peptides, Table 2. Modules for predicting
cleavage sites in the different targeting signals are
also included in TargetP; again, performance is
much better on the signal peptides than on the other
two classes of peptides.

Predotar is primarily aimed at predicting the chlo-
roplast/mitochondrion sorting problem (thus dealing
with plant sequences), and can also predict dual lo-
calization — both chloroplastic and mitochondrial —
which is an existing reality for some proteins [29].
The level of overall prediction accuracy is around
85% on a plant test set, the same as for TargetP,
Table 2. The two predictors differ however somewhat
in their performance on the subsets and trying both
predictors on sequences of interest could prove use-
ful.

Finally, an interesting approach to subcellular lo-
calization prediction has been presented by Eisen-
berg and co-workers [30]. They use a protein’s ‘phy-
logenetic profile’ (i.e., a list of the presence or
absence of orthologs to the query protein in all fully
sequenced genomes) to predict its localization,
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based on the assumption that the endosymbiont
origin of different compartments will be reflected
in the phylogenetic profiles of their respective pro-
teomes. Thus, mitochondrial proteins (even the nu-
clearly encoded ones) will be most highly related to
proteins from bacteria such as Rickettsia prowasekii
[31], whereas chloroplast proteins will be most
highly related to those found in photosynthetic bac-
teria.

Unfortunately, the different methods discussed in
this section have not been evaluated together using a
common benchmark (since the different methods do
not distinguish between the same set of compart-
ments, such an evaluation is not trivial). TargetP
has the conceptual advantage that it tries to identify
biologically well-characterized sorting signals and
hence allows a certain amount of ‘critical evaluation
by eye’ after the prediction has been made. The phy-
logenetic-profile approach also has a clear biological
foundation, and again a human user may critically
evaluate the results (i.c., the list of orthologs) against
his or her biological knowledge. The purely statistical
methods are at a disadvantage in this respect since
they are based on sequence characteristics that are
not easily evaluated by eye and, insofar as they in-
corporate amino acid composition measures, only
correlate with subcellular localization indirectly
(e.g., as a result of surface-exposed residues being
adapted to a low-pH environment [32]).

7. Conclusions

The complex compartmentalization of a biological
cell cannot yet be accurately captured by bioinfor-
matics. For compartments where the sorting signals
can to a good approximation be regarded as short
stretches of amino acids with little interaction with
the rest of the protein, the sequence analysis tools
now available do a decent job. In cases where the
sorting signals are presented in the context of a
folded protein, however, they are very difficult to
identify and one often has to resort to purely statis-
tical approaches (amino acid composition) or meth-
ods based on sequence similarity. With improved
fold recognition and three-dimensional structure pre-
diction algorithms, it may eventually become possi-
ble both to detect these more complex sorting signals

and to predict the location of a protein based on its
general surface characteristics. In any event, the pre-
diction of subcellular protein localization will most
likely remain an important problem area for bioin-
formatics for some time to come.
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