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We treat linear partial differential equations of first order with distributional
coefficients naturally related to physical conservation laws in the spirit of our

Ž .preceding papers which concern ordinary differential equations : the solutions are
consistent with the classical ones. Under compatibility conditions we prove unique-
ness and existence results. As an example we consider the problem u � � u � 0,t t x
Ž . Ž . Ž 2Ž . .u x, �1 � h x h � C � is given ; our theory grants that the unique solution

2Ž 2 . � Ž 2 . Ž . Ž . �Ž . Ž .in C � � DD � is u x, t � h x � h 0 � x, t and this has a physical mean-ll

Ž � Ž 2 .ing DD � is the space of distributions with discrete support and � is the Diracll

Ž ..measure at 0, 0 . � 2001 Academic Press

0. INTRODUCTION: PHYSICAL MOTIVATION

ŽLet us consider a physical system of spatial dimension one coordinate
. Ž .x and temporal dimension one coordinate t . Let the state variable
Ž . Ž .u x, t be the density of matter at x at the instant t and � x, t the flux of

matter at x at the instant t. We may think of a fine tube placed along the
x-axis with a circular cross-section of constant area S. To simplify, let us
suppose that no matter has been created nor annihilated. Then the
quantitative relation between u and � is ruled by the equation

u � � � 0 0.1Ž .t x

which is called the conservation law.
In this model the flux � is a function of x and t. Of course, it may

Ž .happen that �, function of x and t, depends also on u � u x, t or on its
2 Ž .derivatives. For instance, letting � � u �2 then � � uu and 0.1 re-x x

Žduces to u � uu � 0 which is Burger’s equation. Letting � � cu c is at x
. Ž .constant in 0.1 we find u � cu � 0 which is a convection equation.t x
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Ž . Ž .Letting � � �Du D is a constant in 0.1 , we have u � Du � 0x t x x
which is a diffusion equation.

Sometimes, when we try to describe certain physical situations by means
Ž .of a differential equation, the conservation law 0.1 becomes naturally a

partial differential equation of first order with distributional coefficients.
Indeed, suppose that the physical setting forces us to consider a flux �

�Ž 2 .which is a C � function of x and t in all of the x, t-plane except on the
Žpositive part of the x-axis. There, at the instant t � 0 the initial instant

.being at t � �1 a blow up is expected defined by a distribution with
�Ž . 2 4support on x, t � � : t � 0 and x � 0 which may depend on the

Ž .density of matter u x, t and on its derivatives. Let us exemplify this
Žsituation with the following simplified so as to avoid technical complica-

.tions flux, written formally as
�� � u 0, 0 H x 	 � t � u 0, 0 H x 	 � t ,Ž . Ž . Ž . Ž . Ž . Ž .x x t

where H is the Heaviside function and � is the Dirac measure at zero.
Ž . Ž .The coefficients u 0, 0 and u 0, 0 were chosen so that the conservationx t

law becomes an easy equation. We stress that this is only a formal
expression, since we are treating functions and distributions on the same
ground! Thus,

�� � u 0, 0 � x 	 � t � u 0, 0 � x 	 � tŽ . Ž . Ž . Ž . Ž . Ž .x x x t

� u 0, 0 � x , t � u 0, 0 � x , tŽ . Ž . Ž . Ž .x t x t

� � x , t u x , t � � x , t u x , t � � x , t u x , t ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .x x t t xt

Ž .and 0.1 takes the form

u � � u � 0,t t x

��Ž . Ž .where � � � x, t � x, t . We solve this highly non-classical equationt t � t
Ž . Ž .in the final part of our paper under the ‘‘initial condition’’ u x, �1 � h x

2Ž .for a given h � C � and we give to the solution thus obtained a physical
interpretation.

Such an equation and many others which express conservation laws are
included in a general type of distributional equations to which our theory
of distributional products affords a mathematical meaning and solutions.

1. THE PRODUCT OF DISTRIBUTIONS

Let DD be the space of indefinitely differentiable complex functions
defined on � N with compact support, DD

� the space of distributions, and
Ž .L DD the space of continuous linear maps DD � DD. Among definitions of
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distribution products only two of them are general: Colombeau’s construc-

 �tion 1 and our own. We will sketch the main ideas of this construction in


 �the following. For details, the reader must see 4, 5 .
� � Ž .First we define a product T� � DD for T � DD and � � L DD by

˜² : ² Ž .:T�, x � T , � x for all x � DD. Next we define an epimorphism � :
� ˜Ž . ² Ž . : Ž .L DD � DD given by � � , x � H� x , for all x � DD. Thus, given T , S �

� Ž .DD we are tempted to define a natural product setting TS � T�, � � L DD

Ž̃ . Ž Ž .being such that � � � S we say that � � L DD is a representative
� .operator of S � DD . Unfortunately, this product is not well defined

Ž . �because TS depends on the representative � � L DD of S � DD .
This difficulty can be o�ercome if we fix � � DD with H� � 1 and define

Ž . Ž .s : L DD � L DD by�

s � x y � � � � xŽ . Ž . Ž . ˇŽ .H� y

N N Ž .Ž .for all x � DD and all y � � , where � � : � � � is defined by � � tˇ ˇy y

Ž . Ž . N� � t � y � � y � t for all t � � . It can be proved that, for each �ˇ
Žin DD with H� � 1, s is a linear operator and we have s � s � s s is a� � � � �

˜ ˜ ˜Ž ..projector in L DD , Ker s � Ker � , and � � s � � . Now, for each � � DD� �

with H� � 1 we define an �-product of T � DD
� by S � DD

� setting

T S � T s � � T � � S, 1.1Ž . Ž . Ž .ˇ� �˙

Ž . �where � � L DD is a representative of S � DD . It is easy to prove that this
˜�-product is independent of the representative of � of S because Ker � �

Ker s .�

In general this �-product is neither commutative nor associative, but it
Žis bilinear, has left unit element the constant function with value 1 seen as

. Ž .a distribution , is distributive to the right and to the left , and satisfies the
usual rule for the derivative of the product,

D T S � D T S � T D S ,Ž . Ž .Ž .k � k � k�˙ ˙˙

Ž .where D is the usual k-partial derivative operator k � 1, 2, . . . , N . It isk
invariant for translations and also for any group G of unimodular transfor-

Ž N N � � .mations linear transformations h: � � � with det h � 1 if � is so

 �invariant. It is not consistent with the classical Schwartz products 6 of

distributions and functions.
In order to obtain consistency with the usual product of a distribution by

a C�-function we are going to introduce some definitions and single out a
Ž .certain subspace H of L DD .�

Ž . Ž .An operator � � L DD is said to vanish in an open set 	 if � x � 0
for all x � DD with support contained in 	. The support of an operator
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Ž .� � L DD , supp �, will be defined as the complement of the largest open
set in which � vanishes.

Ž .Let NN be the set of operators of L DD with nowhere dense support and
Ž �. Ž . Ž .
 C the set of operators � � L DD defined by � x � � x, for all x � DD,

with � � C�. For each � � DD with H� � 1 let us consider the space
� ˜ �Ž . Ž . Ž . �H � 
 C � s NN � L DD . It can be proved that � � � : H � CH� � � ��

� � � 
 ��DD is an isomorphism. The space DD is denoted by DD in 4 and it ism m n
the space of nowhere dense supported distributions. Then if T � DD

� and
S � � � f � C� � DD

� , a new �-product can be defined by T S � T� ,m � �˙
where � � H is the representative of S � C� � DD

� . Now, this �-prod-� � m
�1Ž .uct is well defined because � � � S . Thus, we have� �

T S � T ��1 S � T ��1 � � f � T ��1 � � T ��1 fŽ . Ž . Ž . Ž .� � � � � � � � �˙ ˙ ˙ ˙ ˙

� T� � T � � f , 1.2Ž . Ž .ˇ
and we get the consistency with the usual product of distributions with
C�-functions, when these are placed at the right hand side. This is because
if S � C� then f � 0, S � � , and T S � T�. The remaining properties�̇

Ž .are the same of the �-product 1.1 . Note also that if � � 0 the result of
Ž . Ž .1.2 is the same of 1.1 .

Therefore, there exist lots of products. The test functions � are thus
some kind of weights and it can physically be interesting for � to be

Ž . N Žinvariant for the orthogonal group OO N of � in classical physics a
.product which is not invariant for this group clearly has no applications .

In dimension N � 1, � will have even symmetry: � � � . We make thisˇ
assumption in what follows. For instance, for the Dirac measure � and the

Ž . Ž .Heaviside function H, we have by 1.1 or 1.2

� � � � 0 � � � � � � � � �� � �� � � 0 � ,Ž . Ž . Ž .ˇ ˇ� �˙ ˙

�� ��

H � � H� � � � � x � t H t d t � � � �t d t �Ž . Ž . Ž . Ž .ˇ H H�̇ ž / ž /�� 0

1� � .2

In the setting of this theory, the �-products cannot be ‘‘completely’’
� Ž . Ž .localized. This will be clear noting that for T , S � DD , supp T S � supp S�̇

Ž . Ž .as for usual functions, but it doesn’t happen that supp T S � supp T . In�̇

fact, if a, b � �,

� � � � � � � � � � � � � � � � � � � b � �Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .a b a b a b a b�̇

� � b � a � � .Ž . Ž .b

Thus, the �-products are global products and when we apply them to
differential equations, the solutions are naturally global solutions.
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Ž . � pFinally, it is easy to see that formula 1.2 can be extended for T � DD
p � Ž . � pand S � C � DD p � 0, 1, 2, . . . where DD is the space of distributionsm


 � ��of order 
 p in the sense of Schwartz 6 . So, assuming that DD means
� Ž . � p p �

DD , 1.2 is valid for T � DD and S � C � DD with p � 0, 1, 2, . . . , �.m

2. CLASSICAL SOLUTIONS AND W -SOLUTIONS�

Let us consider the linear Cauchy problem

au � bu � cu � �x y�P � 2.1Ž .h ½ u r t , s t � h t , for all t � �Ž . Ž . Ž .Ž .

Ž .in dimension N � 2 the results extend immediately to N � 2 . Here
�Ž 2 . � pŽ 2 . � pŽ 2 . � pŽ 2 . � Ž 2 .a, b, c � C � � DD � , DD � � DD � � DD � , p � 0, 1, 2,ll ll ll

� Ž 2 . 2. . . , �, DD � is the space of distributions with discrete support in �ll

Ž � pŽ 2 . � Ž 2 .. �Ž 2 . p�1Ž .note that DD � � DD � , � � DD � , r, s, h � C � , and u is thell m
unknown.

In the setting of classical Schwartz products, in order to solve the above
p�1Ž 2 .problem we are forced to seek solutions in the narrow space C � ; we

call such solutions classical solutions. Those solutions are clearly insuffi-
cient for applications in physical theories so that we must enlarge conve-
niently the concept of solution of the Cauchy problem. To do so, we
associate to the problem P � the problem Q� defined byh h

u � � T u � u � � T u � u� � T u � �Ž . Ž .Ž .x 1 1� x y 2 2 � y 3 3�˙ ˙ ˙�Q � 2.2Ž .h ½ u r t , s t � h t , for all t � �,Ž . Ž . Ž .Ž .

�Ž 2 .where a � � � T , b � � � T , c � � � T ; � , � , � � C � ; T ,1 1 2 2 3 3 1 2 3 1
� pŽ 2 .T , T � DD � and the products u � , u � , u� are taken in the classi-2 3 ll x 1 y 2 3

cal sense. The solutions of Q� will be called W -solutions of P � with respecth � h
p�1Ž 2 .to the ruling group G. They belong to the extended space C � �

� Ž 2 .DD � according to the followingll

p�1Ž 2 . � Ž 2 .DEFINITION 2.1. We say that u � C � � DD � is a W -solutionll �

of P � with respect to the ruling group G when there exists an open seth
	 � �2 such that

Ž . Ž Ž . Ž ..1 r t , s t � 	 for all t � �,
Ž . p�1Ž .2 the restriction u of u to 	 is a C 	 -function,	

Ž . �3 u satisfies Q .h
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Ž Ž . Ž .. �Note that u r t , s t makes sense. The W -solutions of P defined� h
above are consistent with the classical solutions of P � as shown by theh
following

p�1Ž 2 . �THEOREM 2.2. If u � C � is a classical solution of P then, for allh
Ž 2 . �� � DD � G-in�ariant, with H� � 1, u is a W -solution of P with respect� h

to G.
p�1Ž 2 . � Ž 2 .Proof. It is sufficient to note that if u � � � f � C � � DD �ll

is a classical solution of P � then f � 0, u � � � 0, u � � � 0, T u �h x x 1� x˙
Ž . �T � � T � � 
 0 � T � , u � � � � , . . . , and Q is equivalent toˇ1 x 1 1 x x 1 x 1 h

� � � T � � � � � T � � �� � T � � �Ž . Ž .Ž .x 1 1 x y 2 2 y 3 3½ � r t , s t � h t , for all t � �,Ž . Ž . Ž .Ž .

which is the same as

a� � b� � c� � �x y½ � r t , s t � h t , for all t � �,Ž . Ž . Ž .Ž .
� �and so u � � satisfies Q , which means that u is a W -solution of P .h � h

It should be stressed that, as we shall see, P � may have no classicalh
p�1Ž 2 . p�1Ž 2 . � Ž 2 .solutions in C � and still have a W -solution in C � � DD � .� ll

In some cases, this solution does not even depend on the G-invariant
Ž .�-function. Unless otherwise specified, we suppose that G � OO 2 is the

orthogonal group in �2 as usual in nonrelativistic applications.

3. THE UNIQUENESS OF THE W -SOLUTION OF P �
� h

p�1Ž 2 . � Ž 2 .IN C � � DD �ll

The main result depends on the following
�Ž 2 . � Ž 2 .LEMMA 3.1. If a, b, c � C � , f � DD � is a solution of the equationll

af � bf � cf � 0 and moreo�er a and b do not �anish simultaneously inx y
each point of �2, then f � 0.

Proof. Suppose by contradiction that f � 0. Since f has discrete sup-
2 Ž .port, there exist an open set 	 � � and x � 	 such that supp f �0 	

� 4x . Thus f is a distribution with pointwise support and we can conclude0 	

that f is of finite order m. The restriction of the equation af � bf � �cf	 x y
to 	 leads immediately to a contradiction since the right hand side is a
distribution in 	 of order m while the left hand side is a distribution in 	
of order m � 1.
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Now, if we adopt the same notations and assumptions we have made for
� � Ž . Ž .P and Q in 2.1 and 2.2 , we have the following uniqueness result.h h

Ž 2 .THEOREM 3.2. Gi�en � � DD � , G-in�ariant with H� � 1, suppose that:

Ž .1 Problem

� � � � � � � � � 01 x 2 y 3½ � r t , s t � 0, for all t � �Ž . Ž .Ž .
Ž . p�1Ž 2 .has a unique solution � x, y � 0 in C � .

Ž . 2 � 42 At each point of � there exists i � 1, 2 such that � � T � � � 0.i i

� p�1Ž 2 . � Ž 2 .Then, if there exists a W -solution of P in C � � DD � with respect� h ll

to G, this solution is unique.
p�1Ž 2 . � Ž 2 .Proof. It is sufficient to prove that if u � � � f � C � � DD �ll

is a W -solution of P 0 then u � 0. By Definition 2.1, there exists an open� 0
2 Ž . p�1Ž 2 . Žset 	 � � such that � � f � � � f is a C � -function i.e.,	 	 	

.f � 0 and	

� � � f � � T � � f � � � f � � T � � fŽ . Ž . Ž . Ž .x x 1 1� x x y y 2 2 � y y˙ ˙� � � � f � � T � � f � 0Ž . Ž .3 3 �̇� � � f r t , s t � 0, for all t � �,Ž . Ž . Ž .Ž .	

which means that

� � � � � � ��� x 1 y 2 3

� �f � � f � � f� � T � � T � � T �x 1 y 2 3 1 x 2 y 3�
Ž .�T f � T f � T f 3.11� x 2 � y 3�˙ ˙ ˙� Ž .� r t , s t � 0.Ž . Ž .Ž . 3.2

Ž . p�1Ž 2 .Noting that the left hand side of 3.1 is a C � -function and that the
� Ž 2 .right hand side belongs to DD � , we havell

� � � � � � �� � 0, 3.3Ž .x 1 y 2 3

f � � f � � f� � T � � T � � T � � T f � T f � T f � 0.x 1 y 2 3 1 x 2 y 3 1� x 2 � y 3�˙ ˙ ˙

3.4Ž .
Ž . Ž . Ž .By assumption, 3.3 and 3.2 imply � � 0 and so 3.4 implies

f � � f � � f� � T � � f � T � � f � T � � f � 0,Ž . Ž . Ž .x 1 y 2 3 1 x 2 y 3

which is the same as

� � T � � f � � � T � � f � � � T � � f � 0.Ž . Ž . Ž .1 1 x 2 2 y 3 3
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Ž .Using 2 and Lemma 3.1 we conclude that f � 0. Thus, u � � � f � 0.

4. THE EXISTENCE OF A W -SOLUTION OF P �
� h

With the same notations and assumptions we have made for P � and Q�
h h

Ž . Ž .in 2.1 and 2.2 , we shall prove the following existence result.

Ž 2 .THEOREM 4.1. Gi�en � � DD � , G-in�ariant with H� � 1, there exists a
� p�1Ž 2 . � Ž 2 .W -solution of P in C � � DD � with respect to the ruling group G if� h ll

and only if the following conditions are satisfied:

Ž . p�1Ž 2 . � Ž 2 .a � � C � � DD � ;ll

Ž . p�1Ž 2 . � Ž 2 .b letting � � � � g with � � C � and g � DD � , problemll

Ž .� � � � � � �� � � 4.1x 1 y 2 3½ Ž .� r t , s t � h t for all t � �Ž . Ž . Ž .Ž . 4.2
p�1Ž 2 .has a solution � � C � ;

Ž .c the differential equation

� � T � � f � � � T � � f � � � T � � fŽ . Ž . Ž .1 1 x 2 2 y 3 3

� �T � � T � � T � � g 4.3Ž .1 x 2 y 3

� Ž 2 . 2has a solution f � DD � , such that f � 0 for a certain open set 	 � �ll 	

Ž Ž . Ž ..and such that r t , s t � 	 for all t � �.

In this case, the W solution of P � is u � � � f.� h

p�1Ž 2 . � Ž 2 .Proof. First, let us assume that u � � � f � C � � DD � is all

W -solution of P � with respect to the ruling group G. Then, by Definition� h
2 Ž Ž . Ž ..2.1 there exists an open set 	 � � such that r t , s t � 	 for all t � �

p�1Ž .and u � � � f � C 	 . Then f � 0 and u � � . Since u veri-	 	 	 	 	 	

fies Q� we haveh

� � � f � � T � � T � � fŽ . Ž .x x 1 1 x 1 x

� � � f � � T � � T � � fŽ .Ž .y y 2 2 y 2 y�
Ž .� � � f � � T � � T � � f � �Ž . Ž . 4.43 3 3� Ž .� r t , s t � h t .Ž . Ž . Ž .Ž . 4.5

Ž . p�1Ž 2 . � Ž 2 .From 4.4 we conclude that � � C � � DD � . Letting � � � � gll
p�1Ž 2 . � Ž 2 . Ž .with � � C � and g � DD � , we can write 4.4 asll

� � � � � � �� � � � �f � � f � � f� � T � � T � � T �x 1 y 2 3 x 1 y 2 3 1 x 2 y 3

� T � � f � T � � f � T � � f � g .Ž . Ž . Ž .1 x 2 y 3
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� Ž 2 .The right hand side of this equality belongs to DD � and the left handll
p�1Ž 2 . Ž . Ž .side belongs to C � . Hence they are both zero and b and c follow.

Ž . Ž . Ž .Now, suppose that a , b , and c are verified. Then u � � � f is a
� Ž .W -solution of P with respect to the ruling group G, since c implies the� h

existence of an open set 	 such that

Ž . Ž Ž . Ž ..1 r t , s t � 	 for all t � �,
Ž . p�1Ž 2 .2 u � � � f � � � C � .	 	 	 	

Also, we have

Ž . �3 u satisfies Q ,h

because

u � � T u � u � � T u � u� � T uŽ . Ž .Ž .x 1 1� x y 2 2 � y 3 3�˙ ˙ ˙

� � � f � � T � � fŽ . Ž .x x 1 1� x x˙

� � � f � � T � � f � � � f � � T � � fŽ . Ž .Ž . Ž .y y 2 2 � y y 3 3�˙ ˙

� � � � � � � �� � f � � f � � f� � T � � T � � T �x 1 y 2 3 x 1 y 2 3 1 x 2 y 3

� T � � f � T � � f � T � � f � � � g � � ,Ž . Ž . Ž .1 x 2 y 3

Ž . Ž .by b and c .

Thus, the proof of the existence of a W -solution for P � is reduced to� h
p�1Ž 2 .the proof of the existence of an ordinary solution � � C � for the

Ž . Ž .classical problem 4.1 , 4.2 and to the proof of the existence of a solution
� Ž 2 . Ž .f � DD � for the differential equation 4.3 . In general, since f is a finitell

linear combination of derivatives of Dirac measures, it is not difficult to
Ž .know whether there is a solution of 4.3 and even to determine this

solution. This will be clear in our next example.

5. EXAMPLE

2Ž .Given a function h � C � , let us consider the problem

u � � u � 0 Ž .5.1t t x½ u x , �1 � h xŽ . Ž . Ž .5.2
�1Ž 2 .that we have interpreted at the beginning. Since � � DD � we havet ll

2Ž 2 .p � 1 and C � is the space of the classical solutions u. Then u �t
1Ž 2 . Ž .C � and from 5.1 we have u � �� u . Hence,t t x

u � 0 Ž .5.3t½ Ž .� u � 0 5.4t x
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Ž . �Ž .4 1Ž 2 . Ž . Ž .because supp �� u � 0, 0 and u � C � . Thus u x, t � � x witht x t
2Ž 2 . Ž . Ž . Ž .� � C � . From 5.2 it follows that � � h and so u x, t � h x . From

Ž . �Ž . Ž �Ž .. �Ž . �Ž .5.4 it also follows that � h x � 0, � h x � 0, h 0 � � 0, h 0 � 0.t t t
�Ž . Ž . Ž .Hence, if h 0 � 0 problem 5.1 , 5.2 has no classical solutions. Now, if we

2Ž 2 . � Ž 2 .seek a W -solution u � � � f � C � � DD � we must apply Theorem� ll

4.1 and solve the problem

� � 0t½ � x , �1 � h x ,Ž . Ž .

Ž . Ž .whose unique solution is � x, t � h x . Also, we must look for a solution
� Ž 2 . Ž .f � DD � of 4.3 , i.e., of equationll

f � � � � f � �� � . 5.5Ž . Ž .t t x t x

Now, since

� � � � h� x � � h� x � h� 0 � ,Ž . Ž . Ž .Ž . tt x t t

Ž .5.5 is equivalent to

f � � f � �h� 0 � .Ž .t t x t

Looking for a solution of the form f � constant 
 � , it is easy to see that
�Ž . Ž Ž . Ž .f � �h 0 � is indeed a solution note that � 0, 0 � 0 and � 0, 0 � 0t t x

Ž . .because � is G � OO 2 -invariant . Thus, by Theorem 4.1,

u x , t � h x � h� 0 � x , tŽ . Ž . Ž . Ž .

Ž . Ž .is a W -solution of 5.1 , 5.2 for any � � G with H� � 1. Applying�

Theorem 3.2 we conclude that this solution is the unique W -solution of�
2Ž 2 . � Ž 2 . �Ž .this problem in C � � DD � even if h 0 � 0. Note that the W -solu-ll �

�Ž .tion does not depend on � and that if h 0 � 0 then it reduces to the
classical solution.


 �Physically, this means that if we consider an interval a, b of �, then the
Ž . 
 �mass of matter m t inside the interval a, b is formally given by

b b b�m t � u x , t S d x � S h x d x � h 0 S � x , t d x ,Ž . Ž . Ž . Ž . Ž .H H H
a a a


 �and this mass is well defined for each t except for t � 0 if 0 � a, b ,
where the blow up occurs. We can better understand this phenomenon if


 �we consider an interval of time t , t and compute0 1

t b t b1 1�m t d t � t � t S h x d x � h 0 S � x , t d x d t .Ž . Ž . Ž . Ž . Ž .H H H H1 0 ž /t a t a0 0
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Thus

b�
t � t S h x d xŽ . Ž .H1 0

a


 � 
 �if 0, 0 � a, b � t , tŽ .t 0 11 �m t d t �Ž .H
bt �0 t � t S h x d x � h 0 SŽ . Ž . Ž .H1 0

a� 
 � 
 �if 0, 0 � a, b � t , t .Ž . 0 1

�Ž . �Ž .If h 0 � 0 all this is very easy to interpret. If h 0 � 0 this is a new result
which cannot be obtained in the classical framework.
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