The Fuglede-Putnam Theorem
and Normal Products of Matrices

Dedicated to Olga Taussky Todd

Emeric Deutsch*
Polytechnic Institute of New York, Brooklyn, New York 11201

P. M. Gibson†
University of Alabama, Huntsville, Alabama 35807

and

Hans Schneider‡
University of Wisconsin, Madison, Wisconsin 53706

Submitted by David Carlson

ABSTRACT

The rectangular matrix version of the Fuglede-Putnam theorem is used to prove that, for rectangular complex matrices A and B, both AB and BA are normal if and only if \(A^*AB = BAA^* \) and \(B^*BA = ABB^* \). We deduce some results relating the rank of A and the factors in a polar decomposition of A to the normality of AB and BA.

1

Under the assumption that A and B are normal \(n \times n \) complex matrices, N. A. Wiegmann [12] proved that AB and BA are normal if and only if \(A^*AB = BAA^* \) and \(B^*BA = ABB^* \). In [13], Wiegmann improved this by omitting the requirement that B be normal. In this note, we show that the

* The research of this author was supported in part by NSF Grant GP-32834.
† This paper was written while the author was on sabbatical leave at the University of Wisconsin, Madison.
‡ The research of this author was supported in part by NSF Grant GP-37978X.

LINEAR ALGEBRA AND ITS APPLICATIONS 13, 53–58 (1976) 53

assumption on the normality of A can also be removed. Moreover, we shall assume that A and B are rectangular matrices of appropriate dimensions.

Let A be a nonsingular normal matrix, and let $A = UH$, where U is unitary and H is positive definite Hermitian. Clarifying a result of Wiegmann's [13], Gibson [4] remarks that AB and BA are normal if and only if BU is normal and $HBU = BUH$. In Theorems 3, 4, and 5, we remove the restriction that A be normal, and we use Theorem 2 to investigate to what extent this result can be generalized to singular A.

For the sake of completeness, we give an elementary proof of the rectangular matrix version of the Fuglede-Putnam theorem [2; 8; 9; 10, p.300; 11], which is essentially to be found in [6, p. 65]. Our principal result (Theorem 2) will follow immediately from this theorem. For a related application of the Fuglede-Putnam theorem see [5; 6, p. 68].

Denote by $\mathbb{C}^{m \times n}$ the set of all $m \times n$ complex matrices.

Theorem 1 (Fuglede-Putnam). Let $P \in \mathbb{C}^{m \times n}$, $Q \in \mathbb{C}^{n \times m}$, $T \in \mathbb{C}^{n \times n}$. If P and Q are normal and $PT = TQ$, then $P^*T = TQ^*$.

Proof. Since the matrix $P \oplus Q$ is normal, there exists a scalar polynomial g such that $(P \oplus Q)^* = g(P \oplus Q)$. This implies that $P^* = g(P)$ and $Q^* = g(Q)$. Hence, $P^*T = g(P)T = Tg(Q) = TQ^*$.

Remark 1. Let f be a function defined on the spectra of $P \in \mathbb{C}^{m \times n}$ and $Q \in \mathbb{C}^{n \times m}$, in the sense of Gantmacher [3, p. 96]. Then there exists a polynomial g such that $f(P) = g(P)$ and $f(Q) = g(Q)$. Hence, if $T \in \mathbb{C}^{n \times n}$, it follows that $PT = TQ$ implies that

$$f(P)T = g(P)T = Tg(Q) = Tf(Q).$$

Letting $f(\lambda) = \bar{\lambda}$ for the normal matrices P and Q of Theorem 1, we obtain our proof of that theorem. In the proof of Theorem 3 we use another application of this result. Let $f(\lambda) = \lambda^{1/2} > 0$ for $\lambda > 0$. If $H \in \mathbb{C}^{m \times m}$ and $K \in \mathbb{C}^{n \times n}$ are positive semidefinite Hermitian, then $H = f(H^2)$ and $K = f(K^2)$. Hence, if $T \in \mathbb{C}^{n \times n}$ with $H^2T = TK^2$, then $HT = TK$.

Theorem 2. Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$. Then AB and BA are normal if and only if $A^*AB = BAA^*$ and $ABB^* = B^*BA$.
Proof. Assume that AB and BA are normal. Then $(AB)^*$ and $(BA)^*$ are normal. Hence, since

$$A^*(AB)^* = A^*B^*A^* = (BA)^*A^*,$$

by Theorem 1, $A^*AB = BAA^*$. Similarly, from $(AB)^*B^* = B^*(BA)^*$, we obtain $ABB^* = B^*BA$. Conversely, if $A^*AB = BAA^*$ and $ABB^* = B^*BA$, then multiplying the first equation by B^* and the second one by A^* we see that AB and BA are normal.

Remark 2. A result of J. Williamson [14] can be used instead of Theorem 1 to obtain a proof of Theorem 2. Assume that AB and BA are normal. It follows from Williamson's Theorem 2 that there exist unitary matrices $U \in \mathbb{C}^{mn}$, $V \in \mathbb{C}^{nn}$ and rectangular diagonal matrices $F, G \in \mathbb{C}^{mn}$ such that $A = UFV$ and $B^* = UGV$. Then

$$A^*AB = V^*F^*FG^*U^* = V^*G^*FF^*U^* = BAA^*,$$

$$ABB^* = UFG^*GV = UGG^*FV = B^*BA.$$

Remark 3. The result that Theorem 1 implies Theorem 2 may be put into a more general context. Let \mathfrak{A} be an algebra over the complex numbers with an involution * (see [1]). An element $P \in \mathfrak{A}$ is called normal if $PP^* = P^*P$. We define \mathfrak{A} to be a Fuglede-Putnam algebra if, for all normal $P, Q \in \mathfrak{A}$ and $T \in \mathfrak{A}$, the relation $PT = TQ$ implies $P^*T = TQ^*$. Let \mathfrak{A} be a Fuglede-Putnam algebra and let $A, B \in \mathfrak{A}$. We have shown that AB and BA are normal if and only if $A^*AB = BAA^*$ and $ABB^* = B^*BA$. An example of a Fuglede-Putnam algebra is the algebra of all bounded operators on a Hilbert space, with involution the usual adjoint. Other examples may be found in [7].

3

It is well known that every $A \in \mathbb{C}^{nn}$ has a polar decomposition as $A = UH$ where $H \in \mathbb{C}^{nn}$ is positive semidefinite Hermitian and $U \in \mathbb{C}^{nn}$ is unitary. If A is singular, U is not unique. We have the following theorem.

Theorem 3. Let $A = UH$, where $H \in \mathbb{C}^{mn}$ is positive semidefinite Hermitian and $U \in \mathbb{C}^{nn}$ is unitary, and let $B \in \mathbb{C}^{nm}$.

(a) If BU is normal and $HBU = BUH$, then AB and BA are normal.
(b) If AB and BA are normal, then $HBU = BUH$.
Proof. Suppose that BU is normal and $HBU = BUH$. Then

$$BAA^* = BUH(UH)^* = BUH^2U^* = H^2BUU^* = H^2B = (UH)^*UHB = A^*AB.$$

(1)

Since BU is normal and $HBU = BUH$, from Theorem 1, we also have $H(BU)^* = (BU)^*H$. Hence,

$$ABB^* = UHBU(BU)^* = UBU(BU)^*H = U(BU)^*BUH = UU*B*BUH = B*BA.$$

(2)

Therefore, by Theorem 2, AB and BA are normal. This proves (a). To prove (b), let AB and BA be normal and note that there exists a positive semidefinite Hermitian $K \in \mathbb{C}^{n \times n}$ such that $A = KU$. Using Theorem 2, we obtain

$$H^2B = A^*AB = BAA^* = BK^2.$$

Hence, since H and K are positive semidefinite Hermitian, $HB = BK$ (see Remark 1). Then $HBU = BKU = BUH$.

Theorem 4. Let $A = UH$, where $H \in \mathbb{C}^{n \times n}$ is positive semidefinite Hermitian and $U \in \mathbb{C}^{n \times n}$ is unitary. The following are equivalent:

(a) $\text{rank}(A) > n - 1$;

(b) if $B \in \mathbb{C}^{n \times n}$ such that AB and BA are normal, then BU is normal.

Proof. Let $\text{rank}(A) > n - 1$, and let $B \in \mathbb{C}^{n \times n}$ be such that AB and BA are normal. From Theorem 2 and part (b) of Theorem 3, we see that

$$(BU)^*BUH = U*B*BA = U*ABB^* = HBU(BU)^* = BU(BU)^*H.$$

(3)

Hence, if $\text{rank}(H) = \text{rank}(A) = n$, then BU is normal. Suppose that $\text{rank}(A) = n - 1$. Then there exist a unitary $V \in \mathbb{C}^{n \times n}$ and a positive definite Hermitian matrix L of order $n - 1$ such that

$$VHV^* = \begin{bmatrix} L & 0 \\ 0 & 0 \end{bmatrix}.$$

(4)
NORMAL PRODUCTS OF MATRICES

Let

\[VBUV^* = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}, \]

where \(G_{22} \in \mathbb{C} \). Since \(L \) is nonsingular, from part (b) of Theorem 3 we see that \(G_{12} = 0 \) and \(G_{21} = 0 \). Then Eq. (3) implies that \(G_{11} \) is normal. Moreover, since \(G_{22} \in \mathbb{C} \), we see that \(BU \) is normal. Hence (a) \(\Rightarrow \) (b).

Let \(\text{rank}(A) = k < n - 1 \). There exist \(L \in \mathbb{C}^{kk} \) and unitary \(V \in \mathbb{C}^{nn} \) such that \(VHV^* \) has the form (4). Since \(m = n - k > 2 \), there exists \(R \in \mathbb{C}^{mm} \) such that \(R \) is not normal. Let

\[B = V^* \begin{bmatrix} I & 0 \\ 0 & R \end{bmatrix} VU^*. \]

Then

\[BUH = HBU, \quad BU(BU)^*H = (BU)^*BUH. \]

These equations imply \(A^*AB = BAA^* \) and \(B^*BA = ABB^* \) by an argument similar to that at the beginning of the proof of Theorem 3 [see (1) and (2)]. Hence, by Theorem 2, \(AB \) and \(BA \) are normal. However, \(BU \) is not normal. Let

Clearly, Theorems 3 and 4 imply the following theorem.

Theorem 5. Let \(A = UH \), where \(H \in \mathbb{C}^{nn} \) is positive semidefinite Hermitian and \(U \in \mathbb{C}^{nn} \) is unitary. The following are equivalent:

(a) \(\text{rank}(A) > n - 1 \);

(b) if \(B \in \mathbb{C}^{nn} \), then \(AB \) and \(BA \) are normal if and only if \(BU \) is normal and \(HBU = BUH \).

REFERENCES

Received 20 September 1974