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Abstract

In order to determine estimators and predictors in a generalized linear regression model
we apply a suitably defined relative squared error instead of the most frequently used absolute
squared error. The general solution of a matrix problem is derived leading to minimax estima-
tors and predictors. Furthermore, we consider an important special case, where an analogon
to a well-known relation between estimators and predictors holds and where generalized least
squares estimators as well as Kuks–Olman and ridge estimators play a prominent role.
© 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

In this paper we consider the linear regression model

y = Xβ + u (1)

with

y =
(
y1
y2

)
, X =

(
X1
X2

)
and u =

(
u1
u2

)
, (2)

where y1 ∈ Rn1 is the column vector of known observations of the dependent vari-
able, y2 ∈ Rn2 is the column vector of the unknown values of the dependent variable,
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X1 ∈ Rn1×k and X2 ∈ Rn2×k are the deterministic model matrices of the known val-
ues of the k explanatory variables, β ∈ Rk is the column vector of the unknown
regression coefficients, and u1 ∈ Rn1 and u2 ∈ Rn2 are the column vectors of the
unobservable disturbances. Setting n = n1 + n2 we obtain y ∈ Rn, X ∈ Rn×k , and
u ∈ Rn.

Let us first focus on the problem of estimating β by means of a linear function
b = Cey1 with Ce ∈ Rk×n1 . When rk(X1) = k the most prominent estimator of β is
the ordinary least squares estimator given by Ce = (X′

1X1)
−1X′

1. If rk(X1) < k or
if the matrix X′

1X1 is ill-conditioned, i.e., in case of exact or near multicollinearity,
a ridge estimator proposed by Hoerl and Kennard [6] may be used. This estimator is
defined by

Ce = (
rIk + X′

1X1
)−1

X′
1, (3)

where Ik ∈ Rk×k is the identity matrix and r is a suitably selected positive real num-
ber.

Kuks and Olman [8,9] suggested to use the minimax principle when there is some
prior information available about β represented by a compact nonempty set B ⊆ Rk .
For this purpose they assume that the expectation E(u1) of the random disturbances
u1 is zero and that the covariance matrix V11 ∈ Rn1×n1 of u1 is known and positive
definite (p.d.):

E(u1) = 0 and E(u1u
′
1) = V11. (4)

Note that throughout this paper any nonnegative definite (n.n.d.) or p.d. matrix
is assumed to be symmetric. Kuks and Olman applied the minimax principle to
the weighted scalar mean squared error E((Cey1 − β)′Be(Cey1 − β)), where Be ∈
Rk×k is the given n.n.d. matrix of weights. According to this approach a linear
estimator b∗ = C∗

e y1 of β is called optimal if the inequality

max
β∈B

E((C∗
e y1 − β)′Be(C

∗
e y1 − β)) � max

β∈B
E((Cey1 − β)′Be(Cey1 − β))

holds for all Ce ∈ Rk×n1 . In general, this optimization problem cannot be solved
explicitly. For further discussions see, e.g., [4,7,10,12,13,16,18,19]. In the special
case of rk(Be) = 1 and of an ellipsoidal information set B = {β ∈ Rk|β ′Sβ � 1},
where S ∈ Rk×k is a given p.d. matrix, Kuks and Olman already derived an optimal
linear estimator b∗ = C∗

e y1 with

C∗
e = (S + X′

1V
−1
11 X1)

−1X′
1V

−1
11 , (5)

not depending on Be. Here, no rank condition is imposed on X1. Following (5) we
subsequently call an estimator b = Cey1 of β a Kuks–Olman estimator if

Ce = (W1 + X′
1W2X1)

−1X′
1W2 (6)

with given p.d. matrices W1 ∈ Rk×k and W2 ∈ Rn1×n1 . Kuks–Olman estimators can
also be viewed as general ridge estimators discussed, e.g., in [11,15]. It is notewor-
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thy that Kuks–Olman estimators also appear within the framework of a Bayesian
approach, where the knowledge about β is represented by a probability distribution
(see, e.g., [15] or [14, p. 270]).

We now consider the problem of predicting the unknown y2 by a suitable linear
function p = Cpy1 with Cp ∈ Rn2×n1 . First of all, any linear estimator b = Cey1 of
β (Ce ∈ Rk×n1 ) can be used to obtain a linear predictor for y2 defined by

Cp = X2Ce. (7)

For instance, in case of rk(X1) = k, the generalized least squares estimator given
by

Ce = (X′
1V

−1
11 X1)

−1X′
1V

−1
11 (8)

may be inserted into (7), where V11 is the p.d. covariance matrix of u1 (see (4)). Of
course, such a linear predictor does not make use of the covariance structure between
y1 and y2. Goldberger [5] was the first who exploited this relationship. His approach
is also presented by Rao and Toutenburg [16] in a more general framework; they
assume that the disturbance term u is a random variable with expectation zero and
with an n.n.d. covariance matrix V ∈ Rn×n:

E(u) = 0 and E(uu′) = V. (9)

Setting

V =
(
V11 V12
V21 V22

)
and supposing that the p.d. matrix V11 ∈ Rn1×n1 and the matrix V12 = V ′

21 ∈ Rn1×n2

are known, they show that

C∗
p = X2Ce + V21V

−1
11 (In1 − X1Ce) (10)

minimizes the weighted scalar mean squared error under the condition of unbiased-
ness, where In1 ∈ Rn1×n1 is the identity matrix and Ce is defined by (8):

E((C∗
py1 − y2)

′Bp(C
∗
py1 − y2)) � E((Cpy1 − y2)

′Bp(Cpy1 − y2))

for all Cp ∈ Rn2×n1 with CpX1 = X2 and for any arbitrarily selected n.n.d. ma-
trix Bp ∈ Rn2×n2 of weights. Note that the condition CpX1 = X2 is equivalent to
E(Cpy1 − y2) = 0 for all β ∈ Rk , i.e., the condition CpX1 = X2 is equivalent to
the unbiasedness of the linear predictor p = Cpy1.

In case of multicollinearity, e.g., a ridge estimator or a Kuks–Olman estimator
b = Cey1 given by (3) or (6), respectively, may be inserted into the right-hand side
of the equation

Cp = X2Ce + V21V
−1
11 (In1 − X1Ce), (11)

(see (10)) in order to obtain a linear predictor p = Cpy1 of y2. In [2] the minimax
principle is directly applied to the weighted scalar mean squared error of a linear
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predictor. In that paper the maximum is taken over a fuzzy set representing the prior
information. This approach, of course, also contains the case of a classical (crisp)
information set. It is shown that, in an important special case, an optimal linear pre-
dictor is obtained by inserting the matrix Ce of a specific Kuks–Olman estimator
b = Cey1 of β into the right-hand side of equation (11).

The following sections deal with a direct minimax approach to the problems of
estimating and predicting in linear regression analysis. This approach is based on
a concept of relative rather than absolute squared error and requires no prior in-
formation. The general solution of a matrix problem is derived that leads to optimal
estimators and predictors. Furthermore, we consider an important special case, where
generalized least squares estimators, Kuks–Olman estimators, and the Eq. (11) play
a prominent role.

2. Estimating the regression coefficients

Let b be an estimator of the regression coefficient β in the linear model (1), (2),
and let (b − β)′Ae(b − β) be the weighted squared error of b, where Ae ∈ Rk×k is a
given n.n.d. matrix of weights. Whereas the traditional analysis of biased estimators
starts from this loss function and uses the expected squared error of b as a risk func-
tion, we are interested in a measure of the relative squared error allowing for a worst
case analysis. To focus on the maximum relative squared error might be appropriate
for those empirical studies, where replicated experiments are very expensive or even
impossible.

Using a simple example, we first explain the idea and specify how it is related to
the problem of (near) multicollinearity. Assume Ae = Ik , rk(X1) = k and consider
the ordinary least squares estimator of β, i.e., b = (X′

1X1)
−1X′

1y1. The squared error
of b is given by

(b − β)′(b − β) = u′
1X1

(
X′

1X1
)−2

X′
1u1.

Therefore, the estimation error of b solely depends on the unobservable (and un-
avoidable) disturbance vector u1. However, for a worst case analysis, one should not
use the squared error loss, since it is unbounded. Rather, the relative estimation error,
defined by

(b − β)′(b − β)

u′
1u1

= u′
1X1(X

′
1X1)

−2X′
1u1

u′
1u1

for any u1 ∈ Rn1 , u1 /= 0, makes sense. Then we get

max
u1 /=0

(b − β)′(b − β)

u′
1u1

=λmax(X1(X
′
1X1)

−2X′
1)

=λmax((X
′
1X1)

−1)

= 1

λmin(X
′
1X1)

,
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where λmax(·), λmin(·) denote the maximum and minimum eigenvalue of the matrix
in the argument, respectively. This formula shows how near multicollinearity affects
the least squares estimator, yielding a small value of λmin(X

′
1X1) and therefore a

large value of the maximum relative squared error. Note that the ratio

max
u1 /=0

((b − β)′(b − β))/(u′
1u1)

min
u1 /=0

((b − β)′(b − β))/(u′
1u1)

= λmax(X
′
1X1)

λmin(X
′
1X1)

yields the square of the so-called condition number of X′
1X1. Let us now assume

rk(X1) < k. In this case we may consider any least squares estimator

b = X+
1 y1 + (Ik − X+

1 X1)h,

where X+
1 denotes the Moore–Penrose inverse of X1, and h ∈ Rk is an arbitrarily

chosen vector of constants. We obtain

(b − β)′(b − β)=[(X+
1 X1 − Ik)(β − h) + X+

1 u1
]′

× [
(X+

1 X1 − Ik)(β − h) + X+
1 u1

]
.

Because we now have X+
1 X1 /= Ik , the squared estimation error of b does not

only depend on the ‘noise’ u1 but also on the ‘signal’ β, more precisely, on β − h.

Again, a worst case analysis should start from a relative rather than an absolute
squared error, where a suitably weighted squared signal should enter the deno-
minator.

Generalizing the concept of a relative error we want to allow for an increasing
squared error (b − β)′Ae(b − β) whenever the disturbance vector u1 is increasing
with respect to some suitably chosen pseudo-norm; furthermore, we tolerate a greater
value of the weighted squared error of b in case of a larger pseudo-norm of the
parameter vector β. Combining both vectors β and u1 to one column vector γ =(
β
u1

) ∈ Rk+n1 we consider the ratio

(b − β)′Ae(b − β)

γ ′Teγ
, (12)

where Te ∈ R(k+n1)×(k+n1) is a given n.n.d. matrix, Te /= 0, and where we assume
Teγ /= 0, i.e., γ is not an element of the null-space Ne of Te.

Obviously, (12) meets both of the requirements stated above. Moreover, it may
be more appropriate not to focus on the values of β and u1 themselves, i.e., on the
deviations of β and u1 from the corresponding null vectors, but on the deviations
of β and u1 from given parameters β0 ∈ Rk and u10 ∈ Rn1 , respectively. Here, β0
might be the result of theoretical or empirical considerations; note that, in the intro-
ductory example from above, β0 may correspond to the vector h. Furthermore, u10
might be some presumed specification error which, for instance, may occur when a
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multiplicative model is transformed into the linear regression model (1), (2). Setting
γ0 = (

β0
u10

) ∈ Rk+n1 we obtain

(b − β)′Ae(b − β)

(γ − γ0)′Te(γ − γ0)
(13)

as an analogon to expression (12). When there are no preferences with respect to β0
and u10 these parameters should be set equal to zero, and (12) will be relevant.

In this paper we are going to apply the minimax principle to quantity (13); here,
we consider linear affine estimators and we do not make use of any information
about γ . Inserting (1) and (2) into b = Cey1 + ce (Ce ∈ Rk×n1 , ce ∈ Rk) and setting
De = (CeX1 − Ik, Ce) ∈ Rk×(k+n1), we get

(Deγ + ce)
′Ae(Deγ + ce)

(γ − γ0)′Te(γ − γ0)
(14)

being equivalent to (13). This leads to the following definition of an optimal linear
affine estimator.

Definition 1. Let Ae ∈ Rk×k and Te ∈ R(k+n1)×(k+n1), Te /= 0, be given n.n.d.
matrices, and let γ0 ∈ Rk+n1 be a given vector. Then a linear affine estimator b∗ =
C∗
e y1 + c∗

e (C
∗
e ∈ Rk×n1 , c∗

e ∈ Rk) for β in model (1) and (2) is optimal if

(i) sup
γ∈Rk+n1

γ−γ0 /∈Ne

(D∗
e γ + c∗

e )
′Ae(D

∗
e γ + c∗

e )

(γ − γ0)′Te(γ − γ0)
< ∞

and if the inequality

(ii) sup
γ∈Rk+n1

γ−γ0 /∈Ne

(D∗
e γ + c∗

e )
′Ae(D

∗
e γ + c∗

e )

(γ − γ0)′Te(γ − γ0)
� sup

γ∈Rk+n1

γ−γ0 /∈Ne

(Deγ + ce)
′Ae(Deγ + ce)

(γ − γ0)′Te(γ − γ0)

holds for all Ce ∈ Rk×n1 and all ce ∈ Rk . Here, we have set D∗
e = (C∗

e X1 − Ik, C
∗
e )

and De = (CeX1 − Ik, Ce).

Note that there are situations, where the supremum of expression (14) is infi-
nite for all linear affine estimators, and thus, it is sensible to impose condition (i)

on an optimal estimator. To give an example, let Ae = Ik and Te =
(

0 0
0 W

)
with

W ∈ Rn1×n1 , p.d. Assuming rk(X1) < k which implies CeX1 − Ik /= 0 we see that
the supremum of (14) is infinite for all Ce ∈ Rk×n1 .

The problem of determining an optimal linear affine estimator can be reduced to
find its linear part. To see this we look at the relation



B.F. Arnold, P. Stahlecker / Linear Algebra and its Applications 354 (2002) 3–20 9

sup
γ∈Rk+n1

γ−γ0 /∈Ne

(Deγ + ce)
′Ae(Deγ + ce)

(γ − γ0)′Te(γ − γ0)

= sup
γ∈Rk+n1

γ−γ0 /∈Ne

(De(γ − γ0) + Deγ0 + ce)
′Ae(De(γ − γ0) + Deγ0 + ce)

(γ − γ0)′Te(γ − γ0)

= sup
γ∈Rk+n1

γ−γ0 /∈Ne

{
(γ − γ0)

′D′
eAeDe(γ − γ0) + (Deγ0 + ce)

′Ae(Deγ0 + ce)

+ 2(γ − γ0)
′D′

eAe(Deγ0 + ce)
}/

(γ − γ0)
′Te(γ − γ0) (15)

= sup
γ∈Rk+n1

γ−γ0 /∈Ne

{
(γ − γ0)

′D′
eAeDe(γ − γ0) + (Deγ0 + ce)

′Ae(Deγ0 + ce)

+ 2|(γ − γ0)
′D′

eAe(Deγ0 + ce)|
}/

(γ − γ0)
′Te(γ − γ0), (16)

where | · | denotes the absolute value. If the last term in the numerator of (15) is nega-
tive, we replace γ by −γ + 2γ0 leaving all other terms in (15) unchanged and arrive
at (16). Now we are going to minimize (16) with respect to ce ∈ Rk , where Ce ∈
Rk×n1 is kept fixed, and we conclude that, in determining an optimal linear affine
estimator, we can restrict ourselves to those linear affine estimators b = Cey1 + ce
satisfying

Aece = −AeDeγ0. (17)

In the following we focus on the special solution

ce = −Deγ0 (18)

of (17) which does not depend on the matrix Ae of weights. Inserting De = (CeX1 −
Ik, Ce) and γ0 = (

β0
u10

)
(β0 ∈ Rk, u10 ∈ Rn1) into (18) we obtain

ce = −(CeX1 − Ik)β0 − Ceu10. (19)

For linear affine estimators meeting (17) and, in particular, for those linear affine
estimators satisfying (18) or (19), we get by (15):

sup
γ∈Rk+n1

γ−γ0 /∈Ne

(Deγ + ce)
′Ae(Deγ + ce)

(γ − γ0)′Te(γ − γ0)

= sup
γ∈Rk+n1

γ−γ0 /∈Ne

(γ − γ0)
′D′

eAeDe(γ − γ0)

(γ − γ0)′Te(γ − γ0)
. (20)

It remains to minimize the right-hand side of (20) with respect to Ce ∈ Rk×n1 . Refor-
mulating (20) we set η = γ − γ0 and decompose η = η1 + η2 into its components
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η1 = (
T

1/2
e

)+
T

1/2
e η = T +

e Teη

and
η2 = (

Ik+n1 − (T
1/2
e )+T 1/2

e

)
η = (Ik+n1 − T +

e Te)η,

where Ik+n1 , T
+
e ∈ R(k+n1)×(k+n1) is the identity matrix and the Moore–Penrose

inverse of Te, respectively, η1 is an element of the range Re of Te, and η2 belongs to
the null-space Ne of Te. We obtain

sup
η∈Rk+n1

η/∈Ne

η′D′
eAeDeη

η′Teη
= sup

η∈Rk+n1

η/∈Ne

(η1 + η2)
′D′

eAeDe(η1 + η2)

η′
1Teη1

,

and, applying part (i) of Definition 1, conclude that, in determining an optimal linear
affine estimator of β, we have to restrict ourselves to those matricesCe ∈ Rk+n1 satis-
fying the condition η′

2D
′
eAeDeη2 = 0 for all η2 ∈ Ne. This condition is equivalent to

A
1/2
e De(Ik+n1 − T +

e Te) = 0 (21)

and to

AeDe(Ik+n1 − T +
e Te) = 0. (22)

We get for all Ce ∈ Rk+n1 satisfying (21):

sup
η∈Rk+n1

η/∈Ne

η′D′
eAeDeη

η′Teη
= sup

η∈Rk+n1

η/∈Ne

η′T 1/2
e

(
T

1/2
e

)+
D′

eAeDe

(
T

1/2
e

)+
T

1/2
e η

η′Teη

�λmax
(
(T

1/2
e )+D′

eAeDe(T
1/2
e )+

)
=λmax

(
A

1/2
e DeT

+
e D′

eA
1/2
e

)
.

On the other hand, we obtain

sup
η∈Rk+n1

η /=0

η′(T 1/2
e

)+
D′

eAeDe

(
T

1/2
e

)+
η

η′η

= sup
η∈Rk+n1

η /=0

η′
1

(
T

1/2
e

)+
D′

eAeDe

(
T

1/2
e

)+
η1

η′
1η1 + η′

2η2

� sup
η1∈Re

η1 /=0

η′
1

(
T

1/2
e

)+
D′

eAeDe

(
T

1/2
e

)+
η1

η′
1η1

= sup
η∈Rk+n1

η/∈Ne

η′T 1/2
e

(
T

1/2
e

)+
D′

eAeDe

(
T

1/2
e

)+
T

1/2
e η

η′Teη
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for all Ce ∈ Rk×n1 . Therefore, the equation

sup
η∈Rk+n1

η/∈Ne

η′D′
eAeDeη

η′Teη
= λmax

(
A

1/2
e DeT

+
e D′

eA
1/2
e

)
(23)

holds for all Ce ∈ Rk×n1 satisfying (21). Thus, in order to determine an optimal
linear affine estimator b = C∗

e y1 + c∗
e of β, we have to calculate C∗

e by minimizing

λmax(A
1/2
e DeT

+
e D′

eA
1/2
e ) with respect to all Ce ∈ Rk×n1 satisfying condition (21).

Then, c∗
e can be taken from (19):

c∗
e = −(C∗

e X1 − Ik)β0 − C∗
e u10. (24)

Let us now consider the argument of the λmax operator, i.e., the function fe :
Rk×n1 → Rk×k

sym with

fe(Ce)=A
1/2
e DeT

+
e D′

eA
1/2
e

=A
1/2
e

[
Ce(X1, In1) − (Ik, 0k×n1)

]
T +
e

× [
Ce(X1, In1) − (Ik, 0k×n1)

]′
A

1/2
e , (25)

where 0k×n1 ∈ Rk×n1 is the null matrix and Rk×k
sym denotes the set of all k-dimen-

sional symmetric matrices equipped with the Löwner ordering defined by A1 � A2
iff A1 − A2 is n.n.d. Note that fe(·) is convex with respect to the Löwner ordering.
In Section 4, a general matrix problem is solved which, in particular, leads to a
minimizer C∗

e of fe(·) under condition (21). As λmax(·) is an isotone functional on
Rk×k

sym , C∗
e also minimizes λmax(fe(·)) under condition (21) and thus, b∗ = C∗

e y1 + c∗
e

is an optimal linear affine estimator for β in model (1) and (2), where c∗
e is calculated

by means of (24).
Before turning to the general solution we look at linear affine predictors in the

next section.

3. Predicting observations

Let p be a predictor of the unknown observation y2 ∈ Rn2 in the linear regression
model (1) and (2), and let (p − y2)

′Ap(p − y2) be the weighted squared error of p,
where Ap ∈ Rn2×n2 is a given n.n.d. matrix of weights. Proceeding in analogy to
Section 2 we consider this weighted squared error relative to a suitably measured
magnitude of the regression coefficient β and of the disturbance term u = (

u1
u2

)
, i.e.,

we look at the ratio

(p − y2)
′Ap(p − y2)

δ′Tpδ
, (26)

where β and u are combined to the column vector δ=(β
u

) ∈ Rk+n, Tp ∈ R(k+n)×(k+n)

is a given n.n.d. matrix, Tp /= 0, and where δ is not an element of the null-space Np

of Tp.
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Analogously to (13), (26) may be generalized to

(p − y2)
′Ap(p − y2)

(δ − δ0)′Tp(δ − δ0)
(27)

with a given vector δ0 =
β0
u10
u20

 ∈ Rk+n.

Considering the class of linear affine predictors of y2 we insert (1) and (2) into
p = Cpy1 + cp (Cp ∈ Rn2×n1 , cp ∈ Rn2) and write (27) equivalently as

(Dpδ + cp)
′Ap(Dpδ + cp)

(δ − δ0)′Tp(δ − δ0)
, (28)

where Dp = (CpX1 − X2, Cp,−In2) ∈ Rn2×(k+n) with the identity matrix In2 ∈
Rn2×n2 . In order to determine an optimal linear affine predictor we apply the mini-
max principle to quantity (28) and arrive at the following definition.

Definition 2. Let Ap ∈ Rn2×n2 and Tp ∈ R(k+n)×(k+n), Tp /= 0, be given n.n.d.
matrices, and let δ0 ∈ Rk+n be a given vector. Then a linear affine predictor p∗ =
C∗
py1 + c∗

p (C∗
p ∈ Rn2×n1 , c∗

p ∈ Rn2) for y2 in model (1) and (2) is optimal if

(i) sup
δ∈Rk+n

δ−δ0 /∈Np

(D∗
pδ + c∗

p)
′Ap(D

∗
pδ + c∗

p)

(δ − δ0)′Tp(δ − δ0)
< ∞

and if the inequality

(ii) sup
δ∈Rk+n

δ−δ0 /∈Np

(D∗
pδ + c∗

p)
′Ap(D

∗
pδ + c∗

p)

(δ − δ0)′Tp(δ − δ0)
� sup

δ∈Rk+n

δ−δ0 /∈Np

(Dpδ + cp)
′Ap(Dpδ + cp)

(δ − δ0)′Tp(δ − δ0)

holds for all Cp ∈ Rn2×n1 and all cp ∈ Rn2 . Here, we have set D∗
p = (C∗

pX1 −
X2,C

∗
p,−In2) and Dp = (CpX1 − X2,Cp,−In2).

Obviously, our considerations following Definition 1 in Section 2 may directly be
transferred to the prediction problem of this section.

First, in determining an optimal linear affine predictor, we can restrict ourselves
to those predictors p = Cpy1 + cp satisfying

Apcp = −ApDpδ0. (29)

As in Section 2 we focus on the special solution

cp = −Dpδ0 (30)

of (29) which can equivalently be written as

cp = −(CpX1 − X2)β0 − Cpu10 + u20. (31)
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Second, it remains to minimize

sup
δ∈Rk+n

δ−δ0 /∈Np

(δ − δ0)
′D′

pApDp(δ − δ0)

(δ − δ0)′Tp(δ − δ0)

with respect to Cp ∈ Rn2×n1 , and, as in Section 2, we conclude that this is equivalent
to minimize

λmax
(
A

1/2
p DpT

+
p D′

pA
1/2
p

)
(32)

with respect to Cp ∈ Rn2×n1 under the condition

A
1/2
p Dp(Ik+n − T +

p Tp) = 0, (33)

whereDp =(CpX1 − X2,Cp,−In2) and where Ik+n, T +
p ∈ R(k+n)×(k+n) is the iden-

tity matrix and the Moore–Penrose inverse of Tp, respectively.
Third, defining fp : Rn2×n1 → R

n2×n2
sym with

fp(Cp)=A
1/2
p DpT

+
p D′

pA
1/2
p

=A
1/2
p

[
Cp(X1, In1 , 0n1×n2) − (X2, 0n2×n1 , In2)

]
× T +

p

[
Cp(X1, In1 , 0n1×n2) − (X2, 0n2×n1 , In2)

]′
A

1/2
p , (34)

we see that any C∗
p ∈ Rn2×n1 , which, under condition (33), minimizes fp(·) with

respect to the Löwner ordering on the set R
n2×n2
sym of all n2-dimensional symmetric

matrices, also minimizes (32) under condition (33). Thus, such a minimizer C∗
p of

fp(·) under condition (33) leads to an optimal linear affine predictor p∗ = C∗
py1 +

c∗
p for y2 in model (1) and (2), where c∗

p is given by (31):

c∗
p = −(C∗

pX1 − X2)β0 − C∗
pu10 + u20. (35)

4. Solving a general matrix problem

Looking at the problems of minimizing fe(·) (see (25)) under condition (21) and
of minimizing fp(·) (see (34)) under condition (33) we realize that both problems
are essentially of the same kind and can be summarized to minimizing the function
f : Rm×r → Rl×l

sym,

f (C) = A(CZ − F)T +(CZ − F)′A′ (36)

under the condition

A(CZ − F)(Is − T +T ) = 0, (37)

where Rl×l
sym is the set of all l-dimensional symmetric matrices equipped with

the Löwner ordering, and where Is ∈ Rs×s is the identity matrix. Furthermore, the
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matrices A ∈ Rl×m, Z ∈ Rr×s , F ∈ Rm×s , and T ∈ Rs×s , n.n.d., are assumed to be
given. Note that similar problems arise when estimators for the regression coefficient
are restricted to prior informations (see, e.g., [17]).

In estimating β we have

l = m = k, r = n1, s = k + n1, A = A
1/2
e ,

T = Te, C = Ce, Z = (X1, In1) and F = (Ik, 0k×n1). (38)

In the prediction problem we set

l = m = n2, r = n1, s = k + n, A = A
1/2
p , T = Tp,

C = Cp, Z = (X1, In1 , 0n1×n2) and F = (X2, 0n2×n1 , In2). (39)

We see from (38) and (39) that, in both problems, the rank rk(Z) of Z is maximal
and equal to r = n1.

The following proposition gives all the (Löwner-) minimizers of f (·), defined by
(36), under condition (37). Here, − denotes any generalized inverse of the corre-
sponding matrix.

Proposition 1. Let T ∈ Rs×s , n.n.d., A ∈ Rl×m,Z ∈ Rr×s , and F ∈ Rm×s be
given matrices. Furthermore, we set P = Is − T +T and L = Ir − ZP(ZP )−.

(i) If AFP(ZP )−ZP /= AFP, then there exists no C ∈ Rm×r satisfying condi-
tion (37).

(ii) If

AFP(ZP )−ZP = AFP, (40)

then C ∈ Rm×r minimizes f (·), given by (36), under condition (37), iff it can be
written as

C =C∗ + (Im − A−A)(N − C∗)
+A−AN(Ir − LZT +Z′L′(LZT +Z′L′)−)L (41)

with some N ∈ Rm×r and with

C∗ = FP(ZP )− + F(Is − P(ZP )−Z)T +Z′L′(LZT +Z′L′)−L. (42)

If, in addition, rk(Z) = r, then (41) reduces to

C = C∗ + (Im − A−A)(N − C∗), (43)

and C∗ is the unique minimizer of f (·) under condition (37) whenever rk(Z) = r

and rk(A) = m.

Note that no rank assumptions are required for (41).

Proof. Using the notations of the proposition we see that condition (37) is equivalent
to ACZP = AFP which has a solution in C iff the equation
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AFP(ZP )−ZP = AFP

holds (see (40)). Thus, part (i) of the proposition is shown.
In order to prove (ii) we assume the validity of (40) and see that (37) can equiva-

lently be written as

C = A−AFP(ZP )− + M − A−AMZP(ZP )−, (44)

where M ∈ Rm×r is arbitrarily selected. Inserting (44) into (36) we obtain the func-
tion g : Rm×r → Rl×l

sym defined by

g(M) = f (C)=A(MLZ + FP(ZP )−Z − F)T +

× (MLZ + FP(ZP )−Z − F)′A′ (45)

which is to be minimized on Rm×r . As g(·) is convex, precisely these M ∈ Rm×r

with ∇Mg(M)(H) = 0 for all H ∈ Rm×r are the minimizers of g(·) and thus, ap-
plying (44), lead to the solutions of our original optimization problem. By direct
calculation we see that ∇Mg(M)(H) = 0 for all H ∈ Rm×r is equivalent to the equa-
tion

AMLZT +Z′L′ = AF(Is − P(ZP )−Z)T +Z′L′ (46)

having a solution in M iff

AF(Is − P(ZP )−Z)T +Z′L′(LZT +Z′L′)−LZT +Z′L′

= AF(Is − P(ZP )−Z)T +Z′L′. (47)

Because of T +Z′L′(LZT +Z′L′)−LZT +Z′L′ = T +Z′L′, Eq. (47) holds, and we
conclude by (46) that all M ∈ Rm×r with

M=A−AF(Is − P(ZP )−Z)T +Z′L′(LZT +Z′L′)−

+N − A−ANLZT +Z′L′(LZT +Z′L′)− (48)

are minimizers of g(·), where N ∈ Rm×r is arbitrarily selected. Inserting (48) into
(44) we realize after some rearrangements that precisely these C ∈ Rm×r with

C=C∗ + (Im − A−A)(N − C∗)
+A−AN(Ir − LZT +Z′L′(LZT +Z′L′)−)L,

where N ∈ Rm×r is arbitrarily selected and where we have set

C∗ = FP(ZP )− + F(Is − P(ZP )−Z)T +Z′L′ (LZT +Z′L′)− L,

minimize f (·) under condition (37), i.e., solve our original minimization problem
(see (41) and (42)).

In case of rk(Z) = r , Eq. (41) can be simplified considerably. First of all, because
of LZP = 0, we obtain LZT + = LZ(P + T +). Furthermore, the equation

P + T + = Is − T +T + T + = Is + T +(Is − T )
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holds, we conclude that all eigenvalues of the symmetric matrix P + T + are positive,
and thus, P + T + is p.d. Assuming now rk(Z) = r we see that Z(P + T +)Z′ is
invertible, and we get(

Ir − LZT +Z′L′ (LZT +Z′L′)−)L
= (Ir − LZ(P + T +)Z′L′(LZ(P + T +)Z′L′)−)

×LZ(P + T +)Z′(Z(P + T +)Z′)−1 = 0.

Thus, in case of rk(Z) = r , (41) reduces to (43). Furthermore, if rk(Z) = r and
rk(A) = m, then C∗ is the unique minimizer of f (·) under condition (37). �

5. Applications

We now are going to apply the proposition of the preceding section to relative
squared error estimation and prediction in linear regression. As the affine parts of the
estimators and predictors can easily be determined by (24) and (35), respectively, we
confine ourselves to their linear components. Using (38) and (39), C∗

e and C∗
p cal-

culated by (42) lead to an optimal linear affine estimator and predictor, respectively,
whenever Eq. (40) holds. Since C∗ does not depend on A, we focus on this special
solution of our minimization problem. Here, for each generalized inverse occurring
in the proposition, we take the Moore–Penrose inverse.

Throughout this section we consider block-diagonal matrices

Te =
(
T0 0
0 W−1

11

)
and

Tp =
(
T0 0
0 W−1

)
,

where T0 ∈ Rk×k , n.n.d., and

W =
(
W11 W12
W21 W22

)
,

p.d., with W11 ∈ Rn1×n1 , W12 = W ′
21 ∈ Rn1×n2 , W22 ∈ Rn2×n2 are given. Setting

Q = Ik − T +
0 T0, (49)

we see by direct calculation that, in the estimation problem, condition (40) is equiv-
alent to

AeQ(X1Q)+X1Q = AeQ, (50)

whereas, in the prediction problem, (40) can equivalently be written as

ApX2Q(X1Q)+X1Q = ApX2Q. (51)
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Obviously, (51) is closely related to (50): assuming that (50) holds without the pre-
factor Ae, i.e.,

Q(X1Q)+X1Q = Q, (52)

then (51) is valid for all matrices Ap and X2. In the following subsections we suppose
that (52) holds.

5.1. A relation between estimators and predictors

Inserting (38) and (39) into (42) and keeping in mind that we take the Moore–
Penrose inverses as special generalized inverses, we arrive at the formulas

C∗
e =Q(X1Q)+ + [

(Ik − Q(X1Q)+X1)T
+

0 X′
1 − Q(X1Q)+W11

]
× [

(In1 − X1Q(X1Q)+)(X1T
+

0 X′
1 + W11)(In1 − X1Q(X1Q)+)

]+
(53)

and

C∗
p=X2Q(X1Q)+

+ [X2(Ik − Q(X1Q)+X1)T
+

0 X′
1 − X2Q(X1Q)+W11 + W21

]
× [

(In1 − X1Q(X1Q)+)(X1T
+

0 X′
1 + W11)(In1 − X1Q(X1Q)+)

]+
,

(54)
respectively, which are related by the equation

C∗
p = X2C

∗
e + W21W

−1
11 (In1 − X1C

∗
e ). (55)

Note that (55) is formally equivalent to a well-known relation between estimators
and predictors in linear regression presented and discussed, e.g., in [16].

In the following two subsections we look at the most extreme situations concern-
ing T0: we are going to consider the cases of T0 = 0 and of T0 p.d. The last subsection
deals with an ‘intermediate’ T0. Since an optimal predictor can be determined by (55)
we restrict ourselves to calculating C∗

e .

5.2. Generalized least squares estimators

Here we set T0 =0 and obtain Q=Ik (see (49)). Condition (52) holds iff X+
1 X1 =

Ik , i.e., iff rk(X1) = k . Assuming rk(X1) = k and applying (53) we obtain

C∗
e = X+

1 − X+
1 W11

[
(In1 − X1X

+
1 )W11(In1 − X1X

+
1 )
]+

which, by standard arguments (see, e.g., [1, pp. 90–91]), can be written as a general-
ized least squares estimator:

C∗
e = (X′

1W
−1
11 X1)

−1X′
1W

−1
11 .
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5.3. Kuks–Olman and ridge estimators

In this subsection we assume T0 p.d. By (49) we get Q = 0. Thus, condition (52)
trivially holds, and (53) leads to

C∗
e = T −1

0 X′
1(X1T

−1
0 X′

1 + W11)
−1.

Using the inversion formula we obtain

C∗
e = (T0 + X′

1W
−1
11 X1)

−1X′
1W

−1
11 ,

which can be interpreted as a Kuks–Olman or as a general ridge estimator. This
special case was already considered in [3].

5.4. Combining generalized least squares and ridge estimators

In order to obtain an optimal estimator in Section 5.2 (T0 = 0) we have to assume
that the model matrix X1 has full column rank, whereas in Section 5.3 (T0 p.d.) no
rank assumption is imposed on X1, i.e., in Section 5.3 we allow for multicollinearity.
In the present subsection we are going to use

T0 =
(

0k1×k1 0k1×k2

0k2×k1 T2

)
∈ Rk×k

with a given p.d. matrix T2 ∈ Rk2×k2 (k = k1 + k2). Writing X1 = (X11, X12) as a
partitioned matrix with X11 ∈ Rn1×k1 and X12 ∈ Rn1×k2 we see that condition (52) is
equivalent to X+

11X11 = Ik1 and to rk(X11) = k1. Thus, in order to obtain an optimal
estimator for β we have to assume that X11 does not contain any multicollinearity
which, when existing, has to be concentrated in X12.

We now suppose rk(X11) = k1, whereas no rank assumptions are made concern-
ing X12. Applying (53) and setting

W̃11 = W11 + X12T
−1

2 X′
12 (56)

we get

C∗
e =

(
C∗
e1

C∗
e2

)
with C∗

e1 ∈ Rk1×n1 , C∗
e2 ∈ Rk2×n1 ,

C∗
e1 = X+

11 − X+
11W̃11

[
(In1 − X11X

+
11)W̃11(In1 − X11X

+
11)
]+ (57)

and
C∗
e2 = T −1

2 X′
12

[
(In1 − X11X

+
11)W̃11(In1 − X11X

+
11)
]+
. (58)

To interprete (57) and (58) we simplify the term C∗
e2 + T −1

2 X′
12W̃

−1
11 X11C

∗
e1 and

obtain after some rearrangements

C∗
e2 + T −1

2 X′
12W̃

−1
11 X11C

∗
e1

= T −1
2 X′

12W̃
−1
11

(
X11X

+
11 + (In1 − X11X

+
11)W̃11
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× [
(In1 − X11X

+
11)W̃11(In1 − X11X

+
11)
]+)

= T −1
2 X′

12W̃
−1
11 (P1 + P2) (59)

with P1 = X11X
+
11 and

P2 =(In1 − X11X
+
11)W̃11(In1 − X11X

+
11)

× [
(In1 − X11X

+
11)W̃11(In1 − X11X

+
11)
]+
.

As P1 and P2 are projection matrices satisfying P1P2 = P2P1 = 0, P1 + P2 is
also a projection matrix. Furthermore, rk(P1 + P2) = n1, P1 + P2 = In1 and thus,
using (59), we get

C∗
e2 + T −1

2 X′
12W̃

−1
11 X11C

∗
e1 = T −1

2 X′
12W̃

−1
11

and

C∗
e2 = T −1

2 X′
12W̃

−1
11

[
In1 − X11C

∗
e1

]
. (60)

Writing (57) as a generalized least squares estimator, looking at (56), and applying
the inversion formula to the term W̃−1

11 in (60) we arrive at the expressions

C∗
e1 = (

X′
11W̃

−1
11 X11

)−1
X′

11W̃
−1
11 (61)

and

C∗
e2 = (

T2 + X′
12W

−1
11 X12

)−1
X′

12W
−1
11

[
In1 − X11C

∗
e1

]
. (62)

For the sake of simplicity we assume in the following that the affine part of the

estimator vanishes. Thus, b∗ = C∗
e y1 = (C∗

e1
C∗
e2

)
y1 is an optimal estimator for β = (

β1
β2

)
in our linear regression model y1 = X11β1 + X12β2 + u1(β1 ∈ Rk1 , β2 ∈ Rk2) with
a full column rank matrix X11. We see from (61) that β1 is estimated by means
of a generalized least squares estimator, where the sum X12β2 + u1 is taken as an
aggregated error term. In consequence of this augmentation of u1 the matrix W11 is
transformed into W̃11 (see (56)). Note that X12 may contain some multicollinearity.
Once the estimator C∗

e1y1 for β1 is determined, the second part β2 of the regression
coefficient β is estimated by a Kuks–Olman or ridge estimator, where the ‘residual’
term y1 − X11C

∗
e1y1 is used instead of the ‘full’ observation y1.

Thus, our optimal estimator is calculated by a two-step procedure: first the ‘good’
part β1 of the regression coefficient is estimated and then the ‘bad’ one, β2.

6. Concluding remarks

In this paper a general relative squared error approach is given to the intercon-
nected estimation and prediction problems in linear regression. It should be noted
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that this approach does not include any stochastic aspects and that it can also be
viewed as some kind of a ‘signal-to-noise’ ratio approach. Furthermore, looking at
(12) or (13) and at (26) or (27) we see that our concept is not restricted to linear
regression analysis but might also be applied to more general models.
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