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a b s t r a c t

We study the minimum weight dominating set problem in weighted unit disk graph, and
give a polynomial time algorithm with approximation ratio 5+ ε, improving the previous
best result of 6 + ε in [Yaochun Huang, Xiaofeng Gao, Zhao Zhang, Weili Wu, A better
constant-factor approximation for weighted dominating set in unit disk graph, J. Comb.
Optim. (ISSN: 1382-6905) (2008) 1573–2886. (Print) (Online)]. Combining the common
technique used in the above mentioned reference, we can compute a minimum weight
connected dominating set with approximation ratio 9+ ε, beating the previous best result
of 10+ ε in the same work.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In graph theory, the dominating set problem is one of the most famous problems, since it was studied from the 1950s
onwards. In a given graph G = (V , E), a node v ∈ V dominates itself and all its neighbors v ∪N(v) and a set of nodes D ∈ V
dominates {v∪N(v)|v ∈ D}. WhenD dominates V , we sayD is a dominating set of G. Theminimumdominating set problem
(MDS) is to find the smallest dominating set. In a weighted graph G = (V , E,W ),W is a mapping V 7→ R∗ and every node
is assigned a non-negative weightW (v). The goal of the minimumweighted dominating set problem (MWDS) is to find the
minimum weighted subset of nodes to dominate V .
A connected dominating setD ∈ V is a dominating set ofGwhose reduced graph (D, {(u, v) ∈ E|u, v ∈ D}) is a connected

graph. In the minimum connected dominating set problem (MCDS), the goal is to find the smallest connected dominating
set. In the weighted graph we define the minimum weighted connected dominating set problem (MWCDS) in an obvious
and similar way.
In 1979, Garey proved that MDS is NP-hard [7]. In 1984, Bar-Yehuda andMoran showed that minimum dominating set is

polynomially equivalent to the set cover problem [8]. In 1999, Feige proved that (1− o(1)) ln n is a threshold below which
set cover cannot be approximated efficiently, unless NP ⊂ DTIME[nO(log log n)] [10]. Two years after that, Vazirani showed
that there is no polynomial approximation algorithms can achieve an approximation ratio better than O(log n) [9]. Besides
these hardness results, Guha and Khuller [11] gave an O(log n)-approximation algorithm for MCDS in 1999.

1.1. Dominating set in unit disk graphs

Most problems become easier when they are restricted to planar graphs, because planar graphs not only satisfy the
triangular inequality but also fix distances and angles in the graph between points. In our paper we consider MWDS and
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MWCDS in a more special graph: Unit Disk Graph. A unit disk graph [6] is the intersection graph of a family of unit circles
in the Euclidean plane. In the unit disk graph, each vertex is associated with a unit circle in the plane and two vertices are
adjacent if and only if the corresponding circles are intersected.
Routing in wireless ad-hoc networks is a most direct motivation to study dominating sets in unit disk graphs. [12]

proposed the dominating sets for the construction of routing backbones in 2002. In wireless networks, sensors collect data
and communicate to each other. Every senor is considered as a node in the graph. There is an edge between two nodes if
and only if one sensor can cover another in its range and they can communicate with each other. The unit disk graph is
the most simple model for sensor networks in which we consider all sensors are the same. Since messages are collected to
key sensors and transmitted around the sensor network, a smaller connected dominating set gives a more energy-efficient
routing in a wireless netowrk [13].
For unit disk graphs, there is some hardness results for MWDS since 1990. Clark et al. [6] showed that MDS in UDG is

NP-hard in 1990,while earlier, Lichtenstein [3] proved thatMWDS isNP-hard inUDG. Several algorithmswere also presented
in unit disk graphs. Marathe et al. [4] gave a constant-factor approximation algorithm for MDS and MCDS in UDG in 1995.
Three years after that, Hunt et al. [5] gave a PTAS for MDS andMCDS. For the weighted unit disk graph, every disk has a non-
negativeweight. There are some recent results for this kind of graph. Ambühl et al. [1] gave the first constant-approximation
algorithm for MWDS in UDG, and Huang et al. [2] improved their approximation ratio from 72 to 6+ ε. Meanwhile, Huang
et al. [2] also gave a 10+ ε approximation algorithm for MWCDS in UDG, improving the previous 89 approximation [1].

1.2. Our results

In this paper we present a 5-approximation algorithm for MWDS problem in unit disk graphs. The framework of the
algorithm is divided into two phases, which is similar to [1,2]. In the first phase, we divide the plane into constant size pieces
and reduce the MWDS into polynomial number of special cover problems in a constant-bounded area. A constant-bounded
area means all the points/disks in the plane can be bounded by a constant-size square. The special cover problem means
covering a set of points located in a constant size square by a minimum-weight set of double-size unit disks. Assuming the
size of every square is a constant k, we only lose a small factor of 1k in this reduction.
In the second phase , we give a new dynamic programming techniques to achieve a 5-approximation results for the

divided problems and merging with the first phase, we achieve a 5 + ε approximation algorithm for MWDS. In this phase,
we improve the previous 6-approximation algorithm given in [2]. Compared to the algorithm in [2] by dividing every square
into larger strips such that every disk intersects with fewer strips. Combining with the techniques in [2], which gives a 4-
approximation ratio to connect the dominating set, our algorithm yields a 5+ ε + 4 = 9+ ε approximation algorithm for
MWCDS in UDG.

1.3. Paper structure

We organize our paper as follows. In Section 2 we discuss the 2-StripWMDS problem and give a dynamic programming
algorithm for this problem. In Section 3, we state the 5+ ε algorithm for MWDS and prove its approximation ratio, which is
our main result. Finally, Section 4 gives some conclusions and open problems for the approximation algorithms in unit disk
graph.

2. Solving MWDS over a pair of strips

In this section we mainly discuss a dynamic programming algorithm for solving the minimum weight dominating set
problem over a pair of adjacent strips in the plane. Before we give the algorithm, we start with some definitions about the
dominating set problem.

2.1. Definitions

Definition 2.1 (MinimumWeighted Dominating Set Problem in Unit Disk Graph). We have n nodes in the plane, denoted by
V . Each node i has a pair of coordinates (xi, yi), and is associated with a disk Di, whose radius is 1 and weight is wi (also
denoted byw(Di)). We refer the disks and nodes to the same thing. For any set S of nodes, its weight is defined as the total
weight of the nodes in this set, i.e. w(S) =

∑
i∈S wi. For any nodes i, j ∈ V , there exists an edge between them if and

only if dist(i, j) ≤ 1, where dist(i, j) is the Euclidian distance, i.e. dist(i, j) =
√
(xi − xj)2 + (yi − yj)2. We denote the set of

edges as E. When a pair of nodes i, j have an edge between them, we also say that i can be dominated or covered by j, or Dj
alternatively. A subset S ⊆ V is called a dominating set if for any i ∈ V , either i ∈ S or there exists j ∈ S such that (i, j) ∈ E.
The objective of the MinimumWeighted Dominating Set Problem is to find a subset S, such that S is a dominating set with
minimum weight. This problem is also denoted byMWDS.

Definition 2.2 (2-StripMWDS). We have n nodes, each associated with a weighted unit disk, and two adjacent strips,
T1 = {(x, y)|y1 ≤ y ≤ y2} and T2 = {(x, y)|y2 ≤ y ≤ y3}, where y1 < y2 < y3. We use Ska, Skb, k = 1, 2 to denote
the set of disks, whose centers are above the strip Tk and below the strip Tk, respectively. Assume that all the nodes in Tk
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can be covered by the disks only from Sk = Ska
⋃
Skb. The objective is to find subsets of disks, Ck ⊂ Sk, k = 1, 2, such that

C = C1
⋃
C2 has minimum weight and nodes in Tk can be covered by disks only from Ck.

The following concept is very useful in our proofs.

Definition 2.3 (Low-dominate). For any given vertical line l = {(x, y)|x = x0} and disks D,D′, disk D low-dominates D′ on
the line l if and only if one of the following conditions is satisfied,

• Both D and D′ intersect with line x = x0 and D has the lower intersection point;
• D intersects the line x = x0 but D′ doesn’t;
• Neither D nor D′ intersect the line x = x0 but both of them are in the left hand side of x = x0 and xD > xD′ (or
xD = xD′ ∧ yD < yD′ ).

The concept of up-dominate can be defined similarly. By definition, the relation ‘‘low-dominate’’ and ‘‘up-dominate’’
satisfy the transitivity properties, that is, if D1 low(up)-dominates D2 and D2 low(up)-dominates D3 then D1 low(up)-
dominates D3.
Given any instance of 2-StripWMDS, for any D ∈ Ska (or Skb) and line l : x = c , we use Ska(D, l) (orSkb(D, l)) to denote the

set of all the disks from Ska (or Skb), which are low(up)-dominated by D on the line l.

2.2. Algorithm

For the 2-StripMWDS problem, we have the following dynamic programming algorithm to give the optimal solution in
polynomial time. For each i = 1, . . . , n, k = 1, 2, each Dk ∈ Ska, D′k ∈ Skb, we define C(i,D1,D

′

1,D2,D
′

2) as an optimal
solution( as well as the optimal value) satisfying the following conditions,

1. Each node pj, j ≤ i, can be covered by some disk in C(i,D1,D′1,D2,D
′

2), whose center is not in the strip where pj lies.
2. D1,D′1,D2,D

′

2 ∈ C(i,D1,D
′

1,D2,D
′

2);
3. For k = 1, 2, Dk low-dominates all the disks in C(i,D1,D′1,D2,D

′

2)
⋂
Ska, and D′k up-dominates all the disks in

C(i,D1,D′1,D2,D
′

2)
⋂
Skb.

If a set of disks only satisfies the above conditions but not the optimal solution, we call it a feasible solution. By calculating
dynamically, the algorithm tries all feasible solutions, takes the optimal one, andmaintains a table containing all the possible
C(i,D1,D′1,D2,D

′

2) .

Algorithm 1: Solve the MWDS over a pair of strips.
Step 1: Label the nodes in the pair of strips T = T1

⋃
T2 from left to right,

and from up to down. So there are p1, . . . pn in T , and for any i < j,
we have either xi < xj or (xi = xj) ∧ (yi > yj).

Step 2: Maintain a table containing all the possible C(i,D1,D′1,D2,D
′

2),
and calculate them according to Lemma 2.2.

Step 3: Output the minimum solution of C(n,D1,D′1,D2,D
′

2), i.e. in the n-th
column of the table, where the minimum is taken over all possible
D1 ∈ S1a,D′1 ∈ S1b,D2 ∈ S2a,D

′

2 ∈ S2b.

2.3. Proofs

We first prove a lemma about the disk dominating property on a line. This is useful in proving the correctness of the
above algorithm.

Lemma 2.1. Given a strip and two lines L2 = {(x, y)|x = x2}, L3 = {(x, y)|x = x3}, where x2 < x3, D,D′ two disks whose centers
are above the strip. If D low-dominates D′ on L2, D′ low-dominates D on L3, then any node P in the strip with xp ≤ x2 covered by
D′ can also be covered by D. (See Fig. 1 for example.)

Proof. Assume that P is covered by D′ but not by D. We must have xP < x2, since D low-dominates D′ on line L2. Then D′
must intersect line L1 : x = xP at some point B1 in the strip. In line L3, D′ low dominates D, so if D′ intersects with L3, let
B3 denote the lowest intersection point. Otherwise, let B3 denote point at which disk D′ is tangent with L3 if we move L3 to
left. Since the line segment B1B3 is lying in the disk D′, D′ must also intersect line L2 at some point B2 in the strip. Now we
consider the disk D, since it dominates D′ on line L2, we know that it should intersect L2 at some point Awith yA ≤ yB2 .
Since disk D has its center above the line y = y2, and D cannot have intersection point below B1, B3 with line L1, L3

respectively, we know that the circle D must intersect the line segment B1B3, say E, F . Circle D is the circumcircle of the
triangle∆AEF , so we have

RD =
|EF |

2 sin 6 EAF
.
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Fig. 1. Example of low-dominating transition.

Fig. 2. Proof of dominating transition.

Similarly, we have

RD′ =
|B1B3|

2 sin 6 B1B2B3
.

Since the centers of D,D′ are both lying above B1B3, we know that 6 EAF , 6 B1B2B3 are both larger than 90◦. Now from
6 EAF < 6 B1B2B3 and |EF | < |B1B3|, we obtain RD < RD′ , which contradicts with the fact that all the disks have radius 1.
(Fig. 2) �

Now we state the method of computing C(i,D1,D′1,D2,D
′

2) in step 2 and its correctness by the following lemma. In the
statement of this lemma we use the function I(A): I(A) = 1 when A is a true statement, otherwise I(A) = 0.

Lemma 2.2. We can compute all C(i,D1,D′1,D2,D
′

2) as follows.

• Case 1: Let C(i,D1,D′1,D2,D
′

2) = +∞, if one of the following happens:
– pi cannot be covered by any disk from D1,D′1,D2,D

′

2 with its center not in the strip where pi lies;
– ∃k ∈ {1, 2}, such that Dk cannot low-dominate {D1,D2}

⋂
Ska or D′k cannot up-dominate {D

′

1,D
′

2}
⋂
Skb.

• Case 2: let C(i,D1,D′1,D2,D
′

2) =
∑2
k=1

(
w(Dk)+ w(D′k)

)
− I(D1 = D2)w(D1) − I(D′1 = D

′

2)w(D
′

1), if i = 1 and one of
D1,D′1,D2,D

′

2 covers p1.
• Case 3: Use the following recursive relation to compute C(i,D1,D′1,D2,D

′

2), if it falls into neither Case 1 nor Case 2.

C
(
i,D1,D′1,D2,D

′

2

)
= min
Dks∈Ska(Dk,Li)
D′ks∈Skb(D

′
k,Li)

{
C
(
i− 1,D1s,D′1s,D2s,D

′

2s

)
+

2∑
k=1

(
I (Dk /∈ {D1s,D2s}) w(Dk)

+ I
(
D′k /∈ {D

′

1s,D
′

2s}
)
w(D′k)

)}
Proof. In Case 1, if a quadruple (D1,D′1,D2,D

′

2) doesn’t satisfy the second condition, it is impossible to find a solution for
C(i,D1,D′1,D2,D

′

2) satisfies to its definition. Now consider the case when this quadruple satisfies the second condition but
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Fig. 3. Idea of the proof of low-dominating relations.

not the first one. W.L.O.G. , assume that pi locates in T1. Consider a disk D̃ not in these four disks, because D̃ is either low-
dominated by D1 or up-dominated by D′1, it is impossible for D̃ to cover pi. So in this case pi isn’t dominated by any disk and
there doesn’t exist a solution for C(i,D1,D′1,D2,D

′

2).
In Case 2, it is the trivial case and the quadruple (D1,D′1,D2,D

′

2) must be the only optimal solution, so the algorithm
takes it as the initial step of the whole dynamic programming.
For Case 3, we prove the equation as follows. We first prove LHS ≤ RHS by showing every solution enumerated

in RHS is a feasible solution to C(i,D1,D′1,D2,D
′

2). LHS is no more than RHS because LHS is optimal among all feasible
solutions. In the second part we prove LHS ≥ RHS. Actually, we want to prove in RHS, the corresponding optimal
solution C(i − 1,D1s,D′1s,D2s,D2s) doesn’t contain Dk, when Dk 6∈ {D1s,D2s}. However we proved it in the opposite
view. In the proof we divide the LHS into two parts Ci−1 and something else, then constructing a feasible solution Ci−1
to C(i − 1,D1s,D′1s,D2s,D

′

2s) which doesn’t contain Dk when Dk 6∈ {D1s,D2s}. Because RHS takes the minimum among all
equations in this form, so LHS ≥ RHS.
(1) To prove the Left hand side(LHS) is no larger than the right hand side(RHS), we first fix any D1s,D′1s,D2s,D

′

2s, and a
corresponding optimal solution C

(
i− 1,D1s,D′1s,D2s,D

′

2s

)
, which achieves the minimum of RHS. Consider the set of disks

Ci = C
(
i− 1,D1s,D′1s,D2s,D

′

2s

)⋃
{D1,D′1,D2.D

′

2}. We prove that Ci satisfies the following conditions:

1. Each node pj, j ≤ i, can be covered by some disk in Ci, with center not in the strip where pj lies.
2. D1,D′1,D2,D

′

2 ∈ Ci;
3. For k = 1, 2, Dk low-dominates all the disks in Ci

⋂
Ska, and D′k up-dominates all the disks in Ci

⋂
Skb.

The first two conditions hold obviously by the construction of Ci and the assumption of Case 3. For the third condition,
we prove Dk low-dominates Ci

⋂
Ska, and D′k up-dominates Ci

⋂
Skb can be proved similarly.

Viewing two strips as a single strip,wehaveD2 low-dominatesD2s on Li, andD2s low-dominatesC
(
i− 1,D1s,D′1s,D2s,D

′

2s

)⋂
S2a on Li−1. Assume that D2 cannot low-dominate D2a on Li, and D2a ∈ C

(
i− 1,D1s,D′1s,D2s,D

′

2s

)⋂
S2a. Then we must

have D2a low-dominates D2, hence low-dominates D2s on Li too. So by Lemma 2.1, we know that any point in the strip and
to the left of Li−1 covered by D2a must be covered by D2s, too. Now, if we delete D2a from C

(
i− 1,D1s,D′1s,D2s,D

′

2s

)
, it is

still a feasible solution under the three conditions. This contradicts the fact that C
(
i− 1,D1s,D′1s,D2s,D

′

2s

)
is optimal. By

the assumption of Case 3, we also have D2 low-dominates {D1,D2}
⋂
S2a on Li. Therefore, D2 low-dominates Ci

⋂
S2a on Li.

We are only left to prove D1 low-dominates Ci−1 ∩ S1a on Li. Suppose there exists a disk D1a which is not low-dominated
by D1 on Li. The center of D1a must be in strip T2 or above strip T2(we denote this area as S2a).

1. D1a in T2: As the assumption, D1a can not be chosen to dominate any disk in T2 when the center of D1a is in T2, it can
be used to dominate the disks in T1 only. In other words, any node to the left of Li−1 in T2 must be covered by some
other disk in C(i,D1,D′1,D2,D

′

2). By applying the similar argument for D2a, any node in T1 which is to the left of Li−1
and covered by D1a is covered by D1s. So we conclude that D1a can be removed to achieve a better optimal solution than
C(i− 1,D1s,D′1s,D2s,D

′

2s), which draws a contradiction.
2. D1a in S2a: Nowwe consider the situation when the center of D1a is located in S2a. Using the same technique we can show
that any disk in T1 covered by D1a is covered by some other disk in C(i,D1,D′1,D2,D

′

2). So are the disks in T2 as follows.
In Li, D1a low-dominates D1, D1 low-dominates D2(by definition, it is impossible for D2 to low-dominate D1, so D1 must
low-dominates D2), and D2 low-dominates D2s, so D1a low-dominates D2s in Li. Because in Li−1, D2s low-dominates D1a,
by Lemma 2.1 we conclude that every node to the left of Li−1 in T2 covered by D1a can also be covered by D2s. D1a can be
removed to achieve a better solution for C(i− 1,D1s,D′1s,D2s,D

′

2s), which is a contradiction.

The idea of the analysis above is showed in Fig. 3, (a) shows the case D1a in T2 and (b) shows the case D1a above T2 (For
continence, in (b) we draw only pieces of the disks but not whole disks). As showed in Fig. 3(b), on Li, D1a low-dominates D1
low-dominates D2 low-dominates D2s on T1 ∪ T2 , but D2s low-dominates D1a on Li−1 on T1. In this case Lemma 2.1 is used
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for T2. So we prove that D1 low-dominates Ci
⋂
S1a. That is to say, for any D1s,D′1s,D2s,D

′

2s, the corresponding Ci is a feasible
solution under the conditions in the definition of C

(
i,D1,D′1,D2,D

′

2

)
, hence we have

weight(Ci) ≥ C
(
i,D1,D′1,D2,D

′

2

)
And taking the minimum of allweight(Ci) over all possible D1s,D′1s,D2s,D

′

2s we have

RHS ≥ C
(
i,D1,D′1,D2,D

′

2

)
(2) For the other direction, we show LHS ≥ RHS. We fix the optimal solution Ci in LHS, and prove it can be decomposed

into the form of RHS. For this decomposition, we find out a quadruple (D1s,D′1s,D2s,D2s), generate a set of disks Ci−1 ⊆ Ci
and proved Ci−1 is a feasible solution to C(i − 1,D1s,D′1s,D2s,D2s). By showing RHS = min(w(Ci−1) + w(Ci − Ci−1)) we
finish the proof in this direction. Fix any optimal solution C

(
i,D1,D′1,D2,D

′

2

)
, we prove it can be decomposed into the form

of RHS. We first construct a set of disks Ci−1 as the following steps:

• if Dk low-dominates C
(
i,D1,D′1,D2,D

′

2

)⋂
Ska in Li−1, let Dks = Dk; Otherwise select Dks in C

(
i,D1,D′1,D2,D

′

2

)⋂
Ska

such that it dominates all the other disks in C
(
i,D1,D′1,D2,D

′

2

)⋂
Ska;

• ifD′k up-dominates C
(
i,D1,D′1,D2,D

′

2

)⋂
Skb in Li−1, letD′ks = D

′

k; Otherwise selectD
′

ks in C
(
i,D1,D′1,D2,D

′

2

)⋂
Skb such

that it dominates all the other disks in C
(
i,D1,D′1,D2,D

′

2

)⋂
Skb;

• Ci−1 =
(
C
(
i,D1,D′1,D2,D

′

2

)
\ {D1,D′1,D2,D

′

2}
)⋃
{D1s,D′1s,D2s,D

′

2s}.

By this construction, the generation of Ci−1 takes two steps. First we find D1s,D′1s,D2s,D
′

2s and we remove Dk if it is not
contained in {D1s,D2s}. So Ci−1 doesn’t contains Dk if Dk 6∈ {D1s,D2s} and we have the following equation.

C
(
i,D1,D′1,D2,D

′

2

)
= w(Ci−1)+

2∑
k=1

(
I (Dk /∈ {D1s,D2s}) w(Dk)+ I

(
D′k /∈ {D

′

1s,D
′

2s}
)
w(D′k)

)
.

We now prove that Ci−1 is a feasible solution under the three conditions stated in the definition of C
(
i −

1,D1s,D′1s,D2s,D
′

2s

)
.

According to our construction, the second and the third condition hold. For the first condition, similar to the proof as
above, we see that if any Dk or D′k is removed, then any nodes pj, j ≤ i− 1, covered by Dk can still be covered by a disk which
is in Ci−1 and has center not in the strip where pj is.
Since Ci−1 is a feasible solution, we have

w(Ci−1) ≥ C
(
i− 1,D1s,D′1s,D2s,D

′

2s

)
,

then we have

C
(
i,D1,D′1,D2,D

′

2

)
≥ RHS. �

The proof to Case 3 is divided into two parts. The first part shows LHS ≤ RHS by proving RHS is a feasible solution which
is no better than the optimal solution(LHS). In the second part we show LHS ≥ RHS.
To sum up, we have the following theorem for Algorithm 1.

Theorem 2.1. Algorithm 1 gives an optimal solution for 2-stripsMWDS problem, and has a polynomial running time.

Proof. The tablemaintained by the algorithm has sizeO(n5), and computing each item needO(n4), so the total running time
is still polynomial.
Since each optimal solution opt would induce D1,D′1,D2,D

′

2 on Ln, so it is one feasible solution in the table maintained
by the algorithm at least. By Lemma 2.2, Algorithm 1will output the optimal solution in the table, and it must be an optimal
solution. �

3. 5-approximation algorithm for MWDS

First, we describe the main idea of the algorithm for solving MWDS in the whole plane. We follow the framework in [2].

1. Step 1: (Double partition) First, partition the plane into blocks, each with size Kµ× Kµ, whereµ =
√
2
2 and K is a large

integral constant. Second, partition each block into K 2 squares, each with size µ× µ (Fig. 4).
2. Step 2: Solve MWDS in each block, using the algorithm for MWDS over two strips.
3. Step 3: Combine solutions for each block and obtain a solution.

3.1. Solving MWDS in block

Since each block B contains K 2 squares, say Sij, i, j ∈ [K ], let Vij denote the set of disks in Sij. We assume that K is an even
integer. Each block also contains K strips, T x1 , . . . , T

x
K , where T

x
k consists of squares Skj, j ∈ [K ]. We use T

y
k to denote the strip,

which consists of squares Sik, i ∈ [K ].
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Fig. 4. Double partition.

Fig. 5. Neighbors of Sij and region PLM .

We first describe the idea of the algorithm for solving MWDS in block. Notice that the first step in the following is not a
real step in our algorithm, since we actually do not know the optimal solution. However, this step comes first in the logic
of proving approximation ratio and is very important to help us understand the intuition of our algorithm for MWDS in
block.

1. (Dominating Pattern) Fix any optimal solution opt for the original MWDS in the plane. Consider squares in the block
B. For each square Sij, if there is no disk in opt

⋂
Vij, assign each unmarked node in Vij to some disk from opt that can

cover it and mark it; otherwise, select a disk D from opt
⋂
Vij, and mark all the nodes covered by D. After we process all

the squares in block B, we obtain a dominating pattern for opt . In such a pattern, for each square Sij, its corresponding
dominating set is either a disk from inside Sij, or a group of disks outside Sij.

2. (Guessing the pattern) For each square Sij, if it is covered by a disk inside it, we can guess this disk by enumerating all
possible disks; otherwise, we have the lemmas in [2], which says that we can use up to 4 nodes to separate nodes in
Vij into two groups, nodes can be covered by disks only from the Up and Down region of the square, and nodes can be
covered by disks only from the Left and Right region of the square. Thus, we can still guess the right dominating pattern
in opt by enumerating.

3. (Solving MWDS over pairs of strips) Once we guess a pattern, we decompose the problem into problems in trips. We
solve 2-StripMWDS for strips T x2k−1

⋃
T x2k, k = 1, . . . , K/2. Similarly, we solve 2-StripMWDS for strips T y2k−1

⋃
T y2k,

k = 1, . . . , K/2. We combine all the solutions for these 2-StripMWDS problems, and obtain a dominating set for the
block.

4. (Repairing strips) Do step 3 again, but this time we solve 2-StripMWDS for strips T x2k
⋃
T x2k+1, T

y
2k
⋃
T y2k+1, k =

1, . . . , K/2. Here T x0 , T
y
0T
x
2k+1, T

y
2k+1 can be viewed as strips with no nodes to be covered. We take the minimum of the

two solutions for the block under each pattern. We then output the minimum solution over all possible enumerating
patterns.

We first state the lemmas in [2], which can separate nodes in Vij into two groups, hence help us fix a dominating pattern
by up to 4 nodes. First we introduce some notations used in [2]. We divide the neighbor parts of Sij into eight regions UL,
UM, UR, CL, CR, LL, LM, LR as shown in Fig. 3. Assume the four lines forming Sij are x = x1, x = x2,y = y1, y = y2. We also
use Left = UL

⋃
CL
⋃
LL, Right = UR

⋃
CR
⋃
LR, Up = UL

⋃
UM

⋃
UR, Down = LL

⋃
LM

⋃
LR (Figs. 5 and 6).

Lemma 3.1 ([2]). Suppose p ∈ Vij is a disk in Sij, which can be dominated by a disk D ∈ LM. We draw two lines pl and pr , which
has slope 1,−1 respectively. Then the shadow PLM can also be dominated by D. Similar results can be hold for shadow PUM , PCL
and PCR, which can be defined with a rotation.

We give an alternative proof here, which is simpler and shows more intuition of PLM ’s construction.
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Fig. 6. Proof of dominating nodes in PLM .

Proof. We draw two vertical lines L1, L2, which has a distance of µ to the center of disk D. Since D ∈ LM , we know that the
square Sij must be between them, hence pmust be on the arc ÂB or in the region below it. Since CA, CB are both tangent with
disk D, and having slope 1,−1 respectively, we can easily see that wherever p is, the region PLM must be all covered in the
disk D. �

Then, we give the definition of sandglass and another lemma which can use up to 4 nodes to separate the nodes in Vij
into two groups covered only by disks from Up

⋃
Down, Left

⋃
Right respectively.

Definition 3.1 ([2] Sandglass). IfC is a dominating set for square Sij, andC
⋂
Vij = ∅, then theremust exist a subsetVM ⊂ Vij,

which can only be covered by disks from UM and LM(we can set VM = ∅ if no such disk exists). Choose VLM ⊂ VM the disks
that can be covered by disks from LM , draw pl and pr for each p ∈ VLM . Choose the leftmost pl and the rightmost pr and form
a shadow. Symmetrically, choose VUM and form a shadow with leftmost and rightmost lines. The union of the two shadows
form a ‘‘sandglass" region Sandij of Sij.

Lemma 3.2 ([2]). Suppose C is a dominating set for Sij, and Sandij is chosen in the above way. Then any disks located in Sandij
can be dominated by disks only from a neighboring region Up

⋃
Down, and disks located in Sij \ Sandij can be dominated by disks

only from a neighboring region Left
⋃
Right.

So formally, we have the following algorithm for solving MWDS in a block. The algorithm is based on Algorithm 1 from
[2], and our new ideas fall into two parts. First, instead of calculating optimal dominating set for each strip, we deal with a
pair of two strips one time using Algorithm 1. Second, we combine strips into pairs in two ways, solve the problem twice
and select the better solution.

Algorithm 2: solve MWDS in a block.
Step 1: For each Sij, select its sandglass or select a disk d ∈ Vij.
Step 2: If d ∈ Vij is selected, then remove d and all disks dominated by d.
Step 3: For each pair of strips T x2k−1 and T

x
2k, k = 1, . . . , K/2, calculate its

optimal dominating set for the union of disks in the sandglasses of
squares in this pair of strips.

Step 4: For each pair of strips T y2k−1 and T
y
2k, k = 1, . . . , K/2, calculate its

optimal dominating set for the remaining disks not covered by Step 3.
Step 5: Repeat Step 3, 4 again, but this time we combine strips T x2k and T

x
2k+1

into a pair(T y2k and T
y
2k+1 respectively), k = 1, . . . , K/2.

Fix any optimal solution opt for the original MWDS problem. Assume that there arem blocks, say B1, . . . , Bm. Recall that,
for the solution opt , we can fix a dominating pattern φ. For a block Bi, denote the disks that are used in pattern φ to dominate
disks in Bi as opt

φ

i . Then we have the following lemma used in proving the approximation ratio.

Lemma 3.3. For any block Bi, Algorithm 2 can find a dominating set for Bi with weight no more than 5w(opt
φ

i ).

Proof. According to the definition of optφi , for any square in block Bi, it is either dominated by a disk in this square, or
dominated by some disks not in it. So during the enumeration process in Algorithm 2, once the dominating pattern φ is
guessed correctly by the algorithm, for any disk that is used in pattern φ to dominate the square containing this disk, it is
selected and then deleted by the algorithm in step 1, hence is only used once. The optimal solution for each pair of strips
found by our algorithm is bounded by the feasible solution given by optφi . So, if we replace all the optimal solutions for each
2-StripMWDS by the feasible solutions given by optφi in pattern φ, we obtain an upper bound for the weight of the solution
found by Algorithm 2.
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Fig. 7. A disk cannot be counted 3 times in both ways of pairing strips.

Now, we consider how many times each disk in optφi can be counted. Consider the case when we calculating MWDS
for pairs of horizontal strips first. As showed in Fig. 7, if a disk is used 3 times in Step 3, it is used at most twice in step
5; otherwise(it is used twice in Step 2), it is used at most 3 times in Step 5. So totally, it is used 5 times in the horizontal
strips. For the horizontal strips the analysis is the same. By adding the horizontal and vertical strips up, for any disk, it could
be counted at most 10 times totally. The two solutions for block Bi together have weight no more than 10w(opt

φ

i ), so our
algorithm gives a solution with weight no more than 5w(optφi ) when it guess the pattern φ correctly. Since the algorithm
enumerates all possible dominating patterns, and takes the minimum solution, the lemma holds. �

3.2. Solving MWDS for the whole plane

We use the framework of [2] to construct our algorithm for MWDS in UDG. To summarize, we state the algorithm as
following,

Algorithm 3: Solve MWDS for the whole plane.
Step 1: Partition the whole plane into blocks of size Kµ× Kµ, then

partition each block into squares with size µ× µ, where µ =
√
2
2 .

Step 2: Calculate MWDS for each block that contains disks and merge
the solutions together to form a solution for the whole plane.

Step 3: Move each block two squares to the right, and two squares
to the top of the original block.

Step 4: Repeat Step 2 for this new partition to update the solution if
any better solution is found.

Step 5: Repeat Step 3 for K/2 times, and output the final solution.

Theorem 3.1. For any constant ε, by setting K = O( 1
ε
), Algorithm 3 always outputs a dominating set with weight bounded by

(5+ ε)OPT , where OPT is the optimum.

Proof. The proof of Theorem 3.1 follows the proof given in [2]. The main idea is that each disk in the optimal solution opt
can only be counted 5 times in most region of a block, however may be counted more in the boundary region of a block. So
when we shift the whole block many times, for any disk in opt , it would be counted at most 5 times in most positions. �

Similarly, combining the technique used in [2], we can turn the dominating set found by Algorithm 3 into a connected
dominating set by adding some disks, and the approximation ratio adds 4.

Theorem 3.2. Our algorithm 3, together with the algorithm used in [2] to connect a dominating set, gives a polynomial algorithm
with approximation ratio 9+ ε.

4. Conclusion and open problems

In this paper, we present a new technique of dynamic programming, which can give the optimal solution for the MWDC
problem over two strips(compare to only for one strip in [2]). One possible direction for the future research is whether this
technique can be further extended to solve more strips, hence reduce the approximation ratio. Another interesting open
problem would be the weighted dominating set problem in the case when disks have a different radius.
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