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Abstract 

We produce a fully abstract model for a notion of process equivalence taking into account 

issues of fairness, called by Milner fair bisimilurity. The model uses Aczel’s anti-foundation 
axiom and it is constructed along the lines of the anti-founded model for SCCS given by Aczel. 
We revisit Aczel’s semantics for SCCS where we prove a unique fixpoint theorem under the 
assumption of guarded recursion. Then we consider Milner’s extension of SCCS to include 
a finite delay operator E. Working with fair bisimilarity we construct a fully abstract model, 
which is also fully abstract for fortification. We discuss the solution of recursive equations 

in the model. The paper is concluded with an investigation of the algebraic theory of fair 
bisimilarity. 

1. Fairness and finite delay 

A typical fairness notion ensures that a process that is infinitely often enabled must 

be taken infinitely often. Fairness often leads to the failure of continuity of semantic 

operations, when the semantic domain is a DCPO (directed complete partial order), 

see for example [ 151, and hence to the need for transfinite induction. At the same 

time, certain properties of programs, such as Ziueness, cannot be proven unless fairness 

is assumed. In addition, fairness is a significant issue in hardware and software sys- 

tems such as communication protocols, distributed databases and asynchronous circuits 

[71. 

In this report we assume a simple notion of fairness: unbounded but finite delay 

of subprocesses in concurrent computation. Consider a programming language with 
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parallel constructs P]Q. A synchronous parallel operator forces both components to 

proceed at the same speed with lock-step synchronization at the ticking of a universal 

clock. Effectively then the speed of the system is that of the slowest component. 

Construing 1 as an asynchronous parallel raises issues of fairness. A move of the 

compound process P/Q is either a move of P or one of Q. We may then say that 

P moves while Q delays (or vice versa). This can be expressed more succintly by 

introducing a special action 1 to indicate the passage of time. Delaying for one unit 

of time is then regarded as an idle transition Q & Q. In a language with recursion, 

nondeterministic choice and prefixing, such as SCCS, delay 6 is a derived operator 

definable by the pointwise recursion 6P = ,UX( 1 .x + P) (x not free in P). Intuitively, 

6P may either perform the actions of P or idle for one unit of time and then get to 

a state where it may either perform the actions of P or else idle for another unit of 

time, and so on. Given a synchronous parallel operator ]I, asynchrony is captured by 

defining PlQ = PljbQ + SPllQ, as discussed in Milner [20]. However 6 allows for 

perpetual delay and so PlQ can exhibit unfair behaviour. For example, if P = px(a.x) 
and Q = px(b.x), then PlQ can perform either of aw or b”, which is unfair as it 

precludes the other process from proceeding. This creates the need for a delay operator 

that only allows for arbitrarily long but finite delay. Adding such an operator E, fair 
asynchrony can be defined as P/l&Q + &PllQ. 

A finite delay operator E was first introduced in Milner’s technical report [19] and 

subsequently studied by Hennessy in [12, 131. We first review the basics from Milner’s 

report. 

1.1. SCCS with jinite delay (SCCS + E) 

The language _Y of SCCS + E is that of the synchronous calculus of [20] with the 

addition of an operation symbol E (the finite delay operator). Process terms are defined 

by the following schema, where A is a fixed abelian group of basic actions. 

P ::= 0 I x,x E Var I a.P, aEA 1 CiGIPi ( PllP I PIL,~ELC:A ) 6P I p$F. 

The operational semantics is the usual for SCCS with the addition of the wait and 

fulfill rules for a 

(Delay) 
EE -& EE 

(wait) ~(fulfill) 

Since the actions of EP are exactly those of 6P the two processes will be identified 

by bisimilarity: EP N 6P. To make the distinction the operational semantics needs to 

be extended to include information about the infinite behaviour of processes. Certain 

infinite strings of actions must be deemed inadmissible for a process as they may 

involve infinite delay. 

Where u = ala2 . . ’ E A+ is a (finite or infinite) sequence of actions a u-computation 
of P is a sequence 
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where we leave implicit the proof information (justification by rules of the individual 

actions ai). The part of it which begins with Pi, for some ia is called a sequel of 

the computation. A computation of the form 

in which every instance of the silent action is justified by the wait rule is called 

a waiting. 

A context (with n “holes”) is an expression of the form %‘[Xi,. . . ,X,] built from 

product and restriction, for example Xi ]J(&\L). If P is the agent P E V[P,,. . .,P,J, 
for some agents PI, . . . , P,, then each agent Pi is a subagent of P. Given the rules of 

action, every u-computation of P 

P = %[PI,. . . ,P,] % W,[Pll,. . .) P,l] a2 . . . 

is inferred from ui-computations, 1 <i <n, of the subagents of P 

pi 2L!+pi1 2?+piz -2$ .., 

where the jth action in P’s computation is the product (taken in the abelian group A) 

of the actions ay,. . . , a,,j. Each of these computations is called a subcomputation of 

P’s computation. 

Definition 1.1. 1. A computation is admissible iff either it is finite or else it has no 

sequel with a waiting subcomputation. Otherwise it is inadmissible. 
2. If u E A”, then P admits u iff P has some admissible u-computation. Otherwise 

P prevents u. 

Some simple examples follow. 

Example 1.2. &a..~) admits a”, 6P admits 1” but EP may prevent lo. If P = 
a.xl\eQ, Q E ,uy(b.y) and ab # a, then ,uxP prevents the sequence uw since the 

only possible a”-computation of pxP involves a waiting subcomputation of sQ. Fi- 

nally, if P E a.(b.O + EX), then the only possible computation of alw from pxP is the 

computation 

pxP 5 b.0 + e(pxP) -h &(pxP) A . . . 

Hence ,uxP prevents the sequence alw. The only admissible infinite sequences for 

pxP are sequences of the form almZa lm4a . . . almZka . . . , for some natural numbers m2k, 

k E w. 

What needs to be determined now is an appropriate concept of identity on processes. 

Obviously, this cannot be bisimilarity since the distinction between SP and EP cannot 

be made. 

Milner [19] proposed fortijication equivalence as the individuation principle for 

processes. 
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Definition 1.3. A binary relation W on processes is a fortijication relation if PWQ 
implies that for all a E A and u E AO 

l,P~P’+3Q’Q~Q’andP’&?Q’ 

2. Q -% Q’ + 3P’ P 3 P’ and P’.!%‘Ql 
3. P prevents u implies Q prevents U. 

Fortijication equivalence, denoted by N, is the symmetrization of the largest fortifi- 

cation relation, which we shall henceforth call simply fohjication and denote by -x. In 

other words we define P - Q iff P 4 Q 5 P. Thus, for example, EP N EEP and .GiP - 6P, 

for any process term P. 
In [19] some possible alternatives are briefly mentioned. Fair bisimulation, among 

them, is defined by making clause 3 in the definition of fortification symmetric. We 

can then define fair bisimilarity, denoted by M, as the largest fair bisimulation. Bisim- 

ilarity will be denoted by Y throughout this report. Clearly, M C + C E and, 

since M is a symmetric fortification, % C N. It should be clear also that restrict- 

ing to the fragment of SCCS + E without the finite delay operator E all four relations 

coincide. 

Allowing E in the signature, define a term P as finite if it has no subterm of the 

form p;,iFP. Then it is not hard to see that the restrictions to finite terms of all the 

above relations again coincide. The proof relies on the observation that a finite term 

admits no infinite sequences, hence clause 3 in the above definition is vacuous. We 

make this official in the following. 

Lemma 1.4. For jinite terms P and Q, P z Q ifj’P N Q (z#P ‘v Q). 

Incidentally, this precludes giving any interesting characterization of either fair bisim- 

ilarity or fortification equivalence with respect to some set of axioms for finite terms. 

The reasons presented in [19] for favouring fortification against fair bisimilarity are 

that we seem to lose the interesting law 6P 4 EP and the least (with respect to fortifi- 

cation) fixpoint theorem: If E{Q/x} + Q, then AXE 4 Q. This is not necessarily so. We 

think of the process algebra for SCCS + E as a pre-ordered algebra 2 = (L, =, <, C) 

where < is a pre-order and Z is the signature of operators of SCCS+s. In the algebra 

arising in the natural way from the operational semantics, however, the identity = on 

processes is interpreted as fair bisimilarity z (and not as fortification equivalence) 
and the pre-order < is interpreted as fortification <. The set of (in)equations to be 

satisfied is discussed in Section 3.3. Since fair bisimilarity is a fortification relation 

the least fixpoint theorem is still available, namely if P{Q/x} M Q, then pxP < Q 
(assuming guarded recursion). 

The drawback with using fortljication equivalence as identity of processes is that 

we lose connection with bisimilarity. It is desirable that, since bisimilarity proves to be 

too coarse an equivalence relation, then the improved identity criterion N’ should be a 

rejinement of bisimilarity. This condition is obviously satisfied by fair bisimilarity and 

it is then worth investigating this relation on its own right. 
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In this report we construct a final coalgebra for an appropriate endoftmctor on the cat- 

egory of classes which is fully abstract for fair bisimilarity, by the universal properties 

of final coalgebras. We verify that our semantics is also fully abstract for fortification 

(hence also for fortification equivalence) and investigate the solution of recursive equa- 

tions in the model. In addition, we show in Section 3.3 that all the interesting equations 

for fortification equivalence that are singled out in [ 191 also hold for fair bisimilar- 

ity (which is a refinement of fortification equivalence since fair bisimilarity is clearly 

a fortification relation). 

1.2. Structure of this paper 

In Section 2 we review from Aczel [l, 21 the semantics he proposes for SCCS. Our 

treatment of recursive terms differs from that in [2]. We prove a unique fixpoint theorem 

under the assumption of guarded recursion, used later in the proof of Theorem 3.20 

that any two fixpoints of the functional induced in our model by a guarded open term 

must have the same finitary behaviour. 

In Section 3 we introduce a natural notion of extended transition system (ETS) as 

a transition system equipped with an environment map V assigning to every “process” 

in the system a set of infinite sequences u of actions (an admissibility set), intuitively 

those sequences along which the “process” is allowed to evolve. In the general case V 

is just an arbitrary assignment. ETS’s can be conveniently regarded as coalgebras for 

the class functor 

Q, = Pow(A x -) x Pow(P) 

(where A is the set of actions and for a class X, PowX is the class of subsets of X). 

We verify that @ satisfies the conditions of the Special Final Coalgebra Theorem of 

[l], hence that the class 

B=U{xlxisasetandxC@x} 

is a final coalgebra for @. We derive from finality of full-abstractness theorem for fair 

bisimilarity: P M Q iff [P]rp = [Q]@. Furth ermore, we show that full-abstractness for 

fortification also holds: P + Q iff [P&, 4 [Q&r,, Theorem 3.16. 

In Section 3.2.2 we turn to studying the interpretation of recursive terms. We observe 

that a unique fixpoint theorem fails but that any two fixpoints can be identified on 

grounds of finitary only behaviour, Theorem 3.20. Furthermore, we verify that any two 

fixpoints p, q with the same admissibility sets (Vp = Vq) must be identical and that 

if Vq C Vp then p 4 q, Theorem 3.18. We also derive a least fixpoint theorem for 

dejinable fixpoints (Definition 3.21 and Theorem 3.23) using Milner’s least fixpoint 

theorem in [ 191 and full abstractness for fortification, Theorem 3.16. 

The paper is concluded with Section 3.3 where we verify that the basic equational 

theory of fortification equivalence outlined in [19] is sound in the structure 9, hence 

sound for fair bisimilarity by full abstractness of the model. 

Incidentally, the question of a fully-abstract semantics for fortification equivalence 

is still open. Since our model is itself an extended transition system we do get that 
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for any process terms P,Q, P N Q iff [rP& N [Q]o (see Theorem 3.16). However, 

N is not the identity relation on our semantic structure. One direction to follow is to 

take a quotient of our semantic structure 9 with respect to fortification equivalence 

and appropriately characterize representatives of the equivalence classes. We leave this 

question open, 

Hennessy [12] provided a fully abstract model for SCCS + E for a notion of testing 

equivalence in the tradition initiated by Hennessy and de Nicola [8] and further ex- 

plored by Hennesy in [ 14-161. In [IO] the present author has made an attempt, with 

M.Z. Kwiatkowska, to semantically capture the notion of admissible sequence and 

of fortification equivalence. We produced a model of generalized synchronization trees 

over the SCCS synchronization algebra, extending the framework developed by Winskel 

[26] and motivated by Hennessy [ 151. We showed that the model can capture the notion 

of admissibility but full-abstractness must fail in this framework. 

In producing here a fully abstract model for fair bisimilarity we extend the framework 

developed by Aczel [l, 31 and then also investigated by Rutten in [22,23] and Rutten 

and Turi in [24,25]. 

Since we work within a nonstandard set-theory, we have collected our set-theoretic 

assumptions in Appendix A, where we also review some of the technical aspects of 

Aczel’s approach to modelling processes as hypersets. 

2. Transition systems as coalgebras 

A transition system over A is a structure (X,(z)nE~), where X is a class and 5 

is a binary relation on X for each a E A. We call the system set-based if for each 

a E A and x E X the class {x’ 1 x 5 x’} is a set. In the sequel, by a transition system 

we always mean a set-based system. A (set-based, as agreed) transition system can 

be regarded as a coalgebra for the functor 0 - Pow(A x -), where for a class X, 

Pow X is the class of subsets of X and for a function f : X + Y and a subset U LX, 

Pow(f)(U) = {fxlx E U}. A coalgebra for an endofunctor on C (where C is some 

category) is a pair (X, a), where X is an object of C and CI is a morphism CI : X + OX. 

In the particular case where C is the category of classes and 0 = Pow(A x -) the 

structure map CI and the transition relations z are interdefinable by 

(a,y)Ean iff x5’:. 

Coalgebras for a functor 0 form a category CO with morphisms f : (X, a) -+ (Y, 8) 

the maps f : X + Y such that the square below commutes: 
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In other words, for any x E X, y E Y, 

,fx 3 y iff 3x’ x 5 x’ and fx’ = y. 

Remark 2.1. It is not hard to show in standard ZFC set-theory that the functor 0 has 

a final coalgebra. Indeed, we may take the class of all rooted transition systems, turn 

it to a transition system and verify that it forms a weakly final coalgebra, that is to say 

a coalgebra (F, 4) such that for any coalgebra (X,cc) there is at least one morphism 

f : (X, N) + (F. 4). We can then take the quotient of (F, 4) by bisimilarity and verify 

that the resulting system is a final coalgebra. 

Here we take the alternative approach of [I]. What we aim at is a direct set-theoretic 

modeling of the abstract behaviour of processes. Modeling processes as sets requires 

that we drop the foundation axiom because of recursively defined processes. For exam- 

ple if P E px(a.x) then we wish to model P as the set of pairs (6, Q) such that P 5 Q. 

More precisely, if 11.1 is the semantic map, we should have [P] = {(b, [Qj) 1 P 5 Q}. 

For the particular example this would give a set satisfying the equation x = {(a,~)}. 

Such a set does not belong, of course, in the well-founded universe. For that reason we 

turn to Aczel’s anti-founded set-theory ZFA + GC (we use global choice because we 

prefer to work with classes rather than sets). Our set-theoretic assumptions are spelled 

out in Appendix A. 

2.1. Final coalgebra semantics for SCCS 

In [l] and later in [2], Aczel worked out the final coalgebra semantics for SCCS 

(and for CSP, in [2]). We briefly review the basics for two reasons: First, because 

this will give us a useful warm-up before we address the question of final coalgebra 

semantics for SCCS + E (SCCS with finite delay), and second because we will add a 

unique fixpoint theorem under an assumption of guarded recursion, used in the proof 

of Theorem 3.20. 

If we let J = U {x 1 x C Ox}, then J can be shown to be the largest fixpoint for 0. 

Furthermore, the special final coalgebra theorem (see Appendix A) applies from which 

we can conclude that J = Pow(A x J) is a final coalgebra for 0 = Pow(A x -), 

where the structure of SCCS map LX: J + Pow(A x J) is the identity on J. Denote the 

signature of SCCS operators by C and let Tr be the SCCS terms, finite and infinite 

(where some subterm is a recursive term pi_!?). The operational semantics for SCCS 

is a transition system, hence a O-coalgebra. By finality of J, let [.I@ : Tz -+ J be the 

unique coalgebra map. Based on finality of J we can also show that 

Proposition 2.2. J is closed under the SCCS operations. 

Furthermore, the semantic map is a .E-homomorphism in the sense of the following: 

Proposition 2.3. For any process terms 

1. ua.Pne = a.IPno := {(a,[Pjo)}, 
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2. UP + Qllo = UPlls + UQllo := UPllo u UQIIQ, 
3. mb = molL := {(a2no)la EL ~e4um E ITpno), 

4. [rWno = moIlrreno := {w,~P'noIIuQ7b)l~ -f+ P’ and Q 5 ~‘1. 

The proofs can be found in [ 1,2]. 
To have a treatment of recursion we extend the semantic map [ .]e to an interpreta- 

tion [.JJ$ of open terms, where e is a variable assignment (an environment) e : Vur + 

J (Vur is the set of variables of the SCCS language). Then if P is open, Fu(P) = 

{x1 , . . . ,xn}, [P]e can be regarded as a function [PI@ : J” + J. If si,. . . ,s, E J, then 
e[x,:=s ,,..., x,:=&J [rmh..,.d = vno 

To prove a unique fixpoint theorem we will assume that the variables are guarded 
where we say that x E Fv(P) is guarded in P iff every free occurrence of x is within 

a subterm u.Q of P. 

Theorem 2.4. Let Fv(P) = {x}, x guarded in P, and [[.I@ : T, -+ J the semantic map. 
If [pxP&, = s then [P]&) = s. Furthermore, ifs’ E J is such that [P]Q(s’) = s’, 

then s = s’. 

Proof. The proof is similar to that of Theorem 3.18, in fact simpler as we need 

not be concerned here with the environment sets Vp of processes as we do in that 

proof. Otherwise, the proof proceeds by first verifying that Lemmas 3.24 and 3.29 hold 

and then by ordinal induction. Within that a subinduction is needed, all as in the 

proof of Theorem 3.18. The definition of the maps [P]Q, for open P, is detailed 

in Lemma 3.17. 0 

As a corollary we obtain Milner’s unique fixpoint theorem in [20], namely 

Theorem 2.5 (Milner [20]). Assume x is guarded in P. ZfP{ Q/x} N Q, then ,uxP 2: Q. 

Proof. From the hypothesis both [pxPno and [Qn Q are fixpoints of the functional 

[TP]Q, hence [pXP]Q = [Q]Q. The kernel of the semantic map [.I@ is a bisimulation, 

hence pxP N Q. 0 

3. Extended TSs and final coalgebras 

Every process term P of SCCS+s comes with a set I+ of infinite sequences of actions 

that it admits. The possible infinitary behaviour of P is constrained by the environment 

V, since P may be able to perform a string u of actions that the environment Vp forbids 

(U 6 I+). The typical example of course is with terms of the form EP. EP can perform 

an infinite sequence of wait actions EP A EP, but 1” 6 & unless P can perform an 

infinite sequence of internal moves as a result of synchronization. 

The operational semantics of a process language like SCCS + E is an extended 
transition system (ETS). An ETS is a TS with extra structure, to account for infinitary 
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behaviour. Thus an ETS over a set A of basic actions is a structure (X,(3)aE~, V) 

where V:X + Pow(Aw) is a function assigning a set Vx of infinite sequences of 

actions to every x E X. Intuitively Vx prescribes what infinite strings of actions x is 

allowed to perform. We first note that taking V to be the map assigning the admissible 

sequences to each process term P of SCCS + E the operational semantics for SCCS + E 

is an ETS. More precisely we have the following, where T is the set of closed finite 

or infinite terms: 

Proposition 3.1. The structure map V: T ---f Pow(A”) satisjies the following: 

1. V(0) = 0, 
2. V(L2.P) = {a-u ) u E V(P)} := a.V(P), 

3. V(P + Q) = V(P) U V(Q) := V(P) + V(Q), 
4. V(PjL) = V(P) n L+ := V(P)\,, 

5. V(PjlQ) = {u . u 1 u E V(P) and u E V(Q)} := V(P)(l V(Q) (u . v is the pointwise 
product of the sequences u and v), 

6. V(EP) = u,,,{( I”)-v 1 v E V(P)} := &V(P), 

7. V(pxP) = V(P{pxP/x}). 

Proof. The proof follows from Definition 1.1 of admissible sequence. 0 

Note that by item 7 in the above proposition the admission set of a recursive process 

pxP is a fixpoint of the related functional on Pow(AW). For many simple examples it 

turns out to be the largest fixpoint but we do not know if this is true in general. 

ETSs can be turned to a category with morphisms the transition system maps 

f: (X,(%&4> V) + (Y, ($)nE~, U) subject to the additional requirement that envi- 

ronment constraints are preserved, namely Vx = Ufx. Extended systems then form 

a subcategory of the category of transition systems and we need to investigate the 

question of the existence of a final object. 

3.1. Final extended transition systems 

We discuss in this section the questions of existence and of basic properties for 

a final ETS. 

As for plain transition systems, it is not hard to see within standard set-theory 

that a final object exists in the category of ETSs, specializing a general categorical 

construction of a final coalgebra from a weakly final one in our particular context. We 

may take the class of all rooted extended systems and turn it to an extended transition 

system in the natural way. This system Vs is weakly final in the sense that a morphism 

f : 2” + Vo always exists, for any ETS X. To produce a final object we need to factor 

out by an appropriate equivalence relation M. The only critical point in the choice of 

N (which we will take to be fair bisimilarity) is that it should be possible to show 

that if 
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are two morphisms, then the relation .GJ$! c Y x Y defined by yWy’ iff there exists x E X 
such that y = fx and y’ = gx is a subrelation of M. Indeed, suppose a suitable notion 

of identity x is given satisfying the above condition. Let V be the quotient (Vo),,. 
Y is of course weakly final. Suppose now 

are two morphisms and let .B? be the relation described above. Since we assume WC M 
to conclude that f = g we only need to observe that in the quotient V = (?&))lx the 
identity relation is exactly the relation M. 

The appropriate individuation principle on extended systems that we work with is that 
of fair bisimilarity. A relation ~8 on an extended transition system X = (X, (z)aE~, V) 
is a fair bisimulation if x@?y implies 

fi = Vy and for all a E A 
l x 5x’ + 3y’ (y 3 y’ and x’ By’), 

l y 5 y’ + 3x’ (x 3 x’ and x’ By’). 
Extending Milner’s definition [19] to any ETS, W is a fortification relation if xBy 

implies 
Vy 2 Vx and for all a E A 

l x:x’ + 3y’ (y: y’ andx’Wy’), 
l y 5 y’ +- 3x’ (x 5 x’ and x’&?y’). 
Fair bisimilurity is the largest fair bisimulation 

Z= U {B 19 is a fair bisimulation}. 

Similarly, fortzjkation is defined as the largest fortification relation 

+= lJ {W 193 is a fortification relation} 

A fundamental property of a final ETS is that it is strongly extensional in the sense 
of Theorem 3.2. The proof of the theorem can be given along the lines of similar 
results in Aczel [2] and Rutten and Turi [25]. 

Theorem 3.2. If % = (F, ($)aEA, V) is a Jinal ETS and p, q E F, then p M q isf 

P = 4. 

Proof. The proof is an immediate consequence of the following Proposition, taking fx 
to be identity on %. 0 

Proposition 3.3. Assume %=(F, (z)aE~, V) is ajinal ETS and let ?c?=(X,(~)~~A, U) 
be any ETS and fx : X + % the unique morphism. Then for any x, VEX, x M y @ 

fxx = fxv. 

Proof. In its turn, the proof of this proposition follows from the next two lemmas. 
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Lemma 3.4. If f : (X,(Z)aEA, V) + (Y,($)aEA, U) is a morphism, then its kernel 

K = ker(f) = {(x,x’) 1 fx = fx’} is a fair bisimulation on X. 

Proof. Assume fx = fz. Then VX = U(fx) = U(fz) = Vz. Next assume x 5 x’. Then 

fx 3 fx’ and hence fz 5 fx’. By definition of morphisms there must be a z’ such 

that z 5 z’ and fz’= fx’. 0 

We will regard ET% as coalgebras for the class functor 

@ = PO?+4 x -) x Pow@“). 

An ETS is then a triple !Z = (X, 9, Vx), where q x Vx : X -+ @X is the structure 

map. For x EX, (v] x Vx)x = (nx, Vxx), where (a, y) E nx is understood as x 5 y and 

VJx C Pow(AW) is the environment of x. We phrase our second lemma needed for the 

proof of Proposition 3.3 in these terms. 

Lemma 3.5. Let .% = (X,(5)aE,4, V) be an ETS. A binary relation R on X is a 

fair bisimulation iff there exists a structure map n : R + Pow(A x R) and a map 
VR : R -+ Pow(A”) such that the natural projection maps ni : R 4 X are morphisms 

of extended transition systems. 

Proof. If R is a fair bisimulation define 4 by (x, y) 3 (x’, y’) iff x -% x’ and y 5 y’ 

and let VR(x, y) = Vx (= Vy). It is immediate that the projections are morphisms. 

For the converse, given (R, n, &) we assume that Xi : R + X are ETS morphisms. 

Given (x,y)~R we have 

vx = V?tt(x, y) = 6(x, y) = V7Q(x, y) = vy. 

If x 5 x’, then nt(x, y) 5 x’. Hence there must be (x”, y’) E R such that (x, y) 3 

(x”, y’) and rci (x”, y’) =x’, that is x”=x’. Then y -% y’ and (x’, y’) E R. We may thus 

conclude that R is a fair bisimulation. q 

3.2. Abstract processes as hypersets 

As with plain SCCS, however, we are not interested in the final system constructed 

as a quotient by fair bisimilarity of the weakly final system of all rooted ETSs. Rather, 

we shall use the special final coalgebra theorem to obtain an extended transition system 

whose objects are hypersets. By uniqueness of final objects, up to isomorphism, we 

can think of the hypersets modelling processes as representatives of the fair-bisimilarity 

equivalence classes. 

We regard an ETS as a coalgebra for the functor 

@ - Pow(A x -) x Pow(AW) = 0 x Pow(AO). 

What we are interested in is a solution to the recursive equation 

X = Pow(A x X) x Pow(AO) 
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in the category of classes which, we also need to verify, is a final coalgebra for this 

functor (where the structure map is the identity). 

By set-continuity of @ (which is immediate)’ the class 

9 = U{x /x c Pow(A x x) x Pow(AW)} 

is the largest fixpoint of bi. To apply the special final coalgebra theorem of [l] (see 

Appendix A) we need to verify the following: 

Proposition 3.6. The functors @K = Pow(A x -) x K, where K is a constant class 
functor, are standard and uniform on maps. 

The proof is rather straightforward. Yet, for reader’s convenience it is given at the 

end of Appendix A as it makes use of notational conventions and definitions detailed 

in that Appendix. When K := Pow(AW) we simply write @. 

Given now that Qi is also uniform on maps, by the special final coalgebra theorem 

the class 9 is a final coalgebra with structure map the identity on 9. Every p~9 is 

then a pair p= (up, VP), where LXP C Pow(A x ~9”) and Vp c Au. The transition system 

structure is determined by the map CI by letting p 5 q iff (a,q)Eup. 

By Theorem 3.2 and finality, 9J is strongly extensional, that is to say identity on 9 

coincides with fair bisimilarity: p w q iff p =q. A consequence of finality of 9 is the 

following: 

Proposition 3.7. .9’ is closed under all the operations of SCCS + E. 

Proof. Explicitly, the operations on 9 are defined as follows: 

1. 0 = (0,(D), 
2. a.p = ({(a, p>), a. VP), where a. Vp := {a-u 1 ZIE VP}, 

3. p + 4 = (ap u uq, VP u Vq), 

4. PIL = ({(a,p’IL)laEL (a,p’)Eap), VpnL+), 

5. ~(pllq)={ab,p’llq’)I(a,p’)E~p, (hq’)Ev), 
V(pllq) = {u . u / UE Vp and VE Vq}, 

6. EP = ({(l>EP)) U UP, UnEw{(ln)--V I oE VP)). 
The proof that these are well-defined operations on 9 relies on finality of 9 or merely 

from the fact that 9’ = Pow(A x Y) x Pow(AW). For example, for the parallel operator 

I/ we can turn 9 x 9 to an ETS by letting (p, q) 5 (p’, q’) iff there exist a, b such 

that c = ab, p 5 p’ and q 5 q’. The environment V(p, q) is defined as we defined 

V(pllq). By finality of 9 there is a unique coalgebra morphism ]I : 9 x 9 + .P, which 

shows that 9 is closed under the product operator defined above. 

’ For definitions see Appendix A. 
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For Ep, given pE9, the equation 

x= {(lJ)}U~P, lJ{u”>-4~E~P/p) 
( IlEo 1 

must have a unique solution, by the Solution Lemma (see Appendix A). If 9 is 

the ETS containing 9 and all the solutions p’ (one for each p E Y), then again let 

E : 9’ --+ 9 be the unique coalgebra morphism. This shows that 9 is closed under the 

operator E as we defined it above. 0 

Remark 3.8. The delay operator 6 is defined in a similar way. For each PEP’, Sp is 

the unique solution to the equation 

x= {(l,x)}Uap, {lW}U u {(l”)-uIvEVp} . 
( ma1 ) 

That 9 is closed under 6 follows by the same argument showing that it is closed 

under E. 

Now if T is the set of closed SCCS+s terms we have a semantic map I[.]@ : T + .9, 

by finality of 9. We can easily verify the following: 

Proposition 3.9. The semantic map respects the operators, that is [a.PjQ = a.[P]Q, 

[P + Q& = [rPl]@ + [Q]G etc. In particular, if p = I[Pjo, then Sp = [TSPJ+ 

The theorem below is a consequence of Theorem 3.2. 

Theorem 3.10 (Full Abstractness). The model 9 is fully abstract for fair bisimilarity. 
In other words, for any closed process terms P, Q of SCCS + E we have P z Q ifs 

imcg = arena. 

The model is in fact also fully abstract for fortification. The proof is given at the 

end of the next subsection as it makes use of the approximation of the relation < 

introduced there. 

3.2.1. Approximations 
For a number of proofs we need to have approximations M’, c( E Ord, of the re- 

lation z. We also define approximations 4’ of the fortification relation, used in the 

proof that the model is fully abstract for fortification. Given a transition system T and 

s, t E T, to prove that s + t (or s z t) we must exhibit a fortification (a fair bisimu- 

lation) and this is not always convenient. The approximations will provide us with a 

suitable proof technique just like the approximations =” of bisimilarity given in [20] 

serve the same purpose. 
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As in the case of bisimulation we approximate + from above by a decreasing se- 

quence of relations -P, where a~Ord, defined as follows: 

+O= s x s, 

s -?+’ t iff Vt 2 Vs and for all a E A 

s 3 s’ + 3t’ t -% t’ and s’ -? t’ 

t 3 t’ + 3s’ s 5 s’ and s’ -P t’. 

Lemma 3.11. For any (not necessarily set-based) transition system, if a E B then 

4 s <“. 

Proof. The proof is by induction on /I. 0 

We let 4= naEOrd -?. Recall that we say that the TS is set-bused iff for all UEA, 

the class {t’ 1 t 3 t’} is a set, for each t ES. 

Proposition 3.12. Zf the transition system is set-based, then 

-x=-C (= JJd 4). 

Proof. First, let a be the least ordinal (if it exists) for which we can find a pair s, t 

such that s + t but s ,+V t. Then argue that c( cannot be 0 or a limit. Remains to show 

that c( is not a successor either. If a = 6 + 1 use definitions to derive a contradiction. 

This shows that 4 C_ nirEord -Y. 

To show the converse it is enough to verify that the relation -x’= naEord 4 is a 

fortification since then it must be contained in the largest fortification -x. Suppose that 

s 4 t and let s -5 s’. Then for each ordinal a we have s -P+’ t and so we can find 

t: such that t 5 tk and s” -P t’. Then there are proper-class many ordinals cr,/I such 

that t: = th. In fact the class On of ordinals with this property is a nonempty initial 

segment of Ord by Lemma 3.11, hence On must be all of Ord. Hence there is a t’ 

such that t -f+ t’ and for all ordinals CI, s’ -P t’. Since in particular s 4’ t we also have 

Vt C Vs and so -x’ defined as the intersection naEord -P is a fortification. 0 

In the particular case where the system is image-jinite, that is the set {t’ ( t 5 t’} is 

a finite set for each a and t there is no need for ascending to transfinite ordinals. 

Proposition 3.13. Zf the ETS is image jinite, then 3=-Y (= nnEo 4”). 

By completely analogous arguments we can prove that 
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Theorem 3.14. For a set-based system M= naEord M,. If, in particular, the system 
is image-$nite, then z= nnEw M,. 

The definition of the approximations zX is analogous to that 4”. The only difference 

is that at successor stages we require that Vs = Vt rather than Vt C Vs. 

Example 3.15. The following example is taken from Milner [19, Section 61, where 

he shows that the two terms are fortification equivalent (we verify they are fairly 

bisimilar). 

To show that (PllQ)]ir,a) M R, where 

P c ,ux.e(ab.x), Q - px.6( Lx), R = px.e(a.x) 

we proceed by induction on CL The cases tl = 0 or a limit ordinal are trivial. Assuming 

vw?>l{1,a} %  R we need to show (PllQ)jl,+) =,+I R. It is fairly easy to verify that 

the two terms admit exactly the same sequences. Now if (PllQ)lil,a> -% E, then either 

c = 1 and the move follows from P 1, P and Q L Q, or else c = a and the move 

follows from P -% P and Q 4 Q. In either case E = (PllQ)l~,,,) and R 5 R. By 

induction (PllQ)l~,,~) M, R. Hence by definition (PllQ)l~l,,) =,+I R. Thus we may 

conclude (PllQ)lfl,n) TZ R. 

As an application of the approximations defined we now prove full abstractness of 

the model LP with respect to fortification. 

Theorem 3.16 (Full abstractness for fortification). For any closed process terms P, Q, 
P + Q ifs UP]@ + [Q&B. Hence also P N Q iff [P&F, N fQ]@. 

Proof. Note first that < on the right-hand-side is fortification on 9, defined in the 

natural way since 5P itself is an extended transition system. 

Assuming P 4 Q we verify that I[P]@ -Y [Q]o for all ordinals a. The cases CI = 0 

or a limit ordinal are trivial. For the successor case first notice that since I[.&, is a 

coalgebra map and P -X Q we must have 

V<UQb> = V(Q) c V(P) = vwnd. 
Next suppose [PIG 5 p’. Then p’ = [P’I]@ for some process term P’ such that 

P 5 P’. From P -X Q let Q’ be such that Q -% Q’ and P’ 4 Q’. By induction 

I[P’]G -Y [Q/no. Hence we may conclude that [PI, -?’ [Q]@. Thus the semantic 

map is monotone with respect to fortification. The converse is similar. 0 

3.2.2. Recursion 

The semantic map i.no picks out some object pi .9 as the interpretation of PiXlJ. 

We verify below the [piXE’&, is indeed a fixpoint. We also point out that, unlike 

the case of SCCS and the semantic structure J, a unique fixpoint theorem now fails 
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(Theorem 3.18 and Example 3.19). However [p;#]~ is least in the fortification pre- 

order among the dejnable fixpoints (Definition 3.21 and Proposition 3.23). As it should 

be expected, any two fixpoints are shown to be indistinguishable on grounds of finitary 

behaviour alone (Theorem 3.20). 

In order to state our main theorem we need to be able to regard open terms as 

functions on our model. This can be done in a straightforward way in most cases 

except for terms of the form py.P(x, v) where x # y occurs free. 

Lemma 3.17. For each assignment e : Var 4 9 there is an extension [-I$, of the 

semantic map [I-]@ from open terms to elements of 9’ such that 
1. [P]; = [PI0 for a closed term P, and Ix&, = ex, 

2. bQll$ = 4IQll& 

Proof. Enrich the language of SCCS + E by adding a name $ for each element p E 9 
and close under the recursive clauses for term formation. The extended transition sys- 

tem that results is specified by V(b) = V(p) and j 5 4 provided p 5 q in 9. 

By finality of 9 let [--I$ be the unique morphism into 9’. Given an open term P, 

Fv(P) = {x, , . . . ,xn}, define [P& := [P{z/xi, i = 1,. . . ,n}]‘,. Properties l-7 follow 

immediately. 0 

An open term P with the free variable x can be thus regarded as inducing a function 

on Y, defined by [P]@(r) := I[P]g’=‘]. Similarly for terms with more than one free 

variables. 

Theorem 3.18. Let Fu(P)= {x}, x guarded in P, and let p = [pxP]Q. Then [P&,(p) 
= p, that is pxP is interpreted as a jixpoint. Furthermore, let q,r E 9 and assume 

[P]@(q) = q and [P]@(r) = r. Zf in addition Vq = Vr (respectively Vq 2 Vr) then 
q = Y (respectively, q 4 r). 

The proof will be given at the end of this section. Interestingly, comparison of 

admitted sequences only at the top level (that is, for q and r and not recursively for 

successors of them) is sufficient. However, the assumption that Vq = Vr cannot be 

dropped. 

Example 3.19. If Q is any process term, then both [SQ]Q and [T&Q]@ are fixpoints of 

El .x + Q]o. The first is a fixpoint by Theorem 3.18 since SQ 3 px( 1 .x + Q). That 

[.sQ&, is also a fixpoint is shown in Section 3.3, where we verify that for any p~9 
the equation EP = 1.&p + p holds. Hence a unique fixpoint theorem does not hold 

in 9. 
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For a second counterexample to unique fixpoints in 9 consider the term P E a.x. 
By the Solution Lemma (see Appendix) each of the equations 

x = ({(a,x)], 0), (1) 

x = ({(a,x)], {a?) (2) 

is guaranteed to have a (unique) solution. Call them p and q, respectively. It is obvious 

that both p,q~9 = Pow(A x Y) x Pow(AW). Futhermore, since a.8 = @ and a.{aw} = 

{au} it is clear th at a.p = p and a.q = q. In fact p is the interpretation of the term 

px(a.x)ll&O, which prevents au. Applying Theorem 3.18 we can immediately conclude 

that px(a.x) -X px(a.x)lleO. 

Any two fixpoints are however indistinguishable on grounds of finitary only be- 

haviour, that is to say they must be bisimilar. Uniqueness up to bisimilarity can be 

established using the unique fixpoint Theorem 2.4 for the sematics J of SCCS. 

Theorem 3.20. Let Fu(P) = {x}, x guarded in P, and ! : 9 4 J the unique O- 
coalgebra morphism. Assume p, q E 9 are jixpoints of UP]@. Then ! p =!q. 

The proof is given at the end of this section. 

Definition 3.21. An object p E 9 is dejnable in the language _Y of SCCS + E iff there 

is a process term P such that p = [PI@. 

Of course not every p E 9’ is Y-definable. 

Example 3.22. If p = (O,Aw), then clearly p is not definable in 9, since the set 

of admissible sequences of a term with no transitions must be empty. The unique 

solution p to the equation x = ({(a, x)}, 0) is definable in 9, as we have pointed out 

in Example 3.19, since p = [px(a,x)lleO&,. 

Restricting to the Y-definable processes in 9 a least fixpoint theorem follows from 

Theorem 3.16 and from Milner’s least fixpoint theorem in [ 191: If P{ Q/x} + Q, then 

pxP + Q. 

Proposition 3.23. Let Fu(P) = {x}, x guarded in P. If q is a definable jixpoint of 

[Pll~, then UpxPllG 4 q. 

Proof. Recall that 9 is strongly extensional (p z q iff p = q) and that z is itself a 

fortification relation. The proof then follows from the fact that for all process terms 

P, Q, P + Q implies BP]@ + [Qjjo, Theorem 3.16, and the least fixpoint theorem 

of [19]. 0 

It did not seem possible to drop the restriction that the fixpoint q is definable and 

still get a least fixpoint theorem with respect to the fortification pre-order on 9’. The 

rest of this subsection is taken up with the proofs of Theorems 3.18 and 3.20. 
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Proof of Theorem 3.18. That [pxPjjG is a fixpoint of the functional [PJo follows 

from the observation that if q is a process definable from Q, then [P{Q/x)Jjo = 

[P]@(q) which can be shown by structural induction on P. For the rest of the proof 

we will need two lemmas which we state and prove below. 

Lemma 3.24. For all ordinals CI, all p,q,r E 9 and sets L CA, 1 EL, if p M, q, then 

PIL =, qlL and pllr M, q[[r. Similarly zf we replace M, with -Y. 

Proof. We give the proof for M, as the variant with -=P is very similar. 

The proof is by induction on a and it is immediate for the cases c1 = 0 or a limit 

ordinal. Assume now p zb+l q. Then Vp = Vq, by definition of the approximation 

relations “6. So we have V(pl~) := Lw fl Vp = Lo fl Vq := V(qlL). 

Next suppose pJt 5 ~1. Then a E L, p -% p’ for some p’ such that p1 = p’l~. 

By p R++I q, q 5 q’ for some q’ zb p’. Letting q1 = q’[r. we get q1L 3 q1 and, by 

induction, p’j~ zp q/IL, that is pl ZB 41. By a symmetric argument if q(L 3 q1 we 
can find pl such that p[L 5 p1 and p1 zb 41. Hence ply zp+l q[L. 

For the parallel operator and since VP= Vq it follows V(pIIr) = V(qllr). If p(Ir -% 
~1, then there exist a, b, p’, r’ such that c = ab, p1 = p’llr’ and p 5 p’, r 5 r’. By 

hypothesis p =,J+~ q, hence q 3 q’ for some q’ such that p’ zp q’. By induction 

p’llr’ zsp q’llr’. Similarly if we start by assuming q(lr 5 tl. Hence pi/r zp+l ql)r. 0 

If C is any one hole context and p, q E 9’ are such that Vp = Vq then it is ap- 

parently true that V([C]s(p)) = V([C]Q(q)). Technically the proof is by induction 

on prevention ordinals, defined in [ 191. We cite below the main fact about these 

ordinals. 

Lemma 3.25 (Milner [19]). There exists a partial assignment ord of ordinal numbers 

to pairs (P, u), where P is a process term of the finite delay calculus and u E AU such 
that 

1. ord (P, u) is defined ifs P prevents u, 
2. ord (P, u) < ord (a.P, au), 

3. ord (P, u), ord (Q, u) < ord (P + Q, u), 
4. Either ord (P,u)< ord (PllQ,u~v) or ord (Q,v)< ord (PllQ,u.v), 

5. ord (P,u) < ord (Pi~,u), assuming CELL, 
6. ord (P, u) < ord (EP, I’%), fir all n > 0, 

7. ord (Q{f’/ 1 > x , u < ord (,ux.Q,u), where P = ux.Q, x guarded in Q. 

Lemma 3.26. Let C be a one-hole context and p,q E 9 such that Vp = Vq. Then 

wn~w~= wmbm. 

Proof. A detailed proof is rather tedious and so we only give a sketch. The proof 

is by induction on prevention ordinals. To be more precise, the argument proceeds in 

the extended language containing a constant j? for each p E 9 (and closed under the 
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recursive clauses for term formation). The definition of prevention ordinals is slightly 

modified by letting ord(j, u) = 0 if u # Vp and undefined otherwise. The rest of the 

argument is straightforward, proceeding by examining the structure of C. The case 

C z X, a single variable, is taken care of by the hypothesis that Vp = Vq. 0 

For the proof of Lemma 3.29 below we will need a subinduction on the guard-depth 
of expressions. 

Definition 3.27. The guard depth gd(E) of an expression E is defined by structural 

induction as follows: 

1. gd(x) = gd(a.E) = 0, 

2. gd(CiclEi) = sup{gd(Ei) + 1 1 ill}, 

3. gd(EIjF) = max {gd(E) + l,gd(F) + l}, 

4. gd(ElL) = gd(EE) = gd(E) + 1, 

5. gd(piZE) = gd(Ei) + 1. 

This ordinal is defined in Milner [19] from where we also quote below the main 

fact about it. 

Lemma 3.28. Ij” the X are guarded in E, then gd(E{F/x}) = gd(E). 

Lemma 3.29. For all ordinals or, all p,q E 9 and any one-hole context C, if p zX q, 

then UClldp> =, [C]@(q). Similarly if we replace x, with +%. 

Proof. By a one-hole context we simply mean an open term C with just one free 

variable, for example a.x + b.O,py.(a.x + b.y). We only give the proof for za. 

The proof is by induction on CI. The ordinal induction hypothesis is that for every 

p < c( and every context Q in one hole if p =TP q, then [Q]@(p) z,q [Q]@(q). If c1 is 

either 0 or a limit ordinal then the claim is trivially true. Suppose now c( = /3 + 1, let 

C be any one-hole context and assume p z~:p+~ q. 

We will show that p =P+~ q implies [C]@(p) z++l [C]@(q). The hypothesis implies 

Vp = Vq and then also V([rCl]G(p)) = V([C]Q(q)), by Lemma 3.26. To show that 

uadp) =p+l itadd we proceed by induction on the guard depth of C and verify 

that the bisimulation clauses in the definition of =:p+t hold. We examine the cases 

for C. 

C E X: Immediate. 

C -. a.C’: The guard depth of C is 0 in this case. The only possible moves are 

Nl&) 3 lIC’ll&) and, similarly, EcnG(q) 5 pzqo(q). Since p “p-t1 q implies 

p zp q, the ordinal induction hypothesis implies that [C’JJQ(p) zp fC’&,(q). Given 

that the admissibility sets coincide we may conclude [C]@(p) x++~ [Cl]*(q). 
C = C’ + C”: Similar. 

C = C’lt: Since gd(C’) is strictly below gd(C) we have [C’&,(p) xg+l [C’]@(q). 
Suppose now [C]@(p) 3 p’. Then a E L and [C’]@(p) 5 PI for some PI such 
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that p’ = ~11~. Then there is some q1 such that [Q&q) 5 q1 with pl xpq1. 

By Lemma 3.24 we get ~11~ %:p ql/L, i.e. p’ 3~ q’. We may then conclude that 

[TmJ(P) =:p+1 ucllc4~)~ 

C - C’IIC”: Th e argument is similar and uses again Lemma 3.24. 

C E EC’: By Proposition 3.9 we have l&‘]~(p) = &([C’]lG(p)) and similarly for q. 

If the move is a wait move then use the fact that by the ordinal induction hypothesis 

we have [dY’]~(p) z+ [&C’&,(q). Otherwise the move follows from [C’]@(p) 3 p’. 

Since gd(C’) is strictly below gd(C) we may use induction. 

C E py.K: The claim [py.K&,(p) ~:p+~ [py.K],#,(q) is equivalent to the claim 

wh.wndp) =B+l u+wwndd. s' mce the guard depth of K{py.K/y} is 

strictly below the guard depth of py.K we may appeal to induction. 0 

We can now turn to the proof of Theorem 3.18. We assume that FL(P) = {x),x 

guarded in P, and that p,q are fixpoints of [p]Q such that Vp = Vq (the case 

Vp G Vq is very similar). We want to show that p = q, in other words that for 

all c(, p %:a q. We prove the following claim: For any ordinal cx and any guarded 

one-hole context P’ the hypotheses above imply that [P’]@(p) M, [P’]@(q). In- 

stantiating this to the case of the context P we obtain [P]@(p) z [P]@(q), hence 

P= upndp) = uadd=q. 
The proof is by induction on tl where we assume that for all b < c( and any guarded 

one-hole context K we have [K&,(p) zp [K]@(q). Now if CI is either 0 or a limit 

ordinal the claim is trivial and so we may assume CI = p-t 1. If P’ is a guarded one-hole 

context we need to prove that [P’]@(p) z++~ [P’]@(q). Given Lemma 3.26 we only 

need to worry about the bisimulation clauses. The proof is by a subinduction on the 

guard depth of P’ where we assume as subinduction hypothesis that for any guarded 

one-hole contex C with gd(C) < gd(P’) the claim [C&,(p) =p+l [C&(q) holds. We 

examine the cases for P’ (which cannot be a variable, by the guardedness assumption). 

P’ E a.P1 : Then [P’JQ( p) = a.[P1]Q(p) (similarly for q) and the only possible 

moves are fP’J@(p) 5 [Pl]s(p) and [P’]@(q) -f+ [PI]@(q). Note that the base 

induction hypothesis (on ordinals) implies that p = [P]@(p) %:p [P]@(q) = q. But 

p =p q implies, by Lemma 3.29, [P,]@(p) zb [PI]Q(~). Note that x may not be 

guarded in PI, which is why we needed to prove Lemma 3.29. It then follows that 

umdp) =:8+1 umdd. 
P’ E P1 + P2: Since the guard depths of PI, P2 are strictly below that of P’ we have 

UWldp> q+l U4lldd. This implies Up'lldp) =p+l Up'lldd. 
P’ = P~]L: Similar. 

P’ s PI IIP2: Similar. 

P’ = &PI: Suppose [r~P,]~(p) 5 p’. Since by Proposition 3.9 [cPl]o(p) = 

E([Pl]cg( p)) the u-move to p’ may be either a wait move a = 1 or one of [Pllj,(p). 

In the first case use the fact that [cPl&(p) ZT~ [&PI&,(q). In the latter case and 

since the guard depth of P1 is strictly below that of EP~ we have, by induction, 

UPlIMp) q+l UWM~). We may then conclude that I[EPlb(P)=~+l Uf'dldq). 
P’ = py.Q: Immediate, by considering Q{P’/y} which has strictly smaller guard 

depth. 
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We have then shown that [P’&,(p) % [P’]@(q) for any guarded one-hole con- 

text P’. In particular, BP]@(p) M lP]Q(q) an since p and q are fixpoints it fol- d 

lows that p z q. By strong extensionality of 9 with respect to fair bisimilarity, 

Theorem 3.10, the conclusion p = q follows and this completes the proof of 

Theorem 3.18 [7 

Proof of Theorem 3.20. The proof of this theorem follows from the following propo- 

sition. Recall that 0 is the class functor Pow(A x -) and that J is a fixpoint for 0 

and a final O-coalgebra. 

Proposition 3.30. Let ! : 9 -+ J be the unique O-coalgebra morphism. Then ! is 

a C-homomorphism, where C is the SCCS + E signature. In other words !(a.p) = 

a.!p, !(p + q)=!p+!q, !(p(~) = (!p)l~, !(pllq)=!pll!q and !(EP) = I. 

Proof. For prefixing, summation and restriction the claim is immediate from definitions 

given also that for any abstract process p E 9 we have ! p = {(a, !q)( p 3 q}. 
For delay, the operator F on J is defined as in [l] by sj = j U {( 1, j)}, for all 

j E J. We show !(ep) N% E( !p) for all ordinals IX. By definition of the approxi- 

mations for bisimilarity (see [20]) the cases a = 0 or a limit are trivial. For the 

successor case x = /I + 1 suppose !(EP) 5 k. Then k =!q for some q E 9 such 

that up 5 q. If q is EP and a = 1, then we have E(!P) -!+ E(!P) and by induction 

!(EP) rup E(!P). Otherwise, p 5 q and thereby !p :!q. Since E(!P) =!p U {( 1, !p)} 

it follows that E(!P) $!q. Hence !(EP) ?~+1 I. By induction !(ep) 2 (!p) and 

thereby the two processes are equal (by strong extensionally of J with respect to 

bisimilarity). 

For the case of the parallel operator I( we define the map (:) : 9 + J by 

;= 
!p[(!q if r = pllq for some p,q, 

!r otherwise. 

We first need to verify that this map is well-defined. We claim that for all p,, p2, q,,q2 

if Pdl% = pzllqz, then !pll[!q1 =!p2II!qz. If this fails, let x be the least ordinal for 

which we can find pi’s and qi’s such that pll\q1= p2llq2 but !pl ll!ql &+,!p2ll!q2. We 

will derive a contradiction. 

Suppose first that !pl )l!q, 5 k, some k E J. Then there exist a, b, pll,qll such 

that c = ab, k =!p11d!qll and pl 5 pll,ql 5 411. If we set r = pI1llqI1, then by 

pll/q~ = p&2 we must have p2(lq2 -% r. Hence there exist a’, b’, ~22, q22 such that 
a’ h’ 

c = a’b’, r = p22llq22 and p2 + ~22, q2 --t q22. Given p11llq11 = r = p22llq22 we 
get by induction !PII~(!~II rvn !p22jj!q22. Setting k’=!p221\!q22 we have then obtained 
!p2j]!q2 5 k’ and k N, k’. 

Next suppose !p2 II!42 5 k. By a symmetric argument we can find k’ such that 

!pi )I !ql -1; k’ and k G k’. By definition of the approximations it follows that !pl l)!q, 
X+I !p2 II !q2, contrary to hypothesis. 
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Therefore, the map (:) : W + J is well-defined. Next we verify that it is a O- 

coalgebra morphism, from which it follows that for any p E 9, j3 =!p, by uniqueness 

of !. If I; $ k for some k E J and p is not of the form q((r then there is nothing 

to prove since j? =!p and ! is a O-coalgebra morphism. Suppose now p = q[(r and 

then we assume !qll! r -% k. Then there exists a, b,i, j such that k = i[Jj, c = ab and 

!q 3 i, !r 5 j. Hence for some q’,r’ we have q 5 q’, r 5 r’ and !q’ = i, !r’ = j. 

Then k =!q’II!r’, where 411 r 5 q’llr’. This shows that the map (:) : 9 ---) J is a 

O-coalgebra morphism and thereby it must coincide with the final map !. Hence for 

the case of parallel, too, we have !(p((q)=!p(I!q. 0 

Corollary 3.31. Let Fu(P) = {x}. Then the square below commutes 

1n other words,for any p~9 we must have !([Plja(p)) = 8PBo(!p>. 

Proof. The proof is by structural induction on P using the previous proposition. 0 

The proof of Theorem 3.20 now easily follows. If n is guarded in P, where Fv(P) = 

{x) and IU%(P> = P, UUldq) = q, then !P =Wll~(p)) = lNld!p) and sim- 

ilarly !q = !([P]o(q)) = [P]e(!q). Since the functional rP]le on J must have a 

unique fixpoint, by Theorem 2.4, it follows that !p = !q. Hence any two fixpoints are 

indistinguishable on grounds of finitary behavior. 0 

3.3. On the algebraic theory of fair bisimilarity 

In Section 1 we described the language LZ of the SCCS + E process algebra. The 

basic (in)equational theory E for SCCS + E is the extension of the first-order calculus 

of (in)equality generated by the axioms of Table 1. All (in)equations in Table 1 have 

been considered in [ 191 as the basic algebraic theory of fortification equivalence. Our 

soundness theorem implies that these (in)equations hold for fair bisimilarity, which is 

a refinement of both bisimilarity and fortification equivalence. 

By an _Y-structure we mean a pre-ordered set JY = (M, =,<, C) closed under all 

C-operations (C is the signature of SCCS + E). An interpretation in an Y-structure 

JX is a map [T.jj& : T -+ A! from closed terms 2 to elements of JZ such that [.I is a 

2 Any interpretation [.JJ& can be extended to an interpretation I[.l)“xe of open terms by structural induction 
and given an assignment e: Var + I/i. 
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Table 1 
Equations for fair bisimilarity 

Summation 
l.x+O=x 

2..x+y=y+x 

3.x+(y+z)=(x+y)+z 

4.x+x=x 

Product 
5. xl10 = 0 

6. xlb = YIIX 
7. XIIW) = (4lV)ll~ 
8. (a.x)ll(b.y) = (ab).(xlly) 
9. Xll(Y + z) = (4lY) + W) 

Restriction 

10. (a.x)lr. = 

i 

a.(xlL) if aEL 

0 otherwise 

11. (x+ y)lr = @IL) + (AL) 
12. (XIL)IW = XlL”A4 
Delay 
13. E&x=WI 

14. .?x=n+l.fx=x+W. 

15. 4&Y = 4IIv + 4lr) 
16. (a)lr. = EC+) 
17. &6X = 6x 

18. ~.lldy = ~(nll6y + cxlly) 

19. Gx<cx 

C-homomorphism (operators are respected). An Y-model is a pair (A, r.JJA) where 

II.11 A is an interpretation and JH is a C-algebra, that is to say an _!Z’-structure in which 

all (in)equations of Table 1 are valid. 

We write TV P = Q (and similarly t P < Q, usually omitting the subscript E in 

both cases) if the equation P = Q (or the inequation P < Q) is derivable from the 

axioms of the theory E by (in)equational reasoning. As usual, if P and Q are open 

terms then k P = Q means that the closure by universal quantification on the free 

variables of P and Q is provable from E. For example, k x + x = x means that 

t Vx(x+x =x). 

For closed terms P, Q and an Y-model L& we say that M + P = Q iff [PJ& = 
I[Qj&. If P, Q are open terms and e : Var ---t A? is an assignment of elements of JZ to 

the variables of the language, then we say that _4? k (P = Q)[e] iff [PIA,” = EQjA’” 
(the equation P= Q is satisfiable in the model by the assignment e). Finally, we say 

that the equation P = Q is valid (or sound) in A, in notation k’ k P = Q, iff 

~4’ k (P= Q)[e] for any assignment e. Similarly for inequations. 

In the previous sections we verified that 9 is closed under the SCCS + E opera- 

tions and that a C-homomorphism [.I]@ : T + 9 exists. We now verify that 9 is 

a C-algebra. 
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Theorem 3.32 (Soundness). The theory E is sound in the structure .9? That is to say 
I-_E P = Q implies 9 b P = Q and similarly t- P -C Q implies 9 k P -C Q. 

Proof. By strong extensionality of 9 it suffices to show that [PI&, M [Q]$ rather than 

PII% = lIQl& which we do in some cases by using the approximation of the relation 

M via the sequence (M’)~~o~~. We first deal with soundness of the delay axioms. 

If E&P # EP for some p, let LX be the least ordinal for which E&P $:” &p. Then CI cannot 

be 0 or a limit. Suppose there is an ordinal 6 such that CI = 6 + 1. By minimality of CI 

we have EEP z6 Ep. Note first that V(EEP) = V(ep) follows immediately from the 

definition of the operation E. 

Now suppose E&P 5 q. If this follows from the fact that &p 5 q nothing to prove. 

Otherwise the move is E&P 5 EEP. But then EP h &p and EEP d EP, by induction. 

Similarly if we start by assuming that EP 5 q. Hence by definition EEP d+ EP, con- 

trary to hypothesis. Thus EEP M EP and by strong extensionality of J it follows that 

EEp = Ep. 

The identities &p = p + EP = p + 1 : EP follow directly from the definition of the 

OperatOr E on J. 
For the law involving restriction, notice that V(E(P/L)) = V((EP)(L) follows by 

definitions and the fact that the restriction set L must contain the silent move 1. Again, 

if identity fails let M be the least ordinal for which (EP)[I. yY ~(pl~). Then c( must 

be a successor a = 6 + 1. If (EP)~L. 5 q makes a move a # 1, then a E L and 

EP -ff+ q. But this move must follow from p 5 q, from which (since a E L)plL 3 q 
and thereby E(P[L) 5 q follows. Otherwise the move is a silent move following from 

EP A EP. But also E(PIL) L E(P[L) and by induction (EP)~L x6 E(P/L,). Similarly if we 

start with the assumption that (~pl~) 5 q. Hence by definition of the approximating 

relations it follows that (&p)IL &+l ~(pl~), contrary to hypothesis. Thus by induction 

(EP)IL = e(Pk). 
Next we verify the law involving the synchronous product. The identity of the 

environment assignments follows from definitions. We proceed again by induction on 

the approximation. So suppose CI = 6 + 1 is the least ordinal such that M” distinguishes 

the two. 

Suppose Ep[lEq 5 p’llq’, following from EP 3 p’ and Eq 5 q’. We distinguish the 

cases according to whether the actions a, b are silent moves or not. 

Suppose first that a = 1 = b, so that the move is Ep/[Eq 5 EpIIEq. The process E(pIIEq 
+ Epllq) can also make a 1 move to itself and by induction EpllEq =’ E(pjIEq + Ep]/q). 
The other cases are similar, with E(pIIEq+Ep11q) always matching an ab move of Epll&q. 

Hence by induction it follows that ~pll~q = ~(pll~q + ~~114). 

Soundness of the identities ~dp = 6p and Ep116q = E(pl/8q+Epllq) follows by similar 

arguments. 

Soundness of the axioms for choice is immediate from the corresponding properties 

of union. Soundness of the axioms for the synchronous product and for restriction 

follows from definitions alone. 
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Finally, soundness of the inequation 6x < EX follows by definition of 6 on Y, 

Remark 3.8. 17 

4. Conclusions 

Considering the infinitary behaviour leads to a more intensional view of processes. 

Aczel suggests [2] that using coloured transition systems one can perhaps capture the 

particular aspect of intensionality of interest. A coloured system is a coalgebra for the 

functor Y := Pow(A x -)x Col, where Co1 is a set of colours. In [2] a particular colour- 

ing is chozen leading to a model for CSP. Colours, in our own case, have been taken 

to be sets of infinite sequences of actions. In intuitive, but not quite accurate terms, one 

can think of our model as being like Aczel’s model for SCCS except for decorating 

every node with a set (of admissible sequences). This is not really an accurate picture, 

however, for the simple reason that the SCCS model is bound to identify (being fully 

abstract for bisimilarity) the delay operators 6 and E and no subsequent “decorating” 

will distinguish the two. The intensional distinctions we have sought to make are finer 

than those made by bisimilarity and they required carrying out a fresh construction. 

The formal study of finite delay is still at a basic level. We point out below some 

of the questions left open. 

1. We have shown validity of the basic (in)equational theory in our model (hence 

validity for fair bisimilarity). Completeness of the theory in 9 is the statement that 

if p = q (or p+q) holds in 9 for definable p and q, p = ([P]Q, q = IQ&,, then 

the equation P = Q (respectively, the inequality P < Q) is derivable in the theory E. 

Given full abstractness of .?.i’ this is equivalent to the statement that = is contained in 

the smallest C-congruence generated by the equational axioms of the theory (similarly 

for + ). In yet different words, it is equivalent to the statement that P M Q implies 

E P = Q. We cannot hope to get a completeness theorem for the basic theory E, 

however, unless it is extended to include some form of an induction principle. This 

is one of the questions that was also left open in [ 193. Hennessy [ 131 has initiated a 

study of the axiomatization of finite delay in cases simpler than the full SCCS + E. 

Furthermore, his approach is based on a notion of testing rather than on fair bisimilarity 

or fortification equivalence. 

2. Another question left open is that of a logical characterization of fair bisimilarity 

and fortification. A simple way to proceed is as follows. Let 2 be the language 

built on the atomic sentences Vp, where Vp is the set of admissible sequences for 

the process p, and closed under infinitary conjunction A, EI, negation 1 and modal 

operators (u) indexed by atomic actions UEA. Define satisfaction in the usual way for 

compound sentences and let p + Vq iff Vq C Vp. Assume the usual notion of modal 

depth except for decreeing that md( Vp) = 1 for any atomic sentence of the form Vp, 

and stratify 2 by letting d;p, = { 4 E 2 1 md(g5) d N}. Let also ,U( p), _Yz( p) have their 

obvious meaning and _Y+ be the fragment without negation. Essentially by the same 

argument as in [ 171 it can be shown that 
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Proposition 4.1. For all ordinals c(, p za q iff Y&(p) = Zx(q). Similarly, p 4 q ifs 

Y:(p) 2 9:(q). Consequently, p z q ifs 9(p) = Y(q) and p + q $7 Y+(p) G 

P(q). Hence also p N q ifs P(p) = P(q). 

What would be more interesting, however, is to build the modal language on atomic 

sentences that are not the admissibility sets Vp but rather the sentences of a temporal 

language capturing facts as the property of a process p to admit a sequence u of 

actions. As pointed out in [ 193 the connection between the finite delay operator E and 

the eventually operator of temporal logic needs to be investigated and clarified. 

We hope to take up these issues in another report. 

Appendix A. Set-theoretic assumptions 

We let V be the class of all pure sets. We assume a proper class V’ of atoms and 

work in the universe V[V’] of sets that may involve atoms in their build-up. 3 An 

axiomatization of set theory with atoms can be found in Barwise [5] (where atoms 

are called urelements). Assuming a global form of choice any two proper classes are 

equinumerous, hence we will typically write x, for the atom labelled by the pure set 

a and assume that a # b iff x, # xb (which is to say that x- : V E V’ is a bijection). 

For a class B of pure sets (atoms) we let B’ be the class {xb 1 b E B} (respectively, 

{b 1 Xb E B}) and extend the priming notation to functions between classes in the obvious 

way. We use the term “set” to refer to both pure sets and sets that may involve atoms 

in their build-up. For a class X of atoms, V[X] will denote the class of sets with 

atoms from X possibly occurring in their build-up. These sets will be also referred to 

as X-sets. 

From Aczel [l] we recall the following, where C is the (large) category of classes. 

Definition A.l. A class functor 0 : C --+ C is set-continuous iff 

1. 0 is monotone, i.e. X C Y implies OX c OY and 

2. set-based, that is to say that for any class X and a E OX there is a subset x CX 

such that a E Ox. 
It is not hard to see that, as it is pointed out in [l], 0 is set-continuous iff for any 

class X 

@X=~J{OX]XEV andxCX} 

which is what justifies the terminology “set-continuous”. 

3 If postulating a proper class of atoms is an offending assumption to the reader let us reassure them that 
we could equivalently consider two disjoint copies of V, (0) x V and { 1) x V, call “atoms” the sets of the 

form (0,x) where x E V and “pure sets” the pairs of the form (1, x) with x E V. 
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It is shown in [l] that if 0 is a set-continuous class-operator then the class 

is the largest fixed point of 0 (the proof uses dependent choice). The special final co- 

algebra theorem (which uses AFA) also proven in [l] asserts that, under some additional 

assumptions on the class functor 0, (Jo,Zd) is a final O-coalgebra. These additional 

assumptions (to be detailed in a minute) hold for the functor 0 = Pow(A x -), from 

which it follows that the semantic map from a transition system to the final system 

can be taken to be the map 

iPJi = {(Q> UYll) Ix 5 Y>. 

Use of AFA is essential here since if the transition system is presented as the oper- 

ational semantics of a process language with recursion the sets above may well fail 

to be well-founded. Once again, consider the term p(a.x). Its interpretation yields 

the singleton set [Pl] = {(u, [PI)}. Th e anti-foundation axiom implies that there is a 

unique set satisfying the equation x = {(a,~)}, which of course is a non-wellfounded 

set. 

The assumptions hinted at above are described in the following definitions. 

Definition A.2. A class functor 0 : C -+ C is standard if it is set-continuous and 

preserves inclusion maps: if ix,r :X--t Y is the inclusion map (for any x EX, ix,yx = 
x~ Y), then Oi,r,;:OX -+ OY is also the inclusion map i~x,~y:OX-+ OY. 

For the next definition we need to first recall (from [l]) the following: 

Lemma A.3 (Substitution lemma, AFA). Fix u class X of atoms. For each function 

IT :X + V, assigning a pure set 7tx to each atom x E X, there exists a unique function 
2: V[X] + V that assigns a pure set i?u to each X-set a such that 

(3) 

We also recall 

Lemma A.4 (Solution lemma, AFA). Fix a class X of atoms. Zf u, is an X-set for 
each x E X, then the system of equations (soe) 

x = u, (XEX, u, E V[X]) 

has a unique solution in V (the class of all pure sets): There is a map 71: X -+ V 
such that 7~x = i?u,. 

The following definition describes the final condition needed for the statement of the 

special final coalgebra theorem. 
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Definition A.5. A standard class functor Qi : C --+ C is uniform on maps iff for every 

class A C V there is a map $A : @A + V[A’] (assigning an A’-set to each pure set in 

@A) with the following universal property: 

Given any assignment of pure sets rc’ : A’ + V to the class A’ of atoms and where 

it is the substitution map and rt : A + V the obvious map, for any u E @A we have 

(bi7c)u = jl(C$,&). 

In a diagram, the equation above means that the square below commutes: 

64 
@A - V[A’] 

It is then shown in [l] that 

Theorem A.6 (Special final coalgebra theorem, AFA). If @ is a standard class func- 

tor that is uniform on maps then (Jcp,Zd) is a jinal coalgebra for @, where JQ is the 
largest jixed point of @. 

We give below details of the promised proof of Proposition 3.6. 

Proof of Proposition 3.6. Set-continuity and preservation of inclusion maps is rather 

straightforward, hence @K is a standard functor. For the uniformity part, notice first 

that the functor Pow is (standard and) uniform on maps, where for a class B we define 

4~ on u E Pow(B) by 4s~ = {x6 / b E u C B}. Also, the functor Pow(A x -) is uniform 

on maps where we now define Ba on u 2 A x B by 

e,U={(a,xb)I(a,b)EuCAxB} 

For the functor Pow(A x -) x K we simply define a map 4~ = 0, x K. To be explicit, 

given w E (Pow(A x B) x K), w = (u, k) with u E Pow(A x B) and k E K = Pow(AW). 
Then 

ddu,~) = ({(a,-%) I (a,b)EuCA x B},k). 

The rest follows by the observation that if 0 is (standard and) uniform on maps then 

so is @K = 0 x K, where K is a constant fimctor with value some fixed class K. If 0, 

is the map satisfying the condition of Definition AS, we let 4~ = OA x K. Assume a 

standard representation of pairing: (x, v) = {{x}, {x, v}}. Let now rc’ : A’ --+ V be any 

map. Then observe that since K is a pure class 2 is identity on members of K, that is 
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iik = k for all k E K. By the following small computation 

24jj(u,k)=iio(OA x K)(u,k)) = S(dAu,k) 

= fi({{~~u), {~/wk}}) = {{fiO,u}, {%/ak}J 

= {{(@n)u}, {(@7ou, k}) = ((@n)u, k) 

= ((On) x K)(u,k) = (0 x K)n(u,k) 

= cIvc(zt, k) 

the proof that @K is uniform on maps is complete. 0 
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