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SUMMARY

Arterial stiffening is a risk factor for cardiovascular
disease, but how arteries stay supple is unknown.
Here, we show that apolipoprotein E (apoE) and
apoE-containing high-density lipoprotein (apoE-
HDL) maintain arterial elasticity by suppressing
the expression of extracellular matrix genes. ApoE
interrupts a mechanically driven feed-forward loop
that increases the expression of collagen-I, fibro-
nectin, and lysyl oxidase in response to substratum
stiffening. These effects are independent of the
apoE lipid-binding domain and transduced by Cox2
and miR-145. Arterial stiffness is increased in apoE
null mice. This stiffening can be reduced by admin-
istration of the lysyl oxidase inhibitor BAPN, and
BAPN treatment attenuates atherosclerosis despite
highly elevated cholesterol. Macrophage abundance
in lesions is reduced by BAPN in vivo, andmonocyte/
macrophage adhesion is reduced by substratum
softening in vitro. We conclude that apoE and
apoE-containing HDL promote healthy arterial bio-
mechanics and that this confers protection from
cardiovascular disease independent of the estab-
lished apoE-HDL effect on cholesterol.
INTRODUCTION

The mechanobiology of cells and tissues is a rapidly developing

field of importance to development, physiology, and disease

(Davies, 2009; Discher et al., 2005; Egeblad et al., 2010; Gar-

cia-Cardena and Gimbrone, 2006; Schwartz and DeSimone,

2008). Increases in tissue stiffness and intracellular tension are

common features of fibrosis-associated processes such as

wound repair, cancer, and cardiovascular disease (CVD) (Duprez

and Cohn, 2007; Levental et al., 2009). A recurring theme

in these processes is remodeling of the extracellular matrix
Cell Re
(ECM). Increased ECM synthesis is mediated by fibrotic factors

such as TGF-b and PGF2 (Border and Noble, 1994; Oga et al.,

2009), but whether antifibrotic factors exist to antagonize

aberrant ECM gene expression and maintain normal tissue

elasticity is poorly understood.

Mechanical forces play a major role in the pathogenesis of

atherosclerosis (Davies, 2009; Garcia-Cardena and Gimbrone,

2006; Gimbrone et al., 2000). As a result of disturbed blood

flow patterns at sites of arterial curvature and branches, endo-

thelial cell integrity is disrupted focally, ultimately allowing for

entry of blood monocytes into the vessel. These monocytes

develop into macrophages and foam cells, a process exacer-

bated by high cholesterol, and then secrete cytokines that act

on vascular smooth muscle cells (VSMCs) to promote their

dedifferentiation to a migratory and proliferative phenotype.

Dedifferentiated VSMCs synthesize large amounts of ECM

components (in particular, fibrillar collagens and elastin) and

matrix-modifying enzymes that remodel the local ECM (Owens

et al., 2004; Thyberg et al., 1997; Thyberg et al., 1990). Elastin

makes arteries more compliant to large deformations, and

fibrillar collagens make arteries stiffer (Dı́ez, 2007; Lakatta,

2007). Themechanical properties of elastin and fibrillar collagens

depend upon their crosslinking by the lysyl oxidases (Csiszar,

2001; Kagan and Li, 2003). VSMCs produce lysyl oxidase and

are therefore poised to be major regulators of matrix remodeling

and arterial stiffness.

Arterial stiffness increases with normal aging, and this pro-

cess is exaggerated by the metabolic syndrome and diabetes

(Lakatta, 2007; Stehouwer et al., 2008). Arterial stiffness is also

a cholesterol-independent risk factor for a first cardiovascular

event (Mitchell et al., 2010). Arterial stiffness is determined by

vascular tone and the amount and composition of the ECM.

While regulators of vascular tone have been very well studied

(Bellien et al., 2008), little is known about effectors and mecha-

nisms that might regulate arterial stiffness by limiting ECM

production. Nor is it known if arterial stiffening is a cause or

consequence of cardiovascular disease.

Here, we show that the expression of ECM genes in VSMCs

and arterial stiffness is potently suppressed by apolipopro-

tein E (apoE) and apoE-containing high-density lipoprotein
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Figure 1. Altered ECM Gene Expression in ApoE Null Mice

(A) Heat map of collagen and Lox genes in WT and apoE null aortae. Duplicates represent Agilent dye-swaps. Asterisks indicate fold-changeR2 in athero-prone

(P/P) and resistant (R/R) regions. Scale: �0.9 to 1.0.

(B) Cleaned aortae from 6-month-old male WT and apoE null mice analyzed by real-time qPCR. Results show mean ± SE, n = 4. p = 0.012 by two-tailed t test.

(C and D) Cleaned aortae analyzed for hydroxyproline content (mean ± SD, n = 3) or western blotted for FN, respectively.

(E) Lox immunostaining (red) of uninjured and injured femoral arteries. DAPI-stained nuclei are shown in blue. Dashed lines show the IEL and EEL. M, media; NI,

neointima. Middle panels show enlargements of boxed regions. Scale bar represents 50 mm.

(F) Thoracic aortae of four 6-month-old WT and four apoE null mice were cleaned of adventitia, opened longitudinally, and analyzed by AFM, indenting into the

luminal surface at > 20 distinct nonlesioned locations. The mean elastic modulus was calculated for each mouse and graphed as a Tukey box and whisker plot;

p = 0.029 by two-tailed Mann-Whitney test.
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(apoE-HDL). ApoE-HDL has a well-established role in removing

cholesterol from peripheral cells and delivering it to the liver in

a process called reverse cholesterol transport, but several

reports using cultured cells have indicated that the effects of

apoE extend beyond regulation of plasma lipid levels (Ishigami

et al., 1998, 2000; Kothapalli et al., 2004; Swertfeger and Hui,

2001; Symmons et al., 1994). Early in vivo studies even sug-

gested that a lipid-independent effect of apoE could protect

against atherosclerosis (Thorngate et al., 2003), though the

basis for this observation has remained elusive. We now show

that the inhibitory effect of apoE-HDL on ECM gene expression

and arterial stiffening is cholesterol-independent and sufficient

to attenuate atherosclerosis. Thus, in addition to its established

effect on reverse cholesterol transport, HDL contributes to

healthy arterial biomechanics, and this effect is causal for

cardiovascular protection.

RESULTS

ECM Gene Expression Suppressed by ApoE and HDL
We interrogated GEO data set GSE13865 that transcript

profiled atherosclerosis-prone and atherosclerosis-resistant

regions of 4-month-old wild-type (WT) and apoE null mouse

aortae (Figure 1A). Genes that were differentially expressed in

the athero-prone regions were identified and subjected to

enrichment analysis against the Gene Ontology (GO) database.

This analysis ranked ‘‘Extracellular Region’’ (GO: 0005576) and

‘‘Extracellular Region Part’’ (GO: 0044421) as the most enriched

within the ‘‘Cellular Component’’ (GO: 0005575) functional

grouping (Figure S1A). Within the ‘‘Extracellular Region Part,’’

two functional groups were highly enriched: the ‘‘Extracellular

Matrix’’ (GO: 0031012) and ‘‘Plasma Lipoprotein Particles’’

(Figure S1B), the latter of which was expected given the dele-

tion of apoE. Several collagen genes, including the highly ex-

pressed type I collagen, were differentially expressed in apoE

null aortae (Table S1A; Figure 1A, asterisks).

The effect of apoE knockout on several collagen mRNAs was

confirmed by real-time quantitative PCR (qPCR) (Figure 1B;

Table S1B). Real-time qPCR also revealed an apoE-dependent

regulation of fibronectin (FN) mRNA that was not detected by

transcript profiling (Figure 1B). Collagen protein (measured as

hydroxyproline content) and FN protein levels were increased

in the aortae of apoE null mice as compared to WT controls

(Figures 1C and 1D, respectively). Similarly, increased

collagen-I protein was readily detected in the media and neoin-

tima of immunostained aortic root sections from apoE null, but

not WT, mice (Figure S1C). In contrast, elastin mRNA levels

were not strongly affected by deletion of apoE (Figure S1D;

Tables S1A and S1C).

Lysyl oxidase (Lox) crosslinks adjacent collagen triple helices

and confers tensile strength to the collagen fibril (Csiszar, 2001;

Kagan and Li, 2003). Our transcript profiling analysis revealed
(G) Cleaned aortae from 6-month-old male WT and apoE null mice were divide

from the aortae and analyzed by real-time qPCR for collagen-I, FN, and Lox gen

n = 5. p = 0.036 by two-tailed t test.

See also Figure S1 and Tables S1A–S1C.
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an increase in the expression of Lox mRNA in apoE null arteries

as compared to WT (Figure 1A, asterisk). Lox mRNA and protein

induction in apoE null arteries was confirmed by real-time qPCR

and immunostaining (Figures 1B and 1E, respectively; Table

S1A). Note the increased Lox protein in apoE null versus WT

arteries (Figure 1E, top and middle panels), and even greater

increased expression in the media and neointima of apoE null

mice after fine wire femoral artery injury (Figure 1E, bottom

panels). In contrast, the gene expression of procollagen-

lysine,2-oxoglutarate 5-dioxygenase 3 (PLOD3), which catalyzes

the hydroxylation of lysine residues in collagens, was similar

in WT and apoE null arteries (Figure S1E). Upregulation of

collagen-I protein and enhanced crosslinking by elevated Lox

expression has the potential to increase tissue stiffness; indeed,

atomic force microscopy (AFM) in force mode showed an

increase in the median elastic modulus of apoE null femoral

arteries as compared to WT controls (Figure 1F). Further studies

focused on collagen-I and Lox, which regulate tensile strength

and tissue elasticity, and FN, which interacts with collagen

functionally and has been associated with stiffness-dependent

cell proliferation (Brüel et al., 1998; Kadler et al., 2008; Kagan

and Li, 2003; Klein et al., 2009).

Deletion of apoE in mice leads to hyperlipidemia and sponta-

neous atherosclerosis as well as an exaggerated response to

vascular injury (Ali et al., 2007; Matter et al., 2006; Piedrahita

et al., 1992; Plump et al., 1992). Since VSMCs dedifferentiate

at sites of injury and atherosclerotic lesion formation and begin

to produce relatively large amounts of ECM, we considered the

possibility that the matrix-regulatory effects detected in apoE

null mice were secondary to lesion formation. However, several

lines of evidence collectively indicated that the changes we

observed in collagen-I, FN, and Lox gene expression were not

merely consequences of disease. First, we could restore apoE

expression in the liver of young apoE null mice by infection

with AAV-apoE3 (Kitajima et al., 2006), and this resulted in

near-WT levels of Col1a1, Col1a2, FN, and Lox gene expression

quickly (within 2 weeks; compare Figures S1F and S1G to S1H

and S1I). Second, the Col1a2, FN, and Lox genes were similarly

upregulated in athero-resistant as well as athero-prone regions

of the apoE null aortae as compared to WT (Figure 1A, asterisks,

and Figure 1G; Table S1C). Third, purified apoE3, at a physiolog-

ical concentration (Wientgen et al., 2004), reduced levels of

Col1a1, Col1a2, FN, and Lox protein (Figures 2A and 2B) and

mRNAs (Figures 2C–2F) in cultured VSMCs: these effects were

specific to dedifferentiated VSMCs (Figure 2B) and dose and

time dependent (Figures S2A–S2D). We conclude that apoE

has a primary suppressive effect on expression of the VSMC

collagen-I, FN, and Lox genes. A similar pattern of inhibition

was seen in human VSMCs but not human aortic endothelial

cells (Figures S2E and S2F).

The majority of apoE circulates as a component of triglyc-

eride-rich lipoproteins and HDL, but apoE is not present in
d into arch (ascending) and thoracic (descending) regions. RNA was isolated

e expression. Results are normalized to 18S rRNA. Results show mean ± SE,
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Figure 2. ApoE and HDL Inhibit ECM Expression in Dedifferentiated VSMCs

(A) Serum-starved VSMCs isolated from WT mice were incubated with 10% FBS in the absence (control; C) or presence of 2 mM apoE3 for 24 hr. The cells were

fixed and stained for collagen-I, FN, or Lox and visualized by immunofluorescencemicroscopy. Scale bar represents 50mm. The IgG control used FBS-stimulated

cells.

(B) VSMCs were isolated from C57BL/6 aortae by explant cultures (dedifferentiated phenotype) or by collagenase digestion (differentiated phenotype).

Asynchronous cells of each phenotype were incubated with 10% FBS in the absence (control, C) or presence of 2 mM apoE3 for 24 hr and then stained for

collagen-I (red). Blue: DAPI-stained nuclei. Scale bar represents 50 mm. The figure shows a representative result.

(C and D) Serum-starved VSMCs isolated from WT mice were incubated with 10% FBS in the absence (control, C) or presence of 2 mM apoA-I or apoE3 or

50 mg/ml HDL or LDL for 24 hr. RNA levels were determined by real-time qPCR.

(E and F) The experiment in (C) and (D) was repeated except we compared the effects of 2 mM apoE3 to its N- and C-terminal fragments.

Real-time qPCR results show mean ± SD of duplicate PCR reactions and are representative of at least three independent experiments.

See also Figure S2.
low-density lipoprotein (LDL). We therefore compared HDL

and LDL for their abilities to regulate matrix protein gene ex-

pression in primary mouse VSMCs. HDL efficiently suppressed

collagen-1, FN, and Lox gene expression, while LDL failed to

inhibit these genes (Figures 2C and 2D). ApoA-I, the major

apolipoprotein in HDL, was unable to decrease expression of
1262 Cell Reports 2, 1259–1271, November 29, 2012 ª2012 The Aut
these matrix genes (Figures 2C and 2D), nor was HDL after

depletion of apoE (Figure S2G). All three isoforms of human

apoE inhibited ECM gene expression (Figure S2H). Thus,

suppression of collagen-I, FN, and Lox gene expression is

a selective property of apoE and apoE-containing HDL rather

than a general property of apolipoproteins and lipoproteins.
hors



ApoE3 consists of a 22 kDa N-terminal domain that binds to the

LDL receptor and a 10 kDa C-terminal domain required for

lipid binding and regulation of reverse cholesterol transport

(Weisgraber, 1994). Expression of Col1a1, Col1a2, FN, and

Lox mRNAs were all repressed by the N-terminal domain but

not by the C-terminal lipid-binding domain of apoE3 (Figures

2E and 2F).

Mechanosensitive Collagen-I and Fibronectin Gene
Expression Regulated by Cox2 and Circumvented
by ApoE
Collagen-I expression correlates directly with ECM stiffness in

fibroblasts (Liu et al., 2010). We therefore asked if the effects

of apoE on ECM gene expression might be affected by

substratum stiffness itself. VSMCs were cultured on biocompat-

ible FN-coated polyacrylamide hydrogels prepared with elastic

moduli that span the stiffness range of healthy and diseased

arteries (�2,000 and 25,000 Pa; Klein et al., 2009; hereafter

called low and high stiffness, respectively). The expression of

Col1a1, CoI1a2, FN, and Lox mRNAs (Figures 3A and 3B) as

well as Lox enzymatic activity (Figure S3A) were all positively

regulated by substratum stiffness, and this stiffness-dependent

upregulation was blocked by apoE3 (Figures 3A, 3B, and S3A).

We conclude that apoE is an inhibitor of mechanosensitive

ECM gene expression.

Collagen-I gene expression is inversely proportional to the

expression of Cox2 in fibroblasts (Liu et al., 2010) and VSMCs

(Figures 3A versus 3E; Figures S2E versus S2F). Previously, we

reported that apoE3 and its N-terminal domain stimulate the

expression of Cox2 mRNA and protein in VSMCs (Ali et al.,

2008; Kothapalli et al., 2004). Consistent with these results,

the Cox2 inhibitor, nimesulide, prevented suppression of the

collagen-I and FN genes by apoE3 in VSMCs whereas the

Cox1 inhibitor, SC560, was without effect (Figure 3C). Cox2

production in VSMCs leads to the production of PGI2, and

VSMCs treated with apoE3 have increased amounts of PGI2 in

their conditioned medium (Ali et al., 2008; Kothapalli et al.,

2004). The PGI2 mimetic, cicaprost, phenocopied the effect of

apoE3 on collagen-I and FN mRNAs (Figures 3D, S3C, and

S3D), and these effects of apoE3 and PGI2 are linked mechanis-

tically because deletion of the PGI2 receptor, called IP, pre-

vented suppression of Col1a1, Col1a2, and FN mRNAs by

apoE (Figures 3D, S3C, and S3D). Thus, regulation of VSMC

collagen-I and FN gene expression by apoE is mediated by the

Cox2-PGI2-IP signaling pathway.

If Cox2 is causally linked to the effect of apoE3 on mechani-

cally driven collagen-I and FN gene expression, then its

response to apoE3 should be mechanosensitive. Indeed, we

found that Cox2 levels (Figure 3E) and activity (Figure S3B)

decline when VSMCs are cultured at a high stiffness character-

istic of vascular lesions. ApoE3 prevents this downregulation

and maintains elevated Cox2 gene expression (Figure 3E) and

enzymatic activity (Figure S3B) despite substrate stiffening.

Moreover, the apoE3 effect on mechanosensitive Cox2 expres-

sion can explain the suppressive effects of apoE3 on collagen-I

and FN gene expression because (1) Cox2 inhibition with nime-

sulide was sufficient to increase levels of collagen-I and FN

mRNAs in cells cultured on a low stiffness substratum (Figure 3F),
Cell Re
and (2) ectopic expression of Cox2 was sufficient to reduce

levels of collagen-I and FN mRNAs in VSMCs cultured on a rigid

substratum (Figure 3G). Thus, the downregulation of Cox2 on

a stiff substratum leads to increased collagen-I and FN gene

expression in VSMCs, and apoE limits synthesis of these

ECM proteins by preventing the stiffness-dependent down-

regulation of Cox2 (Figure 3H). Similar results were seen with

collagen-coated hydrogels (Figures S3E and S3F), indicating

that the effects were stiffness-specific rather than matrix-protein

specific.

We considered the possibility that the suppressive effects of

apoE3 and/or a soft substratum on ECM mRNAs might be due

to increased VSMC differentiation because ECM synthesis

is minimal in differentiated (also called ‘‘contractile’’) VSMCs

(Owens et al., 2004; Thyberg et al., 1990, 1997). However,

three different markers of differentiated VSMCs were slightly

decreased, rather than increased, in response to a low-stiffness

substratum (Figure S3G) and apoE3 had no effect on SM-marker

expression regardless of substratum stiffness (Figure S3G).

Thus, apoE3 directly controls mechanosensitive ECM pro-

duction in dedifferentiated VSMCs rather than indirectly inhibit-

ing ECM synthesis downstream of a primary effect on VSMC

differentiation.

miR-145 Mediates the Suppressive Effect
of ApoE on Lox Gene Expression
In contrast to collagen-I and FN, ectopic expression of Cox2

on a rigid substratum (Figure 3G) or Cox2 inhibition on a soft

substratum (Figure S4A) failed to alter Lox gene expression.

Deletion of IP (Figure S4B) or inhibition of Cox2 also failed to

overcome the inhibitory effect of apoE3 on Lox gene expression

(Figure S4C) or enzymatic activity (Figure S4D). Thus, the effect

of apoE3 on mechanosensitive Lox gene expression is Cox2

independent. We used a genome-wide approach to identify

potential upstream regulators of Lox gene expression in vivo.

We injured the femoral arteries of smooth muscle actin (SMA)-

GFP transgenic mice, a line in which GFP levels are controlled

by the a-SMA promoter (Yokota et al., 2006). Injury-induced

VSMC proliferation can be visualized in this mouse line by the

loss of GFP fluorescence because the SMA promoter is not

expressed in proliferating (dedifferentiated) VSMCs (Klein et al.,

2009). We microdissected these GFP-negative femoral artery

regions and determined global mRNA expression patterns

relative to uninjured contralateral controls. Differentially ex-

pressed mRNAs and miRNAs were superimposed on the

Ingenuity database of molecules experimentally demonstrated

or highly predicted to regulate Lox. This analysis identified

miR-145 as a putative direct upstream Lox mRNA regulator

(Figure 4A, box).

miR-145 levels were strongly reduced in apoE null arteries as

compared to WT (Figure 4B), consistent with upregulation of

Lox mRNA seen under the same conditions (refer to Figure 1B).

Moreover, apoE3 increased miR-145 in cultured VSMCs (Fig-

ure 4C), consistent with the downregulation of Lox mRNA (refer

to Figure 2D). This inverse relationship between miR-145 and

Lox mRNA is causal, because ectopic miR-145 expression

reduced Lox mRNA levels whereas an anti-miR-145 blocked

the upregulation of Lox mRNA in response to apoE3 (Figure 4D).
ports 2, 1259–1271, November 29, 2012 ª2012 The Authors 1263



Figure 3. Mechanosensitive Gene Expression Regulated by ApoE

For all panels, Col1a1, Col1a2, FN, Lox, or Cox2 mRNAs were quantified by real-time qPCR and plotted relative to 18S rRNA. For panels (A)–(G), results show

mean ± SD of duplicate PCR reactions and are representative of at least three independent experiments.

(A and B) Serum-starved primary mouse VSMCs were incubated with 10% FBS in the absence (control, C) or presence of 2 mM apoE3 on high stiffness or low

stiffness FN-coated hydrogels for 24 hr.

(C) The experiment in (A) and (B) was repeated except that apoE-treated VSMCs on plastic were given 1 mM nimesulide (Nimes; Cox2 inhibitor) or 1 mM SC560

(Cox1 inhibitor).
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Neither collagen-I nor FN mRNA levels were affected by ectopic

expression or inhibition of miR-145 (Figure 4E and SF4E). Thus,

miR-145 induction selectively transduces the apoE3 signal to

repress Lox mRNA. The combined effects of apoE3 on Cox2

and miR-145 account for its regulation of the collagen-I, FN,

and Lox genes (Figure 4F).

Inhibition of Arterial Stiffening Reduces Atherosclerosis
If suppression of ECM expression and arterial stiffening

contribute to the cardiovascular protective effect of apoE, then

a blockade of arterial stiffening should reduce atherosclerosis

in apoE null mice. ApoE null mice on a high-fat diet were treated

with the selective lysyl oxidase inhibitor, BAPN (Brüel et al., 1998;

Kagan and Li, 2003; Tang et al., 1983). The lysyl oxidase family

crosslinks collagen fibers and confers its tensile properties

(Brasselet et al., 2005; Brüel et al., 1998; Wells, 2008). Lysyl

oxidases also crosslink elastin, but several studies have shown

that the net effect of BAPN treatment has been a reduction in

tissue stiffness (Brüel et al., 1998). Blood pressure is not affected

by BAPN (Berry et al., 1981; Iwatsuki et al., 1977; Kanematsu

et al., 2010).

We treated apoE null mice on a high-fat diet with vehicle or

BAPN. BAPN led to a notable reduction in arterial stiffness as

compared to vehicle-treated controls (Figure 5A). BAPN also

inhibited the development of atherosclerosis as determined by

Oil Red O-staining of isolated aortae (Figures 5B and 5C). More-

over, the degree to which lesion formation was reduced (�50%)

agreed reasonably well with the degree to which BAPN reduced

arterial stiffness (Figure 5A). These inhibitory effects occurred

despite the extraordinary high plasma cholesterol levels seen

in apoE null mice on a high-fat diet (Figure 5D). Body weight

was unaffected by BAPN (Figure 5E). Thus, the inhibitory effect

of apoE on arterial stiffness confers protection against athero-

sclerosis, and pharmacologic regulation of arterial biomechanics

can attenuate disease even when plasma cholesterol remains

extremely high.

BAPN also reduced lesion area in aortic roots (Figures 6A

and 6B), and the magnitude of the effect was similar to what

we observed in the thoracic aorta. We then analyzed the compo-

sition of these aortic root lesions. Second harmonic generation

two-photon microscopy revealed a clear reduction in highly

structured collagen within the neointimas of lesions from the

BAPN-treated mice (Figure 6C, top panel; Figure 6D, left)

whereas total collagen-I levels were minimally affected (Fig-

ure 6C, bottom panels; Figure 6D, right). We observed chimeric

staining patterns for a-SMA (a marker of differentiated VSMCs)

in lesions regardless of BAPN treatment (Figures 7A and 7B).

However, CD68-staining revealed that macrophage abundance

in lesions was markedly reduced in the BAPN-treated mice
(D) The experiment in (C) was repeated using WT and IP null VSMCs treated with

(E) The experiment in (A) was analyzed for Cox2 mRNA.

(F) Serum-starved primary mouse VSMCs were incubated with 10% FBS in the

stiffness FN-coated hydrogels for 24 hr.

(G) Primary VSMCswere isolated frommice expressing Cre-dependent Cox2. The

with adenoviruses encoding LacZ or Cre, and directly stimulated with 10% FBS

(H) Model of the stiffness- and apoE-regulatory effects on Cox2, collagen-I, FN,

See also Figure S3.
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(Figures 7A and 7B). We then prepared ECM-coated hydrogels

at the stiffness of healthy and diseased arteries to determine if

the adhesion of THP-1 monocytes (Figure 7C) or primary mouse

thioglycollate-elicited peritoneal macrophages (Figure 7D) was

affected by substratum stiffness. Although the extent of cell

adhesion depended on the subendothelial ECM protein used

to prepare the hydrogel, in every case cell adhesion to ECM

was strongly reduced when we softened the ECM from the

high stiffness of lesions to the low stiffness of healthy arteries

(Figures 7C and 7D). Thus, the effect of BAPN on macrophage

abundance in vivo can be phenocopied by direct manipulation

of ECM stiffness in vitro. Collectively, these results reveal

a specific aspect of atherogenesis affected by arterial stiffness

and connect stromal ECM production and arterial stiffening to

the inflammatory component of lesion development.

DISCUSSION

Our results identify apoE and apoE-containing HDL as negative

regulators of ECM gene expression and arterial stiffening. This

effect does not require the apoE lipid binding domain and

confers cardiovascular protection independent of plasma

cholesterol levels. We detected the suppressive effect of apoE

on collagen-I, FN, and Lox expression selectively in dedifferenti-

ated VSMCs. This result suggests that apoE-HDL does not affect

homeostatic arterial stiffness in contractile VSMCs, but rather

acts when dedifferentiated VSMCs begin to synthesize ECM

and stiffen their microenvironment during the onset of CVD.

Mechanosensitive Regulation of Cox2 and Lox
Expression Opposed by ApoE-HDL
Our initial transcript profiling results, as well similar results by

others (Hui and Basford, 2005), suggested that apoE would be

an overall inhibitor of ECM gene expression. However, a more

detailed analysis of apoE action on deformable substrata indi-

cated that apoE-HDL actually has a much more subtle role,

and that it selectively interferes with the increase in collagen-I,

FN, and Lox gene expression that occurs in response to sub-

stratum stiffening (Figure 4F). These results suggest the exis-

tence of a mechanically sensitive feed-forward loop that can

accelerate ECM synthesis, matrix remodeling, and arterial stiff-

ening (Figure 4F). By short-circuiting this loop, apoE-HDL would

restrain stiffening during the progression of atherosclerosis.

Cox2 regulates the production of PGI2 in VSMCs, and PGI2
inhibits collagen-I and FN gene expression. Moreover, Cox2

gene expression is mechanosensitive, with efficient expression

seen only when VSMCs are on soft surfaces characteristic of

normal arteries. We posit that the inverse relationship between

ECM stiffness and Cox2 expression represses collagen-I/FN
2 mM apoE3 or 200 nM cicaprost (Cica; stable PGI2 mimetic).

absence (control, C) or presence of 1 mM nimesulide on high stiffness or low

cells were seeded overnight on FN-coated coverslips, serum-starved, infected

for 24 hr.

and Lox expression.
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Figure 4. miR145-Dependent Lox Gene Expression by ApoE

(A) Upstream regulators of Lox showing differential gene expression after vascular injury as determined by Ingenuity Pathway Analysis. Green and red represent

induction and repression, respectively.

(B) Aortae from 6-month-old WT or apoE null mice were harvested and analyzed by real-time qPCR for miR-145. Results show mean ± SE, n = 4, p = 0.0002 by

two-tailed t test.

(C) Serum-starved primary mouse VSMCs were incubated with 10% FBS in the absence (control, C) or presence of 2 mM apoE for 24 hr. RNA was isolated and

analyzed by real-time qPCR for miR-145.

(D and E) VSMCs were transfected with pmiR-145 or anti-miR-145, serum starved for 48 hr and stimulated with 10% FBS in the absence (control, C) or presence

of 2 mM apoE3 for 24 hr. RNA was isolated and analyzed by real-time qPCR for Lox, Col1a1, and FN.

(F) Regulation of collagen-I, FN, and Lox gene expression by apoE through Cox2 and miR-145.

In (C–E), results show mean ± SD of duplicate PCR reactions and are representative of at least three independent experiments.

See also Figure S4.
synthesis and contributes to healthy compliance in healthy

vessels (Figure 4F). Upon an atherogenic insult, however, the

efficacy of this mechanism is reduced as dedifferentiated

VSMCs accumulate and ECM production increases. ApoE-

HDL helps to maintain negative feedback on collagen-I and FN
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synthesis by circumventing mechanical control of Cox2 gene

expression (Figure 4F). In apoE null mice, and perhaps in humans

with insufficient apoE-HDL, the stiffening-dependent loss of

Cox2 would proceed unabated and exacerbate ECM synthesis,

arterial stiffening, and lesion development. Since Cox2 limits
hors



Figure 5. Reduced Atherosclerosis in ApoE

Null Aortae Softened In Vivo with BAPN

(A) AFMof aortae from�2-month-old old apoE null

mice fed a high-fat diet and treated with vehicle

(PBS; n = 5) or BAPN (n = 4) for 16 weeks. Data are

presented as a Tukey box and whisker plot with

a 1-tailed Mann-Whitney test for softening by

BAPN; p = 0.032.

(B and C) Oil red O staining and lesion quantifi-

cation in aortae of apoE null mice treated with PBS

(n = 17) or BAPN (n = 15). Data are presented as

Tukey box and whisker plots; p = 0.019 by two-

tailed Mann-Whitney test. Scale bar represents

1 mm.

(D) Plasma cholesterol levels (mean ± SD) in PBS

(n = 10) andBAPN (n = 9) treatedmicemeasured at

the time of sacrifice. The arrow shows the

cholesterol level in wild-type mice on a western

diet (Nakashima et al., 2004).

(E) Mice treated with PBS (n = 17) or BAPN (n = 17)

from both groups were weighed every 4 weeks

until sacrifice. p > 0.05 by two-way ANOVA.

Results show mean ± SD.
collagen-I expression, an increase in arterial stiffness may be

a contributing factor to the cardiovascular hazards associated

with chronic use of selective Cox2 inhibitors (FitzGerald, 2003).

ApoE also suppresses Lox expression in VSMCs. The effect of

apoE on Lox is independent of Cox2 but strongly dependent on

the upregulation of miR-145. It is not yet know if apoE-HDL

signaling to miR-145 and Cox2 involves distinct apoE receptors

or divergent signaling downstream of a single receptor. The

best-studied apoE receptors are LDL receptor (LDLR), LRP,

and heparin sulfate proteoglycan (Boucher et al., 2003; Nimpf

and Schneider, 2000; Strickland et al., 2002). Our previous report

indicated that Cox2 induction by apoE is likely independent of

these receptors (Ali et al., 2008). Downregulation of miR-145

and its bicistronic partner, miR-143, has been implicated in the

phenotypic switch of VSMCs from contractile (differentiated) to

synthetic (dedifferentiated) states (Boettger et al., 2009; Cordes

et al., 2009). Consistent with these reports, we saw a large

decrease in miR-145 at sites of vascular injury, a setting in which

VSMC dedifferentiation is occurring. However, apoE3 strongly

increases miR-145 but does not affect smooth muscle differen-

tiation as judged by our marker analysis. Thus, miR-145 downre-

gulationmay contribute to the dedifferentiation of VSMCs, but its

upregulation is insufficient for VSMC differentiation. The collec-

tive work of others (Boettger et al., 2009; Cordes et al., 2009;

Xin et al., 2009) also suggests a complex and incompletely

understood role for miR-145 in VSMC differentiation.
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Implications for HDL Biology
Many studies have concluded that HDL

protects against cardiovascular disease,

and pharmacological treatments and/or

lifestyle changes that elevate HDL have

become engrained into Western medical

practice. Canonically, HDL is thought to

confer cardiovascular protection by stim-

ulating reverse cholesterol transport, the
movement of excess cholesterol from peripheral tissues back

to the liver for excretion from the body (Mahley et al., 2006; Roth-

blat and Phillips, 2010). However, two major studies have

recently questioned the importance of high HDL levels in cardio-

vascular protection. One clinical study, AIM-HIGH, increased

HDL in response to slow-delivery niacin yet failed to show

reduced cardiovascular risk (Nicholls, 2012; Nofer, 2012). More-

over, a large-scale mendelian randomization analysis found that

increases in plasma HDL are not sufficient to reduce the risk of

myocardial infarction (Voight et al., 2012). Our data may help to

reconcile these conflicting reports because apoE-HDL is rela-

tively rare, comprising only �6% of the total HDL protein (Weis-

graber and Mahley, 1980). Cardiovascular protective effects

associated with elevated apoE-HDL may escape detection in

clinical and population genetics analyses that rely on changes

in total plasma HDL levels.

Arterial Biomechanics and CVD
Atherosclerosis develops focally at sites of disturbed flow

(Davies, 2009; Garcia-Cardena and Gimbrone, 2006; Gimbrone

et al., 2000). In this context, we note that Cox2 production

by endothelial cells is increased at sites of disturbed flow

(Dai et al., 2004), and that PGI2 is an important Cox2 product

of endothelial cells (Fitzgerald et al., 1987; Narumiya et al.,

1999) as it is in VSMCs. Thus, disturbed flow should enhance

PGI2 production focally, which could then act in a paracrine
vember 29, 2012 ª2012 The Authors 1267



Figure 6. Reduced Collagen Structure and

Macrophage Abundance in Atherosclerotic

Lesions of BAPN-Treated Mice

(A and B) Oil red O staining and lesion quantifica-

tion in aortic roots of apoE null mice treated with

PBS (n = 15) or BAPN (n = 17). Data presented as

Tukey box and whisker plots; p < 0.0001 by two-

tailed Mann-Whitney test. Scale bar represents

200 mm.

(C) Second harmonic generation detection of

neointimal collagen. Top panels show composites

of three serial second harmonic generation (SHG)

images of an aortic root lesion from a PBS- or

BAPN-treated mouse; collagen SHG signal and

the elastin autofluorescence signal are pseudo-

colored green and red, respectively. Bottom

panels show composites of the same lesions

stained for total collagen-I (red) and nuclei (DAPI;

blue). Composite positions are indicated by

arrowheads. Scale bar represents 100 mm. NI,

neointima.

(D) Double-blind quantitation of lesion images

from mice treated with PBS (n = 18) and BAPN

(n = 19). Statistical significance was determined

by chi-square test.
manner to limit collagen-I and FN synthesis by proximal dediffer-

entiated VSMCs. While this effect should be atheroprotective,

the fact that lesions prefer to form at sites of disturbed flow indi-

cates that reduced collagen and FN expression are not sufficient

to overcome other atherostimulatory effects of disturbed flow.

Nevertheless, our data do support the notion that loss of this

effect (e.g., in apoE null mice and perhaps humans with low

apoE-HDL) likely contributes to arterial stiffening and lesion

formation by reducing endothelial PGI2 production. Arterial

stiffness in vivo is regulated by vascular tone as well as ECM

composition, and PGI2 is a potent vasodilator (Fitzgerald et al.,

1987; Narumiya et al., 1999). Tone and ECM composition may

be linked through the Cox2-PGI2 pathway.

Monocyte/macrophage infiltration into the vessel wall con-

tributes profoundly to atherosclerosis because subendothelial

macrophages develop into the lipid-laden foam cells that popu-

late lesions. Circulating monocytes adhere to intimal endothelial

cells and begin the process of macrophage differentiation

and transmigration into the subendothelial space. Our in vivo

studies show that arterial stiffness is critical to this process.

Arterial softening with BAPN strongly reduces macrophage

abundance in lesions, and our hydrogel experiments show

that ECM softening inhibits the adhesion of monocytes and

macrophages to FN and collagen-IV, components of the suben-

dothelial ECM. Endothelial permeability is also sensitive to ECM

stiffness (Huynh et al., 2011). These results raise the possibility
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that pharmacological control of arterial

stiffness may complement the effect of

cholesterol-lowering drugs in treating

CVD by regulating the inflammatory

component of atherosclerosis. Although

the extrapolation of results from mice to

humans requires caution, our data fit
well with epidemiologic studies identifying arterial stiffness as

a cholesterol-independent risk factor for a first cardiovascular

event in humans (Duprez and Cohn, 2007; Mitchell et al., 2010).

EXPERIMENTAL PROCEDURES

Expression Profiling

Gene Expression Omnibus (GEO) data set GSE13865 was downloaded, pro-

cessed, and analyzed using Partek Genomics Suite. The same software was

used to determine differential gene expression in injured versus uninjured

arteries of SMA-GFP mice. Genes differentially expressed at sites of injury

were then analyzed using Ingenuity Pathway Analysis software (http://www.

ingenuity.com). See Extended Experimental Procedures for details.

Cell Culture

Primary explant murine VSMCs were isolated from 10- to 12-week-old male

C57BL/6 (WT), IP null, and conditional Cox2-expressing mice as described

(Cuff et al., 2001). Near confluent monolayers were serum-starved for 48 hr

before stimulation with 10% fetal bovine serum (FBS) with or without apolipo-

protein, lipoprotein, or cicaprost. Fibronectin-coated hydrogels were prepared

with elastic moduli that approximate the stiffness of healthy or diseased

arteries (Klein et al., 2009). Differentiated murine aortic VSMCs and thioglycol-

late-elicited peritoneal macrophages were isolated similarly to described

procedures (Golovina and Blaustein, 2006; Hodge-Dufour et al., 1997).

BAPN Treatment of ApoE Null Mice

The effect of BAPN on atherosclerosis was determined using 8-week-old

males fed a high-fat diet and given PBS or BAPN for 16 weeks. Aortae were

isolated from the heart to the diaphragm, and a small portion of the thoracic

http://www.ingenuity.com
http://www.ingenuity.com


Figure 7. Matrix Stiffness Regulates Mono-

cyte/Macrophage Adhesion to Substratum

(A) Aortic root lesions of apoE null mice treated

with PBS (n = 15) or BAPN (n = 16) were stained

with markers for macrophages (anti-CD68, red)

and VSMCs (anti-SMA, green). Scale bar repre-

sents 200 mm.

(B) Quantification of aortic root sections stained

positive for CD68 (p = 0.001) and SMA (p = 0.36).

Data are presented as Tukey box and whisker

plots. The p values are from two-tailed Mann-

Whitney tests.

(C and D) THP-1 monocytes (C) or primary murine

thioglycollate-elicited peritoneal macrophages (D)

were fluorescently labeled by incubation with

calcein-AM and added to high-stiffness (H) or

low-stiffness (L) ECM-coated hydrogels for 4 hr

at 37�C. The total numbers of Calcein-AM labeled

cells were counted in five randomly selected

fields. Results show mean ± SD; n = 4. The

p values were determined by two-tailed t test.
aortae near the diaphragm was used to determine the elastic modulus. The

remaining portions of aortae and the aortic roots were used to quantify

atherosclerotic lesion formation by Oil-Red O staining. Sectioned aortic roots

were also stained for CD68 and SMA. Blood was collected at the time of

sacrifice for determination of total plasma cholesterol levels. See Extended

Experimental Procedures for further details.
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