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1. I N T R O D U C T I O N  

In this note we are concerned with the problems of approximating a locally unique zero x* of the 
equation 

F(x )  + G(x) -- 0, (1) 

in a Banach space Ex, where F , G  are nonlinear operators defined on U(xo, R) = {x E Et  I 
IIx - x01[ ~ R} _C E1 with values in a Banach space E2. 

Yamamoto in [1] provided a comparison list for almost all known results until approximately 
1986 for a posteriori error bounds for Newton's method. We note that  this list will be incomplete 
today. See [2-5] for example and the references there after 1986. Since then, he a t tempted 
(sometimes with Chen) to extend some of the results (but not all) obtained in [1] to be valid for 
Newton-like methods, by applying the same unifying principle. However, Yamamoto or others 
have not found results of the type we present here for Newton-like methods (see in particular 
Remark 1 that  follows). We note that  they have for Newton's method only [1]. 

Chen and Yamamoto in [6] established a convergence theorem for the Newton-like iteration 

xn+l = xn - A ( x n ) - l ( F ( x n )  + G(x~)), for n _> 0. (2) 

Here A(xn)  denotes a linear operator which is a conscious approximation of the Frechet derivate 
F'(xn)  of F evaluated at x = Xn for n > 0. They  also provided error bounds for the same 
iteration. 

Here we show how to improve their error bounds. 

2. C O N V E R G E N C E  ANALYSIS  

The following conditions were considered in [6] for n = 0. 
We assume that  A(xn)  -x exists and for all xn, x, y E U(xo, r) C_ U(xo, R), t E [0, 1] 

I IA(xn) - l (A(x)  - A(xn))ll <_ vn(r) + bn, 

n A ( x n ) - l ( F ' ( x + t ( y - x ) ) - A ( x ) ) l l  < _ w , ~ ( r + t n y - x [ I ) - v n ( r ) + c n ,  and 

I IA(xn)-I(G(x)  - G(Y))II -< en(r)[Ix - YlI, 

(3) 
(4) 
(5) 
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zn = zn(r)  = 1 - vn(r)  - bn, 

hn,i = ¢pn,i(r) + Cn,i(r),  

the  equat ions  

where wn(r + t) - vn(r), t > 0 and en(r )  are nondecreasing nonnegat ive  functions wi th  wn(O) = 
vn(O) = en(O) = 0 for all n _> 0, vn(r)  are differentiable, v~n(r) > 0 for all r E [0,R], and the  
constants  bn,cn satisfy bn >_ O, cn >_ O, and bn+cn < 1 for all n _> 0. I t  is convenient  to  in t roduce 
for all n, i > 0 

an = I IA ( zn ) - I (F (xn )  + G ( x , . , ) ) l l ,  ~ n , i ( r )  = a i  - r + c~,i wn(t)  dt, 

Cn(r) = ~ , i  en(t) dt, ~ , i  = Zn(n)  -1, 

r n  = Ilxn - x o l h  an  = I l x n + l  - xn l l ,  

(/0 ) r = an + CO,n (wo(rn + t) + en(rn + t)) dt + (bn + Cn - 1)r , 

(i ) r = an + an,n (wn(rn + t) + en(rn + t)) dt + (bn + Cn -- 1)r , 

(/: ) an = r + C o , n  (wo(rn + t) + en(rn + t)) dt + (bn + an - 1)r , 

(i ) an = r + Cn,n (Wn(r + t) + en(rn + t)) dt + (bn + Cn - 1)r  , 

s o and the  scalar i terat ions { k,n}, {Sk,n} (for each fixed n > 0), given by 

h0,n(s°,~ + r~) 

(o) 

(7) 

(8) 

(9) 

0 s o = s  o for k > 0 ,  (10) 
SO,n = Sn,n = O, k+ l , .  k,n + Co,.Zo(SO,n + r n ) '  

hn,n(Sk,n +rn)  for k > n. (11) 
Sk+X,n = Sk,n + Cn,nZn,n(S~,n + r n ) '  

Then, as in [6, Theorems  1 and 2] and the  remark  in [5, p. 993] we can show the  following 
theorem.  

THEOREM. Le t  F, G : U(xo, R) C_ E1 --* E2 be nonlinear operators. Assume: 

(i) the function ho,o(r) has a unique zero s~ in the interval [0, R] and ho,o(R) <_ O; 
(ii) the following estimates are true: 

hn,n(r + tn) ho,n(r + rn) 
Cn,nZn,n(r+rn) <- CO,nZn(r+rn)' f o r a l l r E  [O,R-rn]  andforeachf ixedn>_O.  (12) 

Then we have the following. 

(a) The scalar iterations o {Sk+l,n} and {Sk+l,n} for k >_ O, given by (10) and (11) are mono- 
tonically increasing and converge to s~ and s~* for each fixed n >_ O, which are the unique 
solutions of equations (6) and (7) in [0, R - sn], respectively with s~* <_ s~ for all n >_ O. 

(b) The Newton-like iteration { Xn } n >_ O, generated by (2) is well defined, remains in U ( xo, s * ) 
for ali n >_ 0 and converges to a solution x* of the  equation F(x)  + C(x)  = O, which is 
unique in U(xo, R). 

(c) The following estimates are true for all n >_ O: 

I lXn+l  Xnl[ ~ S n + l , n + X  Sn,n < o 0 (13) - -  - -  S n + l , n + l  - -  8n,n, 
• , < .  o _ < .  o (14)  IIx* - ~,,11 -< s,~ - s , , , n  Sn  - -  S n , n  SO - -  Sn ,o ,  

I1~* - x,,ll _> I i ,  (15) 
Ilx* - xn[l >_ I**, and (16) 

I~* _< l~., (17) 
where I~, and I** are the solutions of the equation (8) and (9), respectively. 
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REMARK 1. We observe t h a t  our i tera t ion (10) is really i tera t ion (7) in [3]. Hence,  the  esti- 
m a t e s  (13) and  (14) improve  the  corresponding ones in [6, p. 40,45]. Es t ima te s  of the  form (15), 

(16), and  (17) were not  given in [3], bu t  they  were given in [5, p. 989; 4, p. 673; 7, p. 134] (for 
G = 0), when  A ( x )  = F~(x)  and under  special cases of  the  condit ions (3)-(5) .  

REMARK 2. T h e  direct ion of the  inequal i ty  (17) can be reversed if inequali t ies (12) are reversed. 

REMARK 3. Note,  t h a t  the  above results  remain  t rue  if condit ions (3)-(5)  are satisfied for every  

r e [0, R - r=] C_ [0, R]. 

REMARK 4. I f  condi t ions (3)-(5)  are satisfied only for n = 0, then  we can choose vn( r )  = 
Cn,ovo(r), w n ( r )  = em,owo(r),  en ( r )  = Cn,oeo(r), bn = cn,0bo, and  c~ = Cn,0C0 for all n > 1. T h e n  
condi t ions  (3)-(5)  will be  satisfied. Otherwise,  if the  same  condit ions are satisfied only for a fixed 
m > 0, then  the  first m te rms  of (2) can be dropped.  Condi t ions  (3)-(5)  will t hen  be satisfied 

wi th  the  above  choices of  funct ion and  paramete rs .  Moreover,  we can then  set  m = 0. 

REMARK 5. Similar  results  can easily follow if we consider a more  general  Newton-l ike i tera t ion 

of the  form Yn+l = Yn - A ( y n ) - I ( F ( y n )  + G(yn ) ) ,  for all Yo E U(z ,  R )  and n _> 0 (see, also [6, 

p. 39]) .  

REMARK 6. T h e  condit ions (3)-(5)  and  (12) are not  difficult to  realize. For s implici ty  let 

I l A ( x ~ ) - l ( F ( x )  - F(y))II  b~ = sup ~ ,  7= = sup ~n,  
C~n = HX - -  YI] ' z , y e U ( x o , R )  z , y E U ( x o , R - r ~ )  

v=(~) = e .  = 

eo(r)  = 6 0 ,  

v o ( r ) = c 0 ,  

w 0 ( r ) = n 0 ,  

s u p  

eo(r  + rn)  = 6o,,~, 

v0(r + rn) = s0,n, 

wo(r  + rn)  = no,n, 

( H A ( z n ) - I ( A ( z )  - A(Zn))H - bn), 
x , y E U ( x o , R )  

Vn(r -4- rn)  = On,n = sup ( l l A ( x n ) - ~ ( A ( x )  - A(xn))ll  - bn), 
x , y E U ( x o , R - r , ~ )  

An = w ~ ( r )  = sup ( [ I A ( x n ) - l ( F ' ( x  + t ( y  - x ) )  - A(x)H + v~(r )  - On), 
z , y E U ( x o , R )  

. x . , .  = w ~ ( r  + c~) = 

and 

sup (IIA(x.)-X(F'(x + t ( y  - x ) )  - A(x)[[ + v~(r )  - c~), 
x , y E U ( x o , R - r , ~ )  

for all n > 0. I t  can now easily be  seen t h a t  wi th  the  above choices m a n y  na tu ra l  sufficient 

condi t ions  can be given, so t h a t  inequalit ies (12) are satisfied for all n >_ 0. (See, also [7]). One  
can refer to  [8] for some appl icat ions  of  these  ideas to the  solution of integral  equat ions.  

^ 1  - -  / h /81 REMARK 7. We can define the  sequence {s~}, n > 0 by s01 = 0, s~+ 1 = ~= -r t , ,= t  ~ + r~)) /c~,~ 

for all n > 0. 
Then ,  under  the  hypotheses  of  the  theorem,  we can easily show t h a t  

IIx .+1 x=ll < 1 x < - ~ + 1 , ~ + 1 - s ~ , = ,  _ 8 n + l  _ 8 n  8 n + 1 , n + 1  _ 8 n , n  < 80 0 

Ilx* x ~ l l < t "  1 <  . .  < • 0 < s ~  0 
_ - -  _ _ - -  _ 8n,O, - -  8 n 8 n  - -  8n ,  n 8 n  8 n , n  --  

and 

1 for all n _> 0, where  t* = lim~-~oo s~. 

As in R e m a r k  1, we note  the  above two error  es t imates  improve  fur ther  the  cor responding  

resul ts  in [6, p. 40,45]. 
Relevant  work  on the  subjec t  but  following a comple te ly  different approach  can be found in [3] 

and  the  references there.  
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