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1. INTRODUCTION

In this note we are concerned with the problems of approximating a locally unique zero z* of the
equation
F(z) + G(z) =0, (1)

in a Banach space E;, where F,G are nonlinear operators defined on U(zo,R) = {z € E; |
Iz — zo|| £ R} € E; with values in a Banach space E».

Yamamoto in (1] provided a comparison list for almost all known results until approximately
1986 for a posteriori error bounds for Newton’s method. We note that this list will be incomplete
today. See [2-5] for example and the references there after 1986. Since then, he attempted
(sometimes with Chen) to extend some of the results (but not all) obtained in [1] to be valid for
Newton-like methods, by applying the same unifying principle. However, Yamamoto or others
have not found results of the type we present here for Newton-like methods (see in particular
Remark 1 that follows). We note that they have for Newton’s method only [1].

Chen and Yamamoto in [6] established a convergence theorem for the Newton-like iteration

Tnt1 = Tp — A(xn) Y (F () + G(zy)), for n>0. (2)

Here A(z,) denotes a linear operator which is a conscious approximation of the Frechet derivate
F'(zy,) of F evaluated at z = z,, for n > 0. They also provided error bounds for the same
iteration.

Here we show how to improve their error bounds.

2. CONVERGENCE ANALYSIS

The following conditions were considered in [6] for n = 0.
We assume that A(z,)~! exists and for all z,,,z,y € U(zg,7) C U(zo, R), t € [0, 1]

Il A(zn) " (A2) = A(za))l} < va(r) + b, (3)

[ A(zn) 1 (F'(z + t(y — x)) — A@)]| S walr +tlly - zll) = va(r) + ¢, and (4)
lA(za) " (G(z) = G < ea(r)liz ~ yll, (5)
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where wn(r +t) — va(r), t > 0 and e, (r) are nondecreasing nonnegative functions with wy,(0) =
vn(0) = e,(0) = 0 for all n > 0, v,(r) are differentiable, v},(r) > 0 for all » € [0, R], and the
constants b,, ¢, satisfy b, > 0, ¢, > 0, and b,, +¢, < 1 for all n > 0. It is convenient to introduce
forall n,i >0

an = || A(Z) Y (F (z,) + G(zn)), Onir)=a;—r+cn; /Or wy(t) dt,

Zn = 2p(r) =1 —vn(r) — by, Yn(r) =cn /or en(t) dt, Cnyi = zp(ri) 71,

hni = pni(r) + ¥ni(r),  ra=llZn —2ol,  n =|Zas1 — 2,

the equations

T =ap +Con (/Or(wo(rn +1t) + en(rn +t))dt + (bn +cn — 1)1") , (6)
T=0n+Cnpn (/or(wn(rn +t)+en(rn+1t))dt + (bn +cn — l)r) , (M
an =T+ ¢Con (/or(wo(rn +t)+en(rn+1t))dt + (b, +cn — 1)7‘) , (8)
Qn =T+ Cnn (/or(wn(r +t) +en(rn+1t))dt+ (b +cn — l)r) , (9)
and the scalar iterations {sg,n}, {8k,n} (for each fixed n > 0), given by
Son =85,=0, Sphi1.=5n CZ(:Z(E‘ZEQ,;-F::), for k>0, (10)
Sk+l,n = Sk,n + nn(Skin + ) for k>n. (11)

CnnZnn(Skn +7n)’
Then, as in [6, Theorems 1 and 2] and the remark in [5, p. 993] we can show the following
theorem.
THEOREM. Let F,G : U(zo, R) C E, — E» be nonlinear operators. Assume:
(i) the function hgo(r) has a unique zero s in the interval [0, R] and hoo(R) < 0;
(ii) the following estimates are true:
Bon(r+1t,) < hon(r +75)
cn,nzn,n(r +rn) T cO,nzn(T +7n) ’

for allr € [0,R — ry,} and for each fixed n > 0. (12)

Then we have the following.

(a) The scalar iterations {sj, .} and {sgy1n} for k > 0, given by (10) and (11) are mono-
tonically increasing and converge to s}, and s;* for each fixed n > 0, which are the unique
solutions of equations (6) and (7) in [0, R — s}, respectively with s}* < s, for alln > 0.

(b) The Newton-like iteration {z,} n > 0, generated by (2) is well defined, remains in U(zg, s*)
for all n > 0 and converges to a solution z* of the equation F(z) + G(z) = 0, which is
unique in U(zo, R).

(¢) The following estimates are true for all n > 0:

|Tnt1 — Zall < Snt1,n41 = Snin < 3(1)1+l,n+1 - s?z,n? (13)
l2* = Zall < 877 = 8nn < 8}, — 50, < 85— S0 (14)
fz* — zn| > I}, (15)
z* =zl = I, and (16)

nr<I (17)

where I, and I;* are the solutions of the equation (8) and (9), respectively.
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REMARK 1. We observe that our iteration (10) is really iteration (7) in [3]. Hence, the esti-
mates (13) and (14) improve the corresponding ones in {6, p. 40,45]. Estimates of the form (15),
(16), and (17) were not given in [3], but they were given in [5, p. 989; 4, p. 673; 7, p. 134] (for
G = 0), when A(z) = F'(z) and under special cases of the conditions (3)—-(5).

REMARK 2. The direction of the inequality (17) can be reversed if inequalities (12) are reversed.

REMARK 3. Note, that the above results remain true if conditions (3)—(5) are satisfied for every
r€[0,R-ry,) C [0,R].

REMARK 4. If conditions (3)—(5) are satisfied only for n = 0, then we can choose v,(r) =
Cn,0U0(T), Wn(r) = cnowo(r), en(r) = cnoeo(r), bn = cn,obo, and ¢q = cpocp for all n > 1. Then
conditions (3)—(5) will be satisfied. Otherwise, if the same conditions are satisfied only for a fixed
m > 0, then the first m terms of (2) can be dropped. Conditions (3)—(5) will then be satisfied
with the above choices of function and parameters. Moreover, we can then set m = 0.

REMARK 5. Similar results can easily follow if we consider a more general Newton-like iteration
of the form yn4+1 = yn — A(Wn) " (F(yn) + G(yn)), for all yo € U(z, R) and n > 0 (see, also [6,
p. 39]).

REMARK 6. The conditions (3)—(5) and (12) are not difficult to realize. For simplicity let

A(z,)"Y(F(z) - F
_ IA(za)" (F(=) (y))ll, b=  sup  om = sup .
llz - yll 2,y€U (o0, R) z,y€U (z0,R—7n)

n

eo(r) = do, eo(r +15) = bon,

vo(r) = €o, vo{r + rn) = €o,n,
wo(r) = 70, wo(r + ) = No,n,
un(r) =0 = sup ([l A(za) " (A(z) ~ Azn))ll = bn),
z,y€U(zo,R)
Un(r +7n) = Onn = sup (I1A(z2) " (A(z) = A(za))]l - bn),
z,y€U(zo,R~1n)
An=wn(r)=  sup (|A(zn) ' (F'(z +t(y — z)) — A@)|| +on(r) —ca),  and
z,y€U (xo0,R)

Ann = Wn(r +cn) = sup ([ A(zn) "H(F'(z + t(y — z)) — Al)]| + vn(r) — cn),

z,y€U (zo,R—ry)

for all n > 0. It can now easily be seen that with the above choices many natural sufficient
conditions can be given, so that inequalities (12) are satisfied for all n > 0. (See, also [7]). One
can refer to [8] for some applications of these ideas to the solution of integral equations.
REMARK 7. We can define the sequence {s}},n > 0 by s} =0, s}, = sL +(hnn(sh +10))/Cnn
foralln>0.

Then, under the hypotheses of the theorem, we can easily show that

1 1 0 0
|Tns: — zall < Spt+1 — 8n S Snt1n+l — Snn S Spyintl ~ Snno and

l&* — 2all S £° — s < 537 = Snn <85 — 8B < 55— D0,

for all n > 0, where t* = lim, oo S3.
As in Remark 1, we note the above two error estimates improve further the corresponding
results in [6, p. 40,45].

Relevant work on the subject but following a completely different approach can be found in [3]
and the references there.
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