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a b s t r a c t

Let K be an ordinary differential field with derivation ∂ . Let P be
a system of n linear differential polynomial parametric equations
in n − 1 differential parameters, with implicit ideal ID. Given a
nonzero linear differential polynomial A in ID, we give necessary
and sufficient conditions on A for P to be n − 1 dimensional. We
prove the existence of a linear perturbation Pφ of P , so that the
linear complete differential resultant ∂CResφ associated to Pφ is
nonzero. A nonzero linear differential polynomial in ID is obtained,
from the lowest degree term of ∂CResφ , and used to provide an
implicitization for P .
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1. Introduction

The use of algebraic elimination techniques, such as Gröbner bases and multivariate resultants, to
obtain the implicit equation of a unirational algebraic variety is well known (see for instance (Cox
et al., 1997, 1998)). The development of similar techniques in the differential case is an active field of
research. In Gao (2003), characteristic set methods were used to solve the differential implicitization
problem for differential rational parametric equations and, alternative methods are emerging to
treat special cases. In Rueda and Sendra (2010), linear complete differential resultants were used to
compute the implicit equation of a set of linear differential polynomial parametric equations (linear
DPPEs). As in the algebraic case, differential resultants often vanish under specialization and we are
left with no candidate for the implicit equation. This reason prevented us from giving an algorithm
for differential implicitization in Rueda and Sendra (2010). Motivated by Canny’s method (Canny,
1990) and its generalizations in D’Andrea and Emiris (2001) and Rojas (1999), in the present work, we
consider a linear perturbation of a given system of linear DPPEs, and use linear complete differential
resultants to give a candidate for the implicit equation of the system.
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Given a system P (X,U) of n linear ordinary differential polynomial parametric equations x1 =

P1(U), . . . , xn = Pn(U), in n − 1 differential parameters u1, . . . , un−1 (we give a precise statement of
the problem in Section 2), we give an algorithm to decide if the dimension of the implicit ideal ID of
P is n − 1 and, in the affirmative case, provide the implicit equation of P .

The linear complete differential resultant ∂CRes(x1 − P1(U), . . . , xn − Pn(U)) is the algebraic
resultant of Macaulay, of a set of differential polynomials with L elements. It was defined in Rueda
and Sendra (2010), as a generalization of Carra’-Ferro’s differential resultant (Carra’Ferro, 1997) (in the
linear case), in order to adjust the number L, of differential polynomials, to the order of the derivatives
of the variables u1, . . . , un−1 in Fi = xi − Pi(U).

In this paper, we provide a perturbation Pφ(X,U) of P (X,U), so that the linear differential
polynomials F1 − pφ1(U), . . . , Fn − pφn(U) have nonzero linear complete differential resultant
∂CResφ(p), which is a polynomial depending on p. It will be shown that the coefficient of the lowest
degree term of ∂CResφ(p) is a nonzero linear differential polynomial, which belongs to the implicit
ideal ID of P (X,U). In fact, if ∂CResφ(p) has a nonzero constant term, with respect to p, it equals
∂CRes(F1, . . . , Fn) and, as proved in Rueda and Sendra (2010), it gives the implicit equation ofP (X,U).

The main result of this paper generalizes the result previously mentioned from Rueda and Sendra
(2010). Given a nonzero linear differential polynomial A in ID, necessary and sufficient conditions
on A are provided so that A(X) = 0 is the implicit equation of P (X,U). The higher order terms in
the equations of P (X,U) and the rank of the coefficient matrix, of the set of L polynomials used to
construct the differential resultant ∂CRes(F1, . . . , Fn), play a significant role in this theory. The fact
that we are dealing with linear differential polynomials will be also relevant, allowing us to treat
them by means of differential operators.

The paper is organized as follows. In Section 2, we introduce the main notions and notation. Next
we review the definition of the linear complete differential (homogeneous) resultant in Section 3.
Definitions regarding linear differential polynomials in ID are given in Section 4. The next section
contains the main result of the paper, namely a characterization of the implicit equation of ID, in
the n − 1 dimensional case, is provided in Section 5. In Section 6, we give a perturbation Pφ(X,U)
of P (X,U), with nonzero differential resultant, and use it to obtain a nonzero linear differential
polynomial in ID, candidate to provide the implicit equation. Finally, in Section 7, we give an
implicitization algorithm and examples.

2. Basic notions and notation

This section is devoted to the introduction of the terminology, the notation and the basic notions
(as in Rueda and Sendra (2010)) that will be used throughout the paper. We refer to Kolchin (1973)
and Ritt (1950) for further concepts and results on differential algebra.

Let K be an ordinary differential field with derivation ∂ , (e.g. Q(t), ∂ =
∂
∂t ). By N0 we mean

the natural numbers including 0. Given a set Y of differential indeterminates over K, we denote by
{Y } the set of derivatives of the elements of Y , {Y } = {∂ky | y ∈ Y , k ∈ N0}, and by K{Y } the
ring of differential polynomials in the differential indeterminates Y , which is a differential ring with
derivation ∂ . Let X = {x1, . . . , xn} and U = {u1, . . . , un−1} be sets of differential indeterminates over
K. For k ∈ N0, we denote by xi,k the kth derivative of xi and for xi,0 we simply write xi. Observe that

K{X} = K[xi,k | i = 1, . . . , n, k ∈ N0]

is a differential domainwith derivation ∂ . The differential rings K{U} and K{X ∪U}, whichwill be also
used throughout the paper, can be defined analogously.

As defined in Rueda and Sendra (2010), we consider the system of linear DPPEs

P (X,U) =


x1 = P1(U),

...
xn = Pn(U),

(1)

where P1, . . . , Pn ∈ K{U}, with degree at most 1 and not all Pi ∈ K, i = 1, . . . , n. There exists ai ∈ K
and a homogeneous differential polynomial Hi ∈ K{U} such that

Fi(X,U) = xi − Pi(U) = xi − ai + Hi(U).
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Given P ∈ K{X ∪ U} and y ∈ X ∪ U , we denote by ord(P, y) the order of P in the variable y. If P
does not have a term in y then we define ord(P, y) = −1. To ensure that the number of parameters is
n− 1, we assume that for each j ∈ {1, . . . , n− 1} there exists i ∈ {1, . . . , n} such that ord(Fi, uj) ≥ 0.

The implicit ideal of the system (1) is the differential prime ideal

ID = {f ∈ K{X} | f (P1(U), . . . , Pn(U)) = 0}.

Given a characteristic setC of ID, then n−|C| is the (differential) dimension of ID. By abuse of notation,
we will also speak about the dimension of a DPPE system, meaning the dimension of its implicit
ideal.

If dim(ID) = n − 1, then C = {A(X)} for some irreducible differential polynomial A ∈ K{X}. The
polynomial A is called a characteristic polynomial of ID. An implicit equation of a (n − 1)-dimensional
system of DPPEs, in n differential indeterminates X = {x1, . . . , xn}, is defined as the equation A(X)
= 0, where A is any characteristic polynomial of the implicit ideal ID of the system.

Let K[∂] be the ring of differential operators with coefficients in K. If K is not a field of constants
with respect to ∂ , then K[∂] is not commutative but ∂k − k∂ = ∂(k), for all k ∈ K. The ring K[∂]
of differential operators with coefficients in K is left Euclidean (and also right Euclidean). Given
L,L′

∈ K[∂], by applying the left division algorithm we obtain q, r ∈ K[∂], the left quotient and
the left reminder of L and L′ respectively, such that L = L′q + r where deg(r) < deg(L′).

3. Linear complete differential resultants

We review next the results on linear complete differential resultants from Rueda and Sendra
(2010), which will be used in this paper.

Let D be a differential integral domain. Let fi ∈ D{U} be a linear ordinary differential polynomial
of order oi, i = 1, . . . , n. We assume that the polynomials f1, . . . , fn are distinct. For each j ∈ {1, . . . ,
n − 1}, let O(fi, uj) = ord(fi, uj), if ord(fi, uj) ≥ 0 and O(fi, uj) = 0, if ord(fi, uj) = −1. We define the
positive integers

γj(f1, . . . , fn) := min{oi − O(fi, uj) | i ∈ {1, . . . , n}},

γ (f1, . . . , fn) :=

n−1−
j=1

γj(f1, . . . , fn).

LetN =
∑n

i=1 oi, the completeness index γ (f1, . . . , fn) verifies γ (f1, . . . , fn) ≤ N−oi, for i = 1, . . . , n.
We defined the linear complete differential resultant ∂CRes(f1, . . . , fn) in Rueda and Sendra (2010),

as the Macaulay’s algebraic resultant of the differential polynomial set

PS(f1, . . . , fn) := {∂N−oi−γ fi, . . . , ∂ fi, fi | i = 1, . . . , n, γ = γ (f1, . . . , fn)}.

Since the differential polynomials f1, . . . , fn are distinct, the set PS(f1, . . . , fn) contains L =
∑n

i=1(N −

oi − γ + 1) polynomials in the following set V of L − 1 differential variables

V = {uj, uj,1, . . . , uj,N−γj−γ | γj = γj(f1, . . . , fn), j = 1, . . . , n − 1}.

Let hi ∈ D{U} be a linear ordinary differential homogeneous polynomial of order oi, i = 1, . . . ,
n, with N =

∑n
i=1 oi ≥ 1. We assume that the polynomials h1, . . . , hn are distinct. We define the

differential polynomial set

PSh(h1, . . . , hn) := {∂N−oi−γ−1hi, . . . , ∂hi, hi |

i ∈ {1, . . . , n},N − oi − γ − 1 ≥ 0, γ = γ (h1, . . . , hn)}.

Observe that N ≥ 1 implies PSh(h1, . . . , hn) ≠ ∅. The linear complete differential homogenous re-
sultant ∂CResh(h1, . . . , hn) is the Macaulay’s algebraic resultant of the set PSh(h1, . . . , hn). Since the
differential polynomials are distinct, the set PSh(h1, . . . , hn) contains Lh =

∑n
i=1(N − oi − γ ) poly-

nomials in the set Vh of Lh differential variables

Vh
= {uj, uj,1, . . . , uj,N−γj−γ−1 | γj = γj(h1, . . . , hn), j = 1, . . . , n − 1}.
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We review next the matrices that will allow the use of determinants to compute ∂CRes(f1, . . . , fn)
and ∂CResh(h1, . . . , hn). The order u1 < · · · < un−1 induces an orderly ranking on U (i.e. an order on
{U}) as follows (see Kolchin, 1973, page 75): ui,j < uk,l ⇔ (j, i) <lex (l, k). We set 1 < u1.

For i = 1, . . . , n, γ = γ (f1, . . . , fn) and k = 0, . . . ,N − oi − γ , we define the positive integer
l(i, k) = (i−1)(N−γ )−

∑i−1
h=1 oh + i+k in {1, . . . , L}. The complete differential resultant matrixM(L)

is the L × L matrix containing the coefficients of ∂N−oi−γ−kfi, as a polynomial in D[V], in the l(i, k)th
row, where the coefficients are written in decreasing order with respect to the orderly ranking on U .
In this situation:

∂CRes(f1, . . . , fn) = det(M(L)).

If N ≥ 1, for γ = γ (h1, . . . , hn), i ∈ {1, . . . , n}, N − oi −γ −1 ≥ 0 and k = 0, . . . ,N − oi −γ −1,
define the positive integer lh(i, k) = (i−1)(N −γ −1)−

∑i−1
h=1 oh + i+k in {1, . . . , Lh}. The complete

differential homogeneous resultant matrix M(Lh) is the Lh × Lh matrix containing the coefficients of
∂N−oi−γ−k−1hi, as a polynomial in D[Vh

], in the lh(i, k)th row, where the coefficients are written in
decreasing order with respect to the orderly ranking on U . In this situation:

∂CResh(h1, . . . , hn) = det(M(Lh)).

Throughout the remaining parts of the paper, we will say differential (homogeneous) resultant
always meaning linear complete differential (homogeneous) resultant.

3.1. Linear complete differential resultants from linear DPPEs

We highlight, in this section, some facts on differential resultants of the differential polynomials Fi
and Hi, obtained from a system of linear DPPEs as in Section 2.

Let γ = γ (F1, . . . , Fn) = γ (H1, . . . ,Hn) and D = K{X}. The differential resultants ∂CRes(F1, . . . ,
Fn) and ∂CResh(H1, . . . ,Hn) are closely related, as shown in Rueda and Sendra (2010), Section 5. Since
Fi(X,U) = xi − ai + Hi(U), if N ≥ 1 the matrixM(Lh) is a submatrix ofM(L), obtained by removing n
specific rows and columns. This fact togetherwith the identities below allowed us to prove that (when
N ≥ 1)

∂CRes(F1, . . . , Fn) = 0 ⇔ ∂CResh(H1, . . . ,Hn) = 0.

The next matrices will play an important role in the remaining parts of the paper.

• Let S be the n×(n−1)matrix whose entry (i, j) is the coefficient of un−j,oi−γn−j in Fi, i ∈ {1, . . . , n},
j ∈ {1, . . . , n − 1}. We call S the leading matrix of P (X,U). For i ∈ {1, . . . , n}, let Si be the
(n − 1)× (n − 1)matrix obtained by removing the ith row of S.

• LetML−1 be the L×(L−1)principal submatrix ofM(L).We callML−1 the principalmatrix ofP (X,U).

Let X = {xi, xi,1, . . . , xi,N−oi−γ | i = 1, . . . , n}. Given x ∈ X, say x = xi,k with k ∈ {0, 1, . . . ,N −

oi − γ }, let Mx be referred to as the submatrix of ML−1 obtained by removing the row corresponding
to the coefficients of ∂kFi = xi,k + ∂k(Hi(U) − ai). Then, developing the determinant of M(L) by the
last column, we obtain

∂CRes(F1, . . . , Fn) =

n−
i=1

N−oi−γ−
k=0

bik det(Mxi,k)(xi,k − ∂kai), (2)

with bik = ±1, according to the row index of xi,k − ∂kai in the matrix M(L).

4. The implicit ideal ID

Let P (X,U), Fi, Hi be as in Section 2. Let PS = PS(F1, . . . , Fn) and let ID be the implicit ideal of
P (X,U). In this section, we review the computation of ID in terms of characteristic sets (see Gao,
2003; Rueda and Sendra, 2010) and give some definitions, relatedwith linear differential polynomials
in ID, that will be important in the remaining parts of the paper.
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Let X and V be as in Section 3.1 and observe that PS ⊂ K[X][V]. Let (PS) be the ideal generated
by PS in K[X][V] and, let [PS] be the differential ideal generated by PS in K{X}{U}.

Let (i, j), (k, l) ∈ N2
0 be distinct. We write (i, j) ≺ (k, l) if i > k, or i = k and j < l. The order

xn < · · · < x1, induces a ranking on X (see Kolchin, 1973, page 75), using the monomial order ≺:
xi,j < xk,l ⇔ (i, j) ≺ (k, l).

• We callR the ranking on X∪U that eliminates X with respect toU , that is ∂kx > ∂k
⋆
u, for all x ∈ X ,

u ∈ U and k, k⋆ ∈ N0.
• We call R⋆ the ranking on X ∪ U that eliminates U with respect to X , that is ∂kx < ∂k

⋆
u, for all

x ∈ X , u ∈ U and k, k⋆ ∈ N0.

Note that, because of the particular structure of Fi, with respect to R then PS is a chain (see Ritt,
1950, page 3) of L differential polynomials, with L as in Section 3. Let A be a characteristic set of [PS]
with respect to R⋆ and A0 = A ∩ K{X}. By Gao (2003), Lemma 3.2 and Theorem 3.1 then

ID = [PS] ∩ K{X} = [A0].

To compute a characteristic set of [PS] w.r.t. R⋆, we will use the reduced Gröbner basis of (PS) with
respect to lex monomial order induced by the ranking R⋆. We call G the Gröbner basis associated to
the system P (X,U).

We are dealingwith a linear system of polynomials and computing a Gröbner basis is equivalent to
performing Gaussian elimination. Some details on this computation were given in Rueda and Sendra
(2010), and we include them below to be used further in this paper. Let M2L be the L × (2L) matrix
whose row l(i, k), with i = 1, . . . , n and k = 0, . . . ,N−oi−γ , contains the coefficients of ∂N−oi−γ−kFi,
as a polynomial in K[X][V], and where the coefficients are written in decreasing order w.r.t. R⋆,

M2L =


ML−1

1 −∂N−o1−γ a1
. . .

...
1 −a1

. . .
...

1 −∂N−on−γ an
. . .

...
1 −an


.

The polynomials corresponding to the rows of the reduced echelon form E2L ofM2L are the elements
of the Gröbner basis associated to P (X,U). Let G0 = G ∩ K{X}. Given P ∈ K{X ∪ U}, the lead of P is
the highest derivative present in P w.r.t. R⋆, we denote it by lead(P). From Rueda and Sendra (2010),
Lemma 20(1):

Lemma 4.1. The Gröbner basis associated to the system P (X,U) is a set of linear differential polynomials
G = {B0, B1, . . . , BL−1}, where B0 < B1 < · · · < BL−1 with respect to the ranking R⋆ and B0 ∈ G0.
Hence,

1. lead(B0) < lead(B1) < · · · < lead(BL−1) w.r.t. the ranking R⋆ and,
2. (PS) ∩ K{X} = (G0) is nonzero.

Given P,Q ∈ K{X ∪ U}, we denote by prem(P,Q ) the pseudo-remainder of P with respect to Q ,
(Ritt, 1950, page 7). Given a chain A = {A1, . . . , At} of elements of K{X ∪ U} then prem(P,A) =

prem(prem(P, At), {A1, . . . , At−1}) and prem(P,∅) = P .

Algorithm 4.2. Given the set of differential polynomials PS, the next algorithm returns a subset A of
[PS].

1. Compute the reduced Gröbner basis G of (PS)with respect to lex monomial order induced by R⋆.
2. Assume that the elements of G are arranged in increasing order B0 < B1 < · · · < BL−1 w.r.t. R⋆.

Let A0
:= {B0}. For i from 1 to L − 1 do Ri := prem(Bi,A

i−1), if Ri ≠ 0 then Ai
:= Ai−1

∪ {Ri} else
Ai

:= Ai−1. A := AL−1.
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Lemma 4.3. With the notation used in Algorithm 4.2, let us assume that, if Ri ≠ 0 then lead(Ri) =

lead(Bi). Then Algorithm 4.2 returns a characteristic set A of [PS] with respect to R⋆.

Proof. We prove first that A is an autoreduced set w.r.t. R⋆. Given A ∈ A, there exists i ∈ {1, . . . ,
L − 1} such that Ai

= Ai−1
∪ {A} and A = prem(Bi,A

i−1). Therefore, A is reduced w.r.t. every
polynomial in Ai−1. Let us assume that Ai

≠ A. Given B ∈ A\Ai, B = prem(Bj,A
j−1) for some

j ∈ {i + 1, . . . , L − 1}. By assumption and Lemma 4.1(1), lead(B) = lead(Bj) > lead(Bi) = lead(A),
which shows that A is reduced w.r.t. B. We have proved that A is reduced w.r.t. every polynomial in A
and therefore A is autoreduced.

Since A is autoreduced and linear, [A] is a prime differential ideal, with A as its characteristic set.
From [PS] = [A], it follows that A is a characteristic set of [PS]. �

4.1. On linear differential polynomials in ID

In this section, we give some definitions that will play an important role throughout the paper. Let
us consider the linear span over K of the polynomials in PS = {∂kFi | k ∈ N0, i = 1, . . . , n}, that is

spanKPS =

 n−
i=1

Fi(Fi(X,U)) | Fi ∈ K[∂], i = 1, . . . , n

.

Observe that spanKPS is a subset of the set of linear polynomials in [PS].

Lemma 4.4. 1. Given a nonzero B in spanKPS, there exist unique differential operators F1, . . . ,Fn in
K[∂] such that

B(X,U) =

n−
i=1

Fi(Fi(X,U)).

2. Given a nonzero linear differential polynomial B in ID then B belongs to spanKPS. Furthermore, there
exist unique differential operators Fi ∈ K[∂], i = 1, . . . , n such that

B(X) =

n−
i=1

Fi(xi − ai) and
n−

i=1

Fi(Hi(U)) = 0.

Proof. 1. Let us suppose that there exist Ei ∈ K[∂], i = 1, . . . , n such that B(X,U) =
∑n

i=1 Ei

(Fi(X,U)). Then
∑n

i=1 Ei(xi) =
∑n

i=1 Fi(xi). Thus for i = 1, . . . , n, the linear polynomials Ei(xi) =

Fi(xi), which implies Ei = Fi.
2. Given a linear B in ID = [PS] ∩ K{X}, B ∈ K{X} implies that there exist Fi ∈ K[∂], i = 1, . . . , n

and a ∈ K such that B(X) = a +
∑n

i=1 Fi(xi). By definition of ID, B(P1(U), . . . , Pn(U)) = 0 but

B(P1(U), . . . , Pn(U)) = a +

n−
i=1

Fi(ai)+

n−
i=1

Fi(−Hi(U)) = 0.

Thus a =
∑n

i=1 Fi(−ai) and
∑n

i=1 Fi(Hi(U)) = 0. Since Fi(X,U) = xi − ai + Hi(U), i = 1, . . . , n,
this proves the result. �

Remark 4.5. Let ai, i = 1, . . . , n, be as in Section 2. If ai = 0, i = 1, . . . , n, then, for all linear B in [PS],
B ∈ spanKPS.

If B belongs to (PS) then ord(B, xi) ≤ N − oi − γ , i = 1, . . . , n. Let spanKPS be the linear span over
K of the polynomials in PS, that is

spanKPS =

 n−
i=1

Fi(Fi(X,U)) | Fi ∈ K[∂], deg(Fi) ≤ N − oi − γ , i = 1, . . . , n

.

Observe that spanKPS is a subset of the set of linear differential polynomials in (PS).

Remark 4.6. TheGröbner basisG associated toP (X,U) is obtained fromM2L byGaussian elimination,
thus G ⊂ spanKPS. Also, by Lemma 4.4(2), the linear differential polynomials in (G0) = (PS) ∩ K{X}

belong to spanKPS.
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Definition 4.7. Given a nonzero differential polynomial B in spanKPS, with B(X,U) =
∑n

i=1 Fi
(Fi(X,U)), Fi ∈ K[∂].

1. We define the co-order of B in (PS) as the highest positive integer c(B) such that ∂c(B)B ∈ (PS).
Observe that

c(B) = min{N − oi − γ − deg(Fi) | i ∈ {1, . . . , n},Fi ≠ 0}.

2. For i ∈ {1, . . . , n}, let αi be the coefficient of ∂N−oi−γ−c(B) in Fi, if Fi ≠ 0 and αi = 0, if Fi = 0. We
call (α1, . . . , αn) the leading coefficients vector of B in (PS) and we denote it by l(B).

Let S be the leading matrix of the system P (X,U). Denote by ST the transpose matrix of S.

Remark 4.8. Given a nonzero B ∈ spanKPS.

1. The ith row of S consists of the coefficients of un−j,N−γn−j−γ−c(B), j ∈ {1, . . . , n − 1} in ∂N−oi−γ−c(B)

Fi(X,U) (alternative description to the one given in Section 3.1).
2. By 1, if ord(B, uj) < N −γj −γ − c(B), for j = 1, . . . , n−1, then l(B)S = 0, that is l(B)T ∈ Ker(ST ).

Definition 4.9. Given a nonzero linear differential polynomial B in ID, with B =
∑n

i=1 Fi(xi − ai),
Fi ∈ K[∂].

1. We define the ID-content of B as a greatest common left divisor of F1, . . . ,Fn (we write
gcld(F1, . . . ,Fn)). We denote it by IDcont(B).

2. There exist Li ∈ K[∂] such that Fi = IDcont(B)Li, i = 1, . . . , n, and L1, . . . ,Ln are coprime (we
write (L1, . . . ,Ln) = 1). We define an ID-primitive part of B as

IDprim(B)(X,U) =

n−
i=1

Li(xi − ai).

3. If IDcont(B) ∈ K then we say that B is ID-primitive .

Given B ∈ (PS)∩K{X}, by Remark 4.6, B ∈ spanKPS. If A = IDprim(B) then c(A) ≥ deg(IDcont(B))
and deg(Li) ≤ N − oi − γ − c(A), i = 1, . . . , n.

Lemma 4.10. Given a nonzero linear differential polynomial B ∈ (PS)∩ K{X}, it holds that IDprim(B) ∈

(PS) ∩ K{X}.

Proof. For i = 1, . . . , n and j = 1, . . . , n − 1, there exist differential operators Lij ∈ K[∂] such that
Hi(U) =

∑n−1
j=1 Lij(uj). If B(X,U) =

∑n
i=1 Fi(xi − ai) then

∑n
i=1 Fi(Hi(U)) = 0. As a consequence,∑n

i=1 Fi(Lij(uj)) = 0 for j ∈ {1, . . . , n − 1}. Let L = IDcont(B) then Fi = LLi, with Li ∈ K[∂]

and IDprim(B) =
∑n

i=1 Li(xi − ai). Thus L
∑n

i=1 LiLij = 0 and L ≠ 0 so the differential operator∑n
i=1 LiLij = 0.We conclude that

∑n
i=1 Li(Hi(U)) = 0. Therefore IDprim(B) =

∑n
i=1 Li(Fi(X,U)) ∈

(PS), which proves the lemma. �

5. Conditions for dim(ID) = n − 1

Let P (X,U), Fi, Hi be as in Section 2. Let PS = PS(F1, . . . , Fn) and let ID be the implicit ideal of
P (X,U). Let S and ML−1 be the leading and principal matrices of P (X,U) respectively, as defined in
Section 3.1. Let G be the Gröbner basis associated to the system P (X,U), G0 = G ∩ K{X} and denote
by |G0| the number of elements of G0.

By Lemma 4.1, the ideal (G0) is nonzero. Given a nonzero linear differential polynomial A in (G0),
by Remark 4.6 we can talk about its co-order c(A). In this section, if A is ID-primitive, we provide
necessary and sufficient conditions on S, ML−1 and c(A) for A(X) = 0 to be the implicit equation of
P (X,U).

5.1. Necessary conditions for dim(ID) = n − 1

If the dimension of ID is n−1 then ID = [A] andA is a characteristic polynomial of ID. By Lemma4.1,
A is linear and A ∈ (G0). We give some more requirements for A in the next theorem.
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Lemma 5.1. 1. |G0| = L − rank(ML−1).
2. For every nonzero linear B ∈ (G0), |G0| ≥ c(B)+ 1.

Proof. 1. Let M2L be the L × 2L matrix defined in Section 4 and E2L its reduced echelon form. The
number of elements of G0 is the number of rows in E2L with zeros in the first L − 1 columns. Thus
|G0| = L − rank(ML−1).

2. Given a nonzero linear B ∈ (G0) = (PS) ∩ K{X}, by definition of c(B) then ∂B, . . . , ∂c(B)B ∈

(PS) ∩ K{X}. Also, there exists k ∈ {1, . . . , n} such that ord(B, xk) = N − ok − γ − c(B). We can
assume that the coefficient of xk,N−ok−γ−c(B) in B is 1. ThusM2L is row equivalent to an L×2Lmatrix
with ∂c(B)B, . . . , ∂B, B in the last c(B) + 1 rows. Namely, replace the row of M2L corresponding to
the coefficients of ∂N−ok−γ−tFk by ∂c(B)−tB, t = 0, . . . , c(B), and reorder the rows of the obtained
matrix. Therefore |G0| ≥ c(B)+ 1. �

Theorem 5.2. Let G be the Gröbner basis associated to the system P (X,U) with implicit ideal ID, G0 =

G ∩ K{X}. If dim ID = n− 1 then ID = [A], where A is a nonzero linear differential polynomial verifying:

1. A is an ID-primitive differential polynomial in (G0).
2. |G0| = c(A)+ 1.

Proof. By Lemma 4.1, G0 = {B0, B1, . . . , Bm}, withm ∈ {0, . . . , L − 2}. Since B0 ∈ ID, B0 = D0(A) for
a nonzero D0 ∈ K[∂], which implies that A is a linear polynomial in ID.

1. Let L = IDcont(A) and A′
= IDprim(A). If A is not ID-primitive then deg(L) ≥ 1 and A = L(A′),

contradicting that {A} is a characteristic set of ID. By Lemma 4.4(2), A ∈ spanKPS. There exist
unique differential operators Fi ∈ K[∂], i = 1, . . . , n, such that A(X) =

∑n
i=1 Fi(xi − ai). Since

B0(X) =
∑n

i=1 D0(Fi(xi − ai)) ∈ spanKPS, deg(Fi) ≤ N − oi − γ and A ∈ spanKPS. In particular,
A ∈ (PS) ∩ K{X} = (G0).

2. Recall that B0 < B1 < · · · < Bm, therefore

G0 = {D0(A),D1(A), . . . ,Dm(A)},

with Di ∈ K[∂], deg(Di) > deg(Di−1), i = 1, . . . ,m. Now, A ∈ (G0) implies A = γ0D0(A) +

γ1D1(A)+· · ·+ γmDm(A). Therefore, γ0D0 + γ1D1 +· · ·+ γmDm = 1, which implies γ1 = · · · =

γm = 0 and D0 ∈ K. Thusm ≤ c(A) and, by Lemma 5.1, |G0| = c(A)+ 1. �

Observe that, if dim ID = n−1, given A and B nonzero linear ID-primitive differential polynomials
in (G0), then ID = [A] = [B] and c(A) = c(B).

Corollary 5.3. Let G be the Gröbner basis associated to the system P (X,U) with implicit ideal ID, G0 =

G ∩ K{X}. If dim ID = n− 1, for every nonzero linear ID-primitive differential polynomial A in (G0), then
ID = [A] and |G0| = c(A)+ 1.

If N =
∑n

i=1 oi = 0 then P (X,U) is a system of n linear equations in n − 1 indeterminates.

Lemma 5.4. If N = 0, then dim ID = n − 1 if and only if rank(S) = n − 1.

Proof. The matrix M(L) is the n × n matrix whose n × (n − 1) principal submatrix is S and, whose
last column contains xi − ai in the ith row, i = 1, . . . , n. For linear Ui ∈ K{X}, the following statement
holds,

rank(S) = n − 1 ⇔ G = {B0, u1 − U1(X), . . . , un−1 − Un−1(X)}.

Equivalently, {B0} is a characteristic set of ID. �

The next example shows that, ifN > 0 and n > 2 then rank(S) = n−1 is not a necessary condition
for dim ID = n − 1.
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Example 5.5. Let K = Q(t), ∂ =
∂
∂t and consider the system P (X,U), of linear DPPEs, providing the

set of differential polynomials

F1(X,U) = x1 − u1 − u1,1 − u2,1,

F2(X,U) = x2 + 2u2 − 2u1,1 − 2u2,1,

F3(X,U) = x3 − 2u2 + u1,1 + u2,1,

in K{x1, x2, x3}{u1, u2}. The set PS(F1, F2, F3) contains L = 9 differential polynomials and γ = 0. The
leading matrix S of P (X,U) has rank 1 < n − 1 = 2 and equals

S =


−1 −1
−2 −2
1 1


.

The Gröbner basis associated to the system P (X,U) is G = {B0, B1, . . . , B8},

G =


x1,1 −

1
2
x2,1 − x2 − x3, x1,2 −

1
2
x2,2 − x2,1 − x3,1, u1 − x1 + x2 + x3,

u2 −
1
2
x2 − x3, u1,1 +

1
2
x2,1 − x2 + x3,1 − x3, u2,1 −

1
2
x2,1 − x3,1,

u1,2 +
1
2
x2,2 − x2,1 + x3,2 − x3,1, u2,2 −

1
2
x2,2 − x3,2, u2,3 + u1,3 − x2,2 − x3,2


.

Using Algorithm 4.2, by Lemma 4.3, a characteristic set of [PS] equals A = {B0, B2, B3}. Thus ID has
dimension n − 1 and B0(X) = 0 is an implicit equation of ID.

5.2. Sufficient conditions for dim(ID) = n − 1

In this section, we will assume rank(S) = n − 1, to prove that the necessary conditions given in
Theorem 5.2 are also sufficient conditions, for a nonzero linear differential polynomial A in (G0) to be
a characteristic polynomial of ID.

Recall that, by Remark 4.6, the Gröbner basis associated toP (X,U) is a subset of spanKPS, and thus
Definition 4.7 applies.
Lemma 5.6. Let G be the Gröbner basis associated to the system P (X,U) with implicit ideal ID, G0 =

G ∩ K{X}. Let S be the leading matrix of P (X,U). Given a nonzero linear ID-primitive differential
polynomial A in (G0), with |G0| = c(A)+ 1, the following statements hold.
1. For j = 0, 1, . . . , c(A), there exist Dj ∈ K[∂], with deg(Dj) = j, such that G0 = {B0 = D0(A), B1 =

D1(A), . . . , Bc(A) = Dc(A)(A)}.
2. If rank(S) = n − 1. Given B ∈ G\G0, let us suppose there exists a positive integer eB, such that

1 ≤ eB ≤ c(A) + 1 and ord(B, uj) ≤ N − γj − γ − eB, j = 1, . . . , n − 1. Then there exists a
linear differential polynomial B ∈ (G0), such that c(B − B) ≥ eB.

Proof. 1. Since |G0| = L − rank(ML−1) = c(A)+ 1, there exists an echelon form E of M2L whose last
c(A)+1 rows contain the coefficients of ∂c(A)A, . . . , ∂A, A. Then the last c(A)+1 rows of the reduced
echelon form E2L ofM2L contain the coefficients of Bc(A) = Dc(A)(A), . . . , B1 = D1(A), B0 = D0(A),
for some Dj ∈ K[∂], deg(Dj) = j, j = 0, 1, . . . , c(A). Therefore G0 = {B0, B1, . . . , Bc(A)}.

2. Let s ∈ {0, . . . , eB − 1}. By 1, the co-order of Bc(A)−s equals c(Bc(A)−s) = s. Since Bc(A)−s ∈ K{X},
ord(Bc(A)−s, uj) < N − γj − γ − s, hence by Remark 4.8, l(Bc(A)−s)

T
∈ Ker(ST ). Given B ∈ G\G0, we

will prove by induction on s that, for s = 0, . . . , eB − 1, there exists a linear Cs ∈ (G0) such that
c(B − Cs) ≥ s + 1. The linear differential polynomial in (G0)we were looking for is B = CeB−1.

By Remark 4.6, there exist Fi ∈ K[∂], with deg(Fi) ≤ N − oi − γ , i = 1, . . . , n, such that
B =

∑n
i=1 Fi(Fi(X,U)). Let βi be the coefficient of ∂N−oi−γ in Fi. By assumption, ord(B, uj) ≤

N − γj − γ − eB < N − γj − γ , so βT
= (β1, . . . , βn)

T
∈ Ker(ST ). Now rank(S) = n − 1, which

means that dimKer(ST ) = 1, so there exists µ ∈ K such that β = µl(Bc(A)). Let C0 = µBc(A), then
c(B − C0) ≥ 1. This proves the claim for s = 0.
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Assuming the claim is true for s−1, s ≥ 1, there exists a linear Cs−1 ∈ (G0) such that c(B−Cs−1)
≥ s. Then there exists F s

i ∈ K[∂], with deg(F s
i ) ≤ N − oi − γ − s, i = 1, . . . , n, such that

B − Cs−1 =
∑n

i=1 F s
i (Fi(X,U)). Let β

s
i be the coefficient of ∂N−oi−γ−s in F s

i . By assumption,
ord(B−Cs−1, uj) ≤ N−γj−γ−eB < N−γj−γ−s, so (βs)T = (βs

1, . . . , β
s
n)

T
∈ Ker(ST ). Now there

exists µs ∈ K such that βs
= µsl(Bc(A)−s). Let Cs = Cs−1 + µsBc(A)−s, then c(B − Cs) ≥ s + 1. �

Theorem 5.7. Let G be the Gröbner basis associated to the system P (X,U) with implicit ideal ID, G0 =

G ∩ K{X}. Let S be the leading matrix of P (X,U). If rank(S) = n − 1, and if there exists a nonzero linear
ID-primitive differential polynomial A in (G0), with |G0| = c(A)+ 1, then A is a characteristic polynomial
of ID.

Proof. If c(A) = 0 then rank(ML−1) = L−1. By Theorem 18(2) and Lemma 20(4) in Rueda and Sendra
(2010), and Lemma 5.6(1), A is a characteristic polynomial of ID.

Let us suppose that c(A) > 0. We use Algorithm 4.2 to prove the result. By Lemma 5.6(1), G0 =

{B0 = D0(A), B1 = D1(A), . . . , Bc(A) = Dc(A)(A)}. For j ∈ {1, . . . , n − 1}, let

Γj = {B ∈ K{X,U} | lead(B) = uj,k, k ∈ N0}.

Then G\G0 = {Bc(A)+1, . . . , BL−1} = ∪
n−1
j=1 (G ∩ Γj). Given i ∈ {c(A)+ 1, . . . , L − 1}, Bi ∈ Γji , for some

ji ∈ {1, . . . , n − 1}. The proof is based on the following claims:

1. For i ∈ {1, . . . , c(A)}, by Lemma 5.6(1), prem(Bi,A
i−1) = 0. Thus {B0} = A0

= A1
= · · · = Ac(A).

2. Let Ri = prem(Bi,A
i−1), i = c(A) + 1, . . . , L − 1. We will prove below, by induction on i, that

either Ri = 0 or lead(Ri) = lead(Bi).

From the previous statements and Lemma 4.3, it follows that A is a characteristic set of [PS] w.r.t.
R⋆. Furthermore, in the ith iteration of Algorithm 4.2(2) either an element not in K{X} is added to
Ai−1 or no element is added to Ai−1. This proves that

A0 = A ∩ K{X} = A0
= {D0(A)}

and ultimately that A is a characteristic polynomial of ID.
Proof of 2. Observe that Γjc(A)+1 ∩ Ac(A)

= ∅, which implies lead(Rc(A)+1) = lead(Bc(A)+1). Given
i ∈ {c(A)+2, . . . , L−1}, if Γji ∩Ai−1

= ∅ then lead(Ri) = lead(Bi). Let us assume thatΓji ∩Ai−1
≠ ∅.

We will prove next that Ri = 0.
By induction hypothesis B = {Bc(A)+1, . . . , Bi−1} ∩ Γji ≠ ∅. We prove first that there exists B ∈ B

such that

1 ≤ eB = ord(Bi, uji)− ord(B, uji) ≤ c(A)+ 1. (3)

Let us suppose that eB > c(A) + 1, for all B ∈ B. Then e = min{eB | B ∈ B} > c(A) + 1. Let
o = ord(Bi, uji) and let E2L be the L × 2Lmatrix in echelon form (as in Section 4), whose rows are the
coefficients of the polynomials inG. By definition of e, no row of E2L has a pivot position in the columns
indexed by uji,o−1, . . . , uji,o−e+1. Thus rank(ML−1) ≤ L − 1 − (e − 1) < L − 1 − c(A), contradicting
that L − rank(ML−1) =| G0 |= c(A)+ 1.

By (3), ord(B, uji) ≤ N − γji − γ − eB and, B ∈ Γji implies ord(B, uj) ≤ ord(B, uji), for j =

1, . . . , n − 1. By Lemma 5.6(2), there exists a linear polynomial B ∈ (G0) such that c(B − B) ≥ eB.
Let Ci = prem(Bi, B − B), which is a linear polynomial. Recall that B ∈ B and B ∈ K{X}. This implies
that B ∈ Γji and lead(B − B) = lead(B) < lead(Bi). Thus, by definition of Ci and the fact that both
Bi, B ∈ Γji , the inequality lead(Ci) < lead(Bi) holds. By definition of eB, there exists a differential
operator F ∈ K[∂], with deg(F ) ≤ eB, such that Ci = Bi − F (B− B). Now, c(B− B) ≥ eB guarantees
that F (B − B) ∈ (PS), which implies Ci ∈ (PS).

To finish, we use Bi = Ci + F (B− B) to prove that prem(Bi,A
i−1) = 0. We proved in the previous

paragraph that, the linear polynomial Ci ∈ (PS) and lead(Ci) < lead(Bi). Also, G = {B0, B1, . . . , BL−1}

is the reduced Gröbner basis of (PS), with lead(B0) < lead(B1) < · · · < lead(BL−1). Then Ci =

γ0B0 + · · · + γi−1Bi−1, with γ0, γ1, . . . , γi−1 ∈ K. It holds that, B0, . . . , Bc(A) ∈ [A0
] ⊂ [Ai−1

]. For
every l ∈ {c(A) + 1, . . . , i − 1}, the linear polynomial Bl = prem(Bl,A

l−1) + P , for some linear
polynomial P ∈ [Al−1

], hence Bl ∈ [Al
] ⊆ [Ai−1

]. Thus Ci ∈ [Ai−1
]. Recall that B ∈ B, so B = Bl0 ,
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with c(A) + 1 ≤ l0 ≤ i − 1. Observe that, the linear polynomial B ∈ (G0) ⊂ [A0
] ⊂ [Ai−1

] and
Bl0 ∈ [Ai−1

], then F (B − B) ∈ [Ai−1
]. At this point, we have proved that Bi is a polynomial in [Ai−1

],
which implies that prem(Bi,A

i−1) = 0. �

Corollary 5.8. Given a system P (X,U) of linear DPPEs, with implicit ideal ID. Let S and ML−1 be the
leading and principal matrices of P (X,U) respectively. If rank(S) = n − 1 then the following statements
are equivalent.

1. The dimension of ID is n − 1.
2. There exists a nonzero linear ID-primitive differential polynomial A such that L − rank(ML−1) =

c(A)+ 1.

In such situation, A(X) = 0 is the implicit equation of P (X,U).

Proof. By Theorem 5.2, (1)⇒(2). By Theorem 5.7, (2)⇒(1). �

Given P (X,U) with implicit ideal ID and leading matrix S. If rank(S) < n − 1, it is natural to
wonder if there exists a linear system of DPPEs P ′(X,U), with implicit ideal ID′ and leading matrix
S ′, such that ID = ID′ and rank(S ′) = n − 1. We will not deal with this question in this paper but, we
show next how in Example 5.5 this question is easily solved.

Example 5.9. We continue with Example 5.5. Let η(U) = u1 − u2 and let us replace u1 by η(U) in
P (X,U) to obtain the system

P ′(X,U) = P (x1, x2, x3, η(U), u2).

From P ′(X,U)we obtain the polynomials

F ′

1(X,U) = x1 − u1 + u2 − u1,1,

F ′

2(X,U) = x2 + 2u2 − 2u1,1,

F ′

3(X,U) = x3 − 2u2 + u1,1.

In this case, the completeness index γ ′
= γ ′

2 = 1 and, the leading matrix S ′ of P ′(X,U) has rank
n − 1 = 2 and equals

S ′
=

 1 −1
2 −2

−2 1


.

In fact, A = ∂CRes(F ′

1, F
′

2, F
′

3) = 4x3 + 2x2,1 − 4x1,1 + 4x2 and by Rueda and Sendra (2010), Theorem
21, A(X) = 0 is the implicit equation of P ′(X,U). Therefore, ID = [B0] = [A] = ID′, with B0 as in
Example 5.5.

6. Linear perturbations of P (X,U)

Let P (X,U), Fi, Hi be as in Section 2. Let p be an algebraic indeterminate over K, thus ∂(p) = 0.
Denote Kp = K⟨p⟩ the differential field extension of K by p. A linear perturbation of the system
P (X,U) is a new system

Pφ(X,U) =


x1 = P1(U)+ pφ1(U),

...
xn = Pn(U)+ pφn(U),

where the linear perturbation φ = (φ1(U), . . . , φn(U)) is a family of linear differential polynomials in
K{U}. For i = 1, . . . , n, let

Fφi (X,U) = Fi(X,U)− pφi(U) and Hφi (U) = Hi(U)− pφi(U).

The set PSφ = PS(Fφ1 , . . . , F
φ
n ) is a set of linear differential polynomials in Kp[X][V] ⊂ Kp{X ∪U}. Let

(PSφ) be the ideal generated by PSφ in Kp[X][V]. We prove next the existence of a linear perturbation
φ such that ∂CRes(Fφ1 , . . . , F

φ
n ) ≠ 0.
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Let us suppose that on ≥ on−1 ≥ · · · ≥ o1 to define the perturbation φ = (φ1(U), . . . , φn(U)) by

φi(U) =

 un−1,o1−γn−1 , i = 1,
un−i,oi−γn−i + un−i+1, i = 2, . . . , n − 1,
u1, i = n.

(4)

We use this perturbation to prove that ∂CRes(Fφ1 , . . . , F
φ
n ) ≠ 0 but, as expected, the linear perturba-

tion that makes ∂CRes(Fφ1 , . . . , F
φ
n ) ≠ 0 is not unique (see Sections 7.1 and 7.3).

Let us suppose that N ≥ 1.We denote byMφ(Lh) the complete differential homogeneous resultant
matrix, for the set of linear differential polynomials Hφ1 , . . . ,H

φ
n . The matrix Mφ(Lh) is Lh × Lh, with

elements in K[p], and there exists an Lh × Lh matrix Mφ , with elements in K, such that Mφ(Lh) =

M(Lh)− pMφ . Then

∂CResh(Hφ1 , . . . ,H
φ
n ) = det(Mφ(Lh)) = det(M(Lh)− pMφ). (5)

Let Sφ be the leading matrix of Pφ(X,U). For i ∈ {1, . . . , n}, let Sφi be the (n − 1) × (n − 1) matrix
obtained by removing the ith row of Sφ .

Proposition 6.1. Given a system P (X,U) of linear DPPEs and the perturbation φ defined by (4), the
following statements hold.

1. The determinant of Sφn is nonzero and it has degree n − 1 in p.
2. If N ≥ 1 then ∂CResh(Hφ1 , . . . ,H

φ
n ) is a polynomial in K[p], of degree Lh and not identically zero.

Proof. 1. Observe that Sφn has p’s in the main diagonal.
2. By (5), we can write det(Mφ(Lh)) = pL

h
det((1/p)M(Lh)− Mφ). If we set y = 1/p then the matrix

obtained from yM(Lh)− Mφ at y = 0 is−Mφ . Thus det(−Mφ) is the coefficient of pL
h
in det(Mφ(Lh)).

The remainingpart of the proof is devoted to show that det(Mφ) ≠ 0,which ensures that the degree
of det(Mφ(Lh)) in p is Lh.

The matrix Mφ contains in its lh(i, k)th row the coefficients, as a polynomial in D[Vh
], of

∂N−oi−γ−k−1φi(U), i = 1, . . . , n, N − oi − γ − 1 ≥ 0, k = 0, . . . ,N − oi − γ − 1. We will
prove that det(Mφ) ≠ 0 in two steps:
2.1. We reorganize the rows ofMφ to get a matrixM , which has ones in the main diagonal and, in

every row at most one nonzero entry not in the main diagonal, equal to 1.
2.2. We perform row operations on M to get an upper triangular matrix M ′, with 1’s in the main

diagonal.
2.1. We define Oj := oj − γn−j, j = 1, . . . , n − 1 and On := on. The matrix Mφ has Lh = (n − 1)

(N − on − γ )+ (n − 1)on − γ rows where

Lh = (n − 1)
n−1−
j=1

Oj +

n−1−
j=1

(on − γn−j). (6)

If N − on − γ = 0 then Oj = 0 and N − oj − γ = on − oj = on − γn−j, for j = 1, . . . , n − 1.
If N − on − γ > 0, the assumption on ≥ · · · ≥ o1 to define (4) implies 0 ≤ N − on − γ − 1 ≤

N − oj − γ − 1, j = 1, . . . , n − 1.
Let J := {j ∈ {1, . . . , n − 1} | on − γn−j > 0}. Let Γ be the submatrix of Mφ , whose rows

contain the coefficients of the on(n − 1) − γ =
∑n−1

j=1 (on − γn−j) differential polynomials in the
set

{∂N−oj−γ−1φj, . . . , ∂
N−On−γ−Ojφj | j ∈ J},

where N − On − γ − Oj = N − oj − γ − (on − γn−j). Each one of the previous rows has a 1,
respectively, in the column indexed by the monomials in the set

Ωn := {un−j,N−γn−j−γ−k | j ∈ J, k = 1, . . . , on − γn−j}.
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Now we reorganize the rows of Γ . For j ∈ J and k = 1, . . . , on − γn−j, let us suppose that
un−j,N−γn−j−γ−k is in column cjk ∈ {1, . . . , (n−1)on−γ } ofΓ and, let∆n be the ((n−1)on−γ )×Lh

matrix whose row cjk contains the coefficients of ∂N−oj−γ−kφj. Thus ∆n has ones in the main
diagonal of its (n − 1)on − γ principal submatrix and, in each row at most one nonzero entry
not in the mentioned diagonal, equal to 1. If N − on − γ = 0, by (6), then Γ = Mφ and the matrix
M := ∆n.

We assume that N − on − γ > 0. Observe that, if o1 = 0 then γj = 0, j = 1, . . . , n − 1, since
γj ≤ o1. Let I := {i ∈ {1, . . . , n − 1} | Oi > 0}. Given i ∈ I, for i ≠ 1 we define the polynomials

ψ i
j,k :=


∂N−Oj−

∑n
h=i+1 Oh−γ−kφj, j = 1, . . . , i − 1,

∂N−
∑n

h=i+1 Oh−γ−kφj, j = i + 1, . . . , n,

k = 1, . . . ,Oi, and for i = 1 we define the polynomials
ψ1

j,k := ∂O1−kφj, j = 2, . . . , n, k = 1, . . . ,O1.

Let us denote by r(ψ i
j,k) the row vector of Mφ containing the coefficients of ψ i

j,k. Let ∆i,k, k =

1, . . . ,Oi, be the submatrix ofMφ obtained by stacking n − 1 of these row vectors as follows

∆i,k :=


stack(r(ψ i

1,k), . . . , r(ψ
i
i−1,k), r(ψ

i
i+1,k), . . . , r(ψ

i
n,k)), i ≠ 1,

stack(r(ψ i
2,k), . . . , r(ψ

i
n,k)), i = 1.

Thematrix∆i := stack(∆i,1, . . . ,∆i,Oi) has Oi(n−1) rows. The lth row of∆i has a 1 in the column
indexed by the lth monomial in the set

Ωi :=


{uj,N−

∑n
h=i+1 Oh−γ−k | j = n − 1, . . . , 1, k = 1, . . . ,Oi}, i ≠ 1,

{un−1,O1−k, . . . , u1,O1−k | k = 1, . . . ,O1}, i = 1.

The monomials in Ωi are arranged in decreasing order w.r.t. the orderly ranking on U , as in
Section 3. This is the order of the monomials in the set Vh indexing the columns ofMφ .

Finally, the union of Ωn with the sets Ωi, i ∈ I, equals the set Vh. Let us suppose that I has
I ≥ n − 1 elements, I = {i1, . . . , iI}, with iI > · · · > i1. Stacking the matrix∆n with the matrices
in the set {∆i | i ∈ I}, we obtain

M := stack(∆n,∆iI , . . . ,∆i1),

with 1’s in the main diagonal and, in every row only one nonzero entry not in the main diagonal,
equal to 1.

2.2. The matrix M has three kinds of rows, which we will name as follows: right-row (left-row),
with two nonzero entries, both equal to 1, one in the main diagonal ofM and the other to the right
(left) of the main diagonal ofM; diag-row, with only one nonzero entry, equal to 1, which is in the
main diagonal ofM .

If N − on − γ = 0, by (4), all the rows ofM = ∆n are right-rows, thusM ′
:= M . We assume in

the remaining parts of the proof that N − on − γ > 0. Given u ∈ Vh, let r(u) denote the coefficient
vector of u as a polynomial in K[Vh

], whose Lh entries are all zero except for a 1 in the column
indexed by u. Given a matrix T , let r(T ) denote the set of row vectors of T .

Observe that, blocks∆n and∆n−1 (ifOn−1 > 0) ofM have only right-rows and diag-rows. Blocks
∆i, i ∈ {n − 2, . . . , 1} ∩ I have also left-rows and our goal is to replace them by diag-rows using
row operations. Given i ∈ I, let∆n

i := ∆i, which contains the diag-rows

r(ψ i
n,k) = r(u1,N−

∑n
h=i+1 Oh−γ−k), k = 1, . . . ,Oi. (7)

If On−1 > 0, set ∆′

n−1 := ∆n−1. For i ∈ {n − 2, . . . , 1} ∩ I, we replace the left-rows of ∆i by
diag-rows, to obtain a matrix∆′

i . It holds
{n − 2, . . . , 1} ∩ I = {i1, . . . , iH},

withH = I ifn−1 /∈ I andH = I−1 ifn−1 ∈ I. For t = H, . . . , 1, set i := it . For j = n−1, . . . , i+1
replace r(ψ i

j,k), k = 1, . . . ,Oi, by

r(un−j+1,N−
∑n

h=i+1 Oh−γ−k) = r(ψ i
j,k)− r(un−j,Oj+N−

∑n
h=i+1 Oh−γ−k), (8)
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to obtain a matrix∆j
i. Set∆

′

i := ∆i+1
i . To finish

M ′
:= stack(∆n,∆

′

iI , . . . ,∆
′

i1).

It remains to prove that the r.h.s. of (8) is an operation with rows in ∪l∈{j,...,i}∩ I r(∆j+1
l ). For

i ∈ {n − 2, . . . , 1} ∩ I, j ∈ {n − 1, . . . , i + 1}, the set {r(un−j,Oj+N−
∑n

h=i+1 Oh−γ−k) | k = 1, . . . ,Oi}

is included in

S
j
i :=


r(un−j,N−

∑n
h=j+1 Oh−γ−k) | k = 1, . . . ,

j−
h=i

Oh


.

For t = H, . . . , 1, set i := it . We prove next, by induction on t , that for j = n − 1, . . . , i + 1,

S
j
i ⊂ ∪l∈{j,...,i}∩ I r(∆j+1

l ). (9)

Observe that {n−1, . . . , iH}∩I = {iI , iH}. By equation (7), Sn−1
iH

⊂ ∪l∈{iI ,iH } r(∆n
l ). If iH < n−2,

for j = n − 2, . . . , iH + 1 then {j, . . . , iH} ∩ I = {iH} and by the l.h.s. of (8), Sj
iH

⊂ r(∆j+1
iH
).

Let t ∈ {H − 1, . . . , 1}, set i := it and let us assume that (9) is true for t + 1

S
j
it+1

⊂ ∪l∈{j,...,it+1}∩ I r(∆j+1
l ), j = n − 1, . . . , it+1 + 1. (10)

By Eq. (7), Sn−1
i ⊂ ∪l∈{n−1,...,i}∩ I r(∆n

l ). Given j ∈ {n − 2, . . . , i + 2}, by the l.h.s. of (8), r(∆j+1
i )

contains rows

r(un−j,N−
∑n

h=i+1 Oh−γ−k), k = 1, . . . ,Oi. (11)

Observe that, if it+1 > i + 1 then Oit+1−1 = · · · = Oi+1 = 0. Thus (10) together with (11) proves
(9) for j = n − 2, . . . , i + 2. Now take j = i + 1. By the l.h.s. of (8), r(∆i+2

i ) contains

{r(un−(i+1),N−
∑n

h=i+1 Oh−γ−k) | k = 1, . . . ,Oi}. (12)

If i+1 /∈ I, thenOi+1 = 0 and S i+1
i equals (12). If i+1 ∈ I then, by the l.h.s. of (8), r(∆i+2

i+1) contains

{r(un−(i+1),N−
∑n

h=i+2 Oh−γ−k) | k = 1, . . . ,Oi+1}. (13)

Thus S i+1
i is the union of (12) and (13), which proves S i+1

i ⊂ r(∆i+2
i+1)∪ r(∆i+2

i ). This proves (9) for
the chosen i and j = n − 1, . . . , i + 1.

Theorem 6.2. Given a system P (X,U) of linear DPPEs, there exists a linear perturbation φ such that the
differential resultant ∂CRes(Fφ1 , . . . , F

φ
n ) is a nonzero polynomial in K[p]{X} and det(Sφn ) ≠ 0.

Proof. Let φ be the perturbation defined by (4). By Proposition 6.1, det(Sφn ) ≠ 0. If N = 0, the result
follows from

∂CRes(Fφ1 , . . . , F
φ
n ) =

n−
i=1

(−1)i+n det(Sφi )(xi − ai).

If N ≥ 1 then ∂CResh(Hφ1 , . . . ,H
φ
n ) ≠ 0, by Proposition 6.1. This is equivalent, by Rueda and Sendra

(2010), Theorem 18(2), to ∂CRes(Fφ1 , . . . , F
φ
n ) ≠ 0. �

If nonzero, ∂CRes(Fφ1 , . . . , F
φ
n ) is a polynomial in p, whose coefficients are linear differential

polynomials in K{X}. We focus our attention next on the coefficient of the lowest degree term, in
p, of ∂CRes(Fφ1 , . . . , F

φ
n ).

Theorem 6.3. Given a system P (X,U) of linear DPPEs, let φ be a linear perturbation such that
∂CRes(Fφ1 , . . . , F

φ
n ) ≠ 0 and det(Sφn ) ≠ 0. The following statements hold.

1. There exists a linear differential polynomial P in (PSφ) ∩ Kp{X}, with coefficients in K[p] and content
in K, such that αn ≠ 0, where l(P) = (α1, . . . , αn).
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2. There exists a ∈ N such that

αn∂CRes(F
φ

1 , . . . , F
φ
n ) = (−1)a det(Sφn )∂CRes

h(Hφ1 , . . . ,H
φ
n )P(X). (14)

Furthermore, det(Sφn )∂CResh(H
φ
1 ,...,H

φ
n )

αn
∈ K[p].

Proof. 1. By Lemma 4.1, there exists a nonzero linear differential polynomial B ∈ (PSφ) ∩ Kp{X}.
There exists c ∈ Kp such that P(X) = c∂c(B)B(X) has coefficients in K[p] and content in K. Observe
that c(P) = 0. Since P ∈ Kp{X} then ord(P, uj) < N − γj − γ and, by Remark 4.8, it holds l(P)T ∈

Ker((Sφ)T ). If αn = 0 then det(Sφn ) ≠ 0 implies αi = 0, i = 1, . . . , n. This contradicts that c(P) = 0
and therefore αn ≠ 0.

2. Eq. (14) follows from Rueda and Sendra (2010), Theorem 18(1). Since the content of P(X) belongs
to K, αn divides det(Sφn )∂CResh(H

φ

1 , . . . ,H
φ
n ) in K[p]. �

Let Dφ be the lowest degree of p in ∂CRes(Fφ1 , . . . , F
φ
n ) and let ADφ be the coefficient of pDφ in

∂CRes(Fφ1 , . . . , F
φ
n ). We call Dφ the degree of the perturbed system Pφ(X,U). Observe that

Dφ = 0 ⇔ ∂CRes(F1, . . . , Fn) ≠ 0.

We write Dφ = −1 if ∂CRes(Fφ1 , . . . , F
φ
n ) = 0 and so

Dφ ≥ 0 ⇔ ∂CRes(Fφ1 , . . . , F
φ
n ) ≠ 0.

We assume that ∂CRes(Fφ1 , . . . , F
φ
n ) ≠ 0, in the remaining parts of this section. Let PS =

PS(F1, . . . , Fn) and let ID be the implicit ideal of P (X,U). We will use ∂CRes(Fφ1 , . . . , F
φ
n ) to provide

a nonzero ID-primitive differential polynomial Aφ in (PS) ∩ K{X}.

Lemma 6.4. The linear differential polynomial ADφ belongs to (PS) ∩ K{X}.

Proof. ByRueda and Sendra (2010), Proposition 16, ∂CRes(Fφ1 , . . . , F
φ
n ) ∈ (PSφ)∩Kp{X}. Furthermore,

by definition of Fφi , i = 1, . . . , n, ∂CRes(Fφ1 , . . . , F
φ
n ) is the determinant of a matrix with entries in

K[p]{X} and it equals pDφ (ADφ + pA′), for some A′
∈ K[p]{X}. Therefore, the linear polynomial

ADφ+pA′
∈ (PSφ)∩K[p]{X} and there existFi ∈ K[p][∂], with deg(Fi) ≤ N−oi−γ , such thatADφ (X)+

pA′(X) =
∑n

i=1 Fi(F
φ

i (X,U)). Then ADφ (X)+ pA′(X) =
∑n

i=1 Fi(xi − ai) and
∑n

i=1 Fi(H
φ

i (U)) = 0.
For each i ∈ {1, . . . , n}, there exist unique Li ∈ K[∂] and F ′

i ∈ K[p][∂] such that Fi = Li + pF ′

i .
Then ADφ (X) + pA′(X) =

∑n
i=1 Li(xi − ai) + p

∑n
i=1 F ′

i (xi − ai) and ADφ (X) =
∑n

i=1 Li(xi − ai). On
the other hand,

0 =

n−
i=1

Fi(H
φ

i (U)) =

n−
i=1

Li(Hi(U))+ p
n−

i=1

Li(φi(U))+ p
n−

i=1

F ′

i (H
φ

i (U)),

which implies
∑n

i=1 Li(Hi(U)) = 0. Thus, ADφ (X) =
∑n

i=1 Li(Fi(X,U)), with deg(Li) ≤ N − oi − γ ,
showing that ADφ ∈ (PS) ∩ K{X}. �

Let Aφ be the ID-primitive part of ADφ .We call Aφ the differential polynomial associated toPφ(X,U).
We relate Dφ with c(Aφ) and give conditions, on Dφ , for Aφ(X) = 0 to be the implicit equation of
P (X,U).

Remark 6.5. Let Pφ(X,U) and Pψ (X,U) be two different linear perturbations of P (X,U), with
degrees Dφ ≥ 0 and Dψ ≥ 0. Let Aφ and Aψ be the associated differential polynomials.

1. As illustrated in Example 1 of Section 7, the degrees Dφ and Dψ may be different.
2. If dim ID = n − 1 then Aφ = γ Aψ , for some γ ∈ K.

Theorem 6.6. Let Pφ(X,U) be a perturbed system of P (X,U), with degree Dφ ≥ 0. Let G be the Gröbner
basis associated to P (X,U) and G0 = G ∩ K{X}. Then |G0| − 1 ≤ Dφ .
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Proof. LetMφ(L) be the differential resultant matrix of Fφ1 , . . . , F
φ
n andMφ

L−1 the L× (L− 1) principal
submatrix ofMφ(L). By equation (2),

∂CRes(Fφ1 , . . . , F
φ
n ) =

n−
i=1

N−oi−γ−
k=0

bik det(Mφ
xi,k)(xi,k − ∂kai),

withMφ
xi,k an (L−1)×(L−1) submatrix ofMφ

L−1 and bik = ±1, according to the row index of xi,k−∂kai
in thematrixMφ(L). LetMxi,k be the (L−1)×(L−1) submatrix of the principalmatrixML−1 ofP (X,U).
Let rik = rank(Mxi,k). There exists an invertible matrix Eik, of order L − 1 and entries in K, such that
the last L− 1− rik rows of EikMxi,k are zero. If we divide each one of the last L− 1− rik rows of EikM

φ
xi,k

by p, we obtain a matrix Nφik and cik ∈ K such that

det(Mφ(L)) =

n−
i=1

N−oi−γ−
k=0

cikpL−1−rik det(Nφik)(xi,k − ∂kai).

Let ri0k0 = max{ri,k | i ∈ {1, . . . , n}, k ∈ {0, 1, . . . ,N − oi − γ }, det(Nφik) ≠ 0}. This proves that
L − 1 − ri0k0 ≤ Dφ . Now, rank(ML−1) ≥ ri0k0 so

|G0| − 1 = L − rank(ML−1)− 1 ≤ L − 1 − ri0k0 ≤ Dφ . �

We showed that Dφ ≥ |G0| − 1 = L − rank(ML−1)− 1 ≥ c(Aφ) and, in general, the equality does
not hold (see examples in Section 7).

Corollary 6.7. Let P (X,U) be a system of linear DPPEs with implicit ideal ID and leading matrix S. Let
Pφ(X,U) be a perturbed system of P (X,U), with degree Dφ ≥ 0. Let Aφ be the differential polynomial
associated to Pφ(X,U). If rank(S) = n− 1 and Dφ = c(Aφ) then ID has dimension n− 1 and Aφ(X) = 0
is the implicit equation of P (X,U).

Proof. IfDφ = c(Aφ) then, by Theorem 6.6, we have |G0| ≤ c(Aφ)+1. By Lemma 5.1, |G0| = c(Aφ)+1
and, by Corollary 5.8, the result follows. �

7. Implicitization algorithm for linear DPPEs and examples

Let P (X,U) be a system of linear DPPEs with implicit ideal ID. Let S and ML−1 be the leading and
principal matrices of P (X,U) respectively. Assuming that rank(S) = n−1, in this section, we give an
algorithm that decides whether the dimension of ID is n − 1 and, in the affirmative case, returns the
implicit equation of P (X,U). As defined in Section 6, given a perturbed system Pφ(X,U) of P (X,U),
of degree Dφ ≥ 0, let ADφ be the coefficient of pDφ in ∂CRes(Fφ1 , . . . , F

φ
n ) and Aφ the differential

polynomial associated to Pφ(X,U).

Algorithm 7.1. • Given a system P (X,U) of linear DPPEs whose leading matrix verifies rank(S) =

n − 1.
• Decide whether the dimension is n − 1 and, in the affirmative case,
• Return a characteristic polynomial of ID.

1. Compute Pφ(X,U)with perturbation φ given by (4).
2. Compute ∂CRes(Fφ1 , . . . , F

φ
n ), Dφ and ADφ .

3. If Dφ = 0 RETURN ADφ .
4. Compute Aφ and c(Aφ).
5. If Dφ = c(Aφ) RETURN Aφ .
6. Compute rank(ML−1).
7. If L − rank(ML−1) > c(Aφ)+ 1 RETURN ‘‘dimension less than n − 1".
8. If L − rank(ML−1) = c(Aφ)+ 1 RETURN Aφ .

The previous algorithm follows from the results proved throughout this paper. Namely, step
3 follows from Rueda and Sendra (2010), Theorem 21, step 5 from Corollary 6.7, step 7 from
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Corollary 5.3 and step 8 from Corollary 5.8. Also, in step 1, we could use any perturbation φ such
that ∂CRes(Fφ1 , . . . , F

φ
n ) ≠ 0. We refer to φ given by (4) because it is the perturbation we used to

prove Theorem 6.2.
The next examples were computed with Maple. The computation of differential resultants was

carried out with our Maple implementation of the linear complete differential resultant, available at
Rueda (2008).

7.1. Example 1

Let K = Q(t), ∂ =
∂
∂t and consider the system P (X,U), of linear DPPEs, providing the set of

differential polynomials in K{x1, x2, x3}{u1, u2},

F1(X,U) = x1 + u1 − u2 + u1,1 − u1,2 − 4u2,1 − 3u2,2,

F2(X,U) = x2 + u2 + u1,1 − u2,2,

F3(X,U) = x3 + u2 + u1,1 + u2,1.

The set PS(F1, F2, F3) contains L = 13 differential polynomials and γ = 0. The leading matrix S of
P (X,U) has rank 2 and equals

S =


−3 −1
−1 0
1 1


.

We consider the perturbation φ = (φ1(U), φ2(U), φ3(U))with

φi(U) =

u1,2 + u2, i = 1,
u1, i = 2,
u2,1, i = 3.

There exists a differential polynomial P ∈ (PSφ) ∩ Kp{X}, with coefficients in K[p] and content in
K, such that the determinant of the 13 × 13 matrixMφ(13) equals

∂CRes(Fφ1 , F
φ

2 , F
φ

3 ) = ∂CResh(Hφ1 ,H
φ

2 ,H
φ

3 )P(X)

= p (1 + 4p + 4p4 − p5 + 2p7 + 11p3 + p9 − 12p2 − 4p6 + p8)P(X).

Then Dφ = 1 and the coefficient of p in ∂CRes(Fφ1 , F
φ

2 , F
φ

3 ) is
ADφ = x1,2 + x1,3 − x2 − 3x2,1 − 4x2,2 − 2x2,3 + x3 + 2x3,1 + 2x3,2 + 2x3,3 + x3,4.

We have ADφ = L1(x1)+ L2(x2)+ L3(x3), with

L1 = ∂2 + ∂3 = ∂2(1 + ∂),

L2 = −1 − 3∂ − 4∂2 − 2∂3 = −(∂ + 1)(2∂2 + 2∂ + 1),
L3 = 1 + 2∂ + 2∂2 + 2∂3 + ∂4 = (∂2 + 1)(∂ + 1)2.

Therefore L = gcld(L1,L2,L3) = 1+ ∂ and Aφ = x1,2 − x2 − 2x2,1 − 2x2,2 + x3,3 + x3,2 + x3,1 + x3,
with c(Aφ) = 1. Then Dφ = c(Aφ). We conclude that the dimension of ID is n − 1 = 2 and its implicit
equation Aφ(X) = 0.

If we consider the perturbation ψ = (ψ1(U), ψ2(U), ψ3(U)), given by (4), with

ψi(U) =

u2,2, i = 1,
u1,2 + u2, i = 2,
u1, i = 3.

There exists a differential polynomial P ∈ (PSφ) ∩ Kp{X}, with coefficients in K[p] and content in K,
such that the determinant of the 13 × 13 matrixMψ (13) equals

∂CRes(Fψ1 , F
ψ

2 , F
ψ

3 ) = ∂CResh(Hψ1 ,H
ψ

2 ,H
ψ

3 )P(X)

= p2(−1 + p)(p7 + 8p6 + 15p5 + 15p4 − 50p3 − 5p2 + 13p − 3)P(X).

Then Dψ = 2 but the coefficient of p2 is ADψ = 3ADφ . Therefore Aψ = Aφ as expected.
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7.2. Example 2

Let K = Q(t), ∂ =
∂
∂t and consider the system P (X,U), of linear DPPEs, providing the set of

differential polynomials in K{x1, x2, x3, x4}{u1, u2, u3},

F1(X,U) = x1 + 2u1 − u3 − u1,1 + 3u2,2 − u3,2,

F2(X,U) = x2 + 2u1 − u3 + 2u2,1 + u3,2,

F3(X,U) = x3 + 2u1 − u3 + 3u2,1 − 2u3,1,

F4(X,U) = x4 − 2u1 + u3 − 3u2,1 + u3,1.

The set PS(F1, F2, F3, F4) contains L = 18 differential polynomials and γ = γ1 = 1. The leadingmatrix
S of P (X,U) has rank 3 and equals

S =

 −1 3 −1
1 0 0

−2 3 2
1 −3 −2

 .
We consider the perturbation φ = (φ1(U), φ2(U), φ3(U)), given by (4), with

φi(U) =


u3,2, i = 1,
u2,2 + u3, i = 2,
u1 + u2, i = 3,
u1, i = 4.

There exists a differential polynomial P ∈ (PSφ) ∩ Kp{X}, with coefficients in K[p] and content in K,
such that the determinant of the 18 × 18 matrixMφ(18) equals

∂CRes(Fφ1 , F
φ

2 , F
φ

3 , F
φ

4 ) = ∂CResh(Hφ1 ,H
φ

2 ,H
φ

3 ,H
φ

4 )P(X)

= p3(−9009p3 − 233p8 + p11 + 1917 + 7p10 − 553p7 − 20p9

− 2070p + 9828p4 + 12033p2 − 4198p5 − 1680p6)P(X).

Then Dφ = 3 and the coefficient of p3 in ∂CRes(Fφ1 , F
φ

2 , F
φ

3 , F
φ

4 ) is

ADφ = −1917(2x1,2 − 6x2,2 + 9x2,3 − 5x3,2 + 9x3,4 − 9x4,2 + 8x4,3 + 9x4,4).

We have ADφ = L1(x1)+ L2(x2)+ L3(x3)+ L4(x4), with

L1 = −1917∂22,
L2 = −1917∂2(9∂ − 6),
L3 = −1917∂2(9∂2 − 5),
L4 = −1917∂2(9∂2 + 8∂ − 9).

ThereforeL = −1917∂2 and Aφ = 2x1+9x2,1−6x2+9x3,2−5x3+94,2+8x4,1−9x4, with c(Aφ) = 2.
Then Dφ > c(Aφ).

Replace p inMφ(18) by zero to obtainM(18), whose principal 18×17 submatrix isML−1. Compute
L − rank(ML−1) = 3. Then c(Aφ) + 1 = L − rank(ML−1). We conclude that the dimension of ID is
n − 1 = 3 and its implicit equation Aφ(X) = 0.

7.3. Example 3

Let K = Q(t), ∂ =
∂
∂t and consider the system P (X,U), of linear DPPEs, providing the set of

differential polynomials in K{x1, x2, x3}{u1, u2},

F1(X,U) = x1 − 3 + u1,1 + u1,2 − u2 − 4u2,1 − 3u2,2,

F2(X,U) = x2 + u1,1 + u2 − u2,2,

F3(X,U) = x3 + 2 + u1,1 + tu2 + u2,1.



S.L. Rueda / Journal of Symbolic Computation 46 (2011) 977–996 995

Then the set PS(F1, F2, F3) contains L = 13 differential polynomials and γ = 0. The leading matrix S
of P (X,U) has rank 2 and equals

S =


−3 1
−1 0
1 1


.

We consider the perturbation φ = (φ1(U), φ2(U), φ3(U)), given by (4), with

φi(U) =

u2,2, i = 1,
u1,2 + u2, i = 2,
u1, i = 3.

There exists a differential polynomial P ∈ (PSφ) ∩ Kp{X}, with coefficients in K[p] and content in K,
such that the determinant of the 13×13matrixMφ(13) equals ∂CRes(F

φ

1 , F
φ

2 , F
φ

3 ) = −p(p+1) P(X).
In this case, α3 p(p + 1) = − det(Sφ3 )∂CRes

h(Hφ1 ,H
φ

2 ,H
φ

3 ) where l(P) = (α1, α2, α3) is the leading
vector of P . Then Dφ = 1 and the coefficient ADφ of p in ∂CRes(Fφ1 , F

φ

2 , F
φ

3 ) equals

ADφ = L1(x1 − 3)+ L2(x2)+ L3(x3 + 2)

with

L1 = −664 − 2t3 + 228t − 16t2 + (312 − 2t4 + 187t2 − 19t3 − 510t)∂
+ (−2t3 − 464 + 198t − 15t2)∂2 + (−21t2 + 156t − 2t3 − 308)∂3,

L2 = 16t2 + 2t3 − 228t + 664 + (−139t2 + 25t3 + 1680 + 2t4 − 174t)∂
+ (−75t2 + 2t4 − 640t + 2164 + 31t3)∂2 + (−624t + 84t2 + 8t3 + 1232)∂3,

L3 = (−32t2 + 456t − 4t3 − 1328)∂ + (952t − 97t2 − 2012 − 10t3)∂2

+ (−4t3 − 48t2 − 460 + 270t)∂3 + (21t2 − 156t + 2t3 + 308)∂4.

Using the Maple package OreTools, we check that L = gcld(L1,L2,L3) equals

L =
−(6t5 + 125t4 + 302t3 − 2988t2 + 1424t + 464)

2t6 + 47t5 + 37t4 − 2484t3 + 11042t2 − 18248t + 11704
+ ∂.

Then ADφ = L(Aφ), with c(Aφ) = 1 andDφ = c(Aφ).We conclude that the dimension of ID is n−1 = 2
and its implicit equation Aφ(X) = 0.

If we take a different perturbation ψ = (ψ1(U), ψ2(U), ψ3(U))with

ψi(U) =

u2,2 + u1, i = 1,
u2, i = 2,
u1,1, i = 3.

We obtain Dψ = 1 and the coefficient of p in ∂CRes(Fψ1 , F
ψ

2 , F
ψ

3 ) is

ADψ = K1(x1 − 3)+ K2(x2)+ K3(x3 + 2)

with

K1 = (t5 − 156 + 11t4 + 12t + 154t2 − 76t3)∂
+(t4 − 100 − 94t2 + 8t3 + 204t)∂2 + (−12 + 88t − 58t2 + 12t3 + t4)∂3,

K2 = 664 + 2t3 − 228t + 16t2 + (−13t4 + 820 + 90t2 − 904t + 62t3 − t5)∂
+ (412 − 17t4 + 14t3 + 346t2 − t5 − 892t)∂2

+ (48 − 352t + 232t2 − 48t3 − 4t4)∂3,
K3 = −664 − 16t2 − 2t3 + 228t + (−664 + 892t − 244t2 + 2t4 + 14t3)∂

+ (676t − 406t2 + 5t4 + 54t3 − 156)∂2 + (−80t2 + 2t4 + 60t + 28t3 + 64)∂3

+ (12 − 88t + 58t2 − 12t3 − t4)∂4.
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Using the Maple package OreTools we check that K = gcld(K1,K2,K3) equals

K =
−(5t6 + 114t5 + 286t4 − 3692t3 + 9732t2 − 12024t + 6208)
t7 + 25t6 + 58t5 − 1108t4 + 3908t3 − 5880t2 + 3824t − 456

+ ∂.

Thus ADψ = K(Aψ ) and c(Aψ ) = 1. Therefore, as it should be, we obtain the same conclusion, with

Aψ =
12 − 88t + 58t2 − 12t3 − t4

308 − 156t + 21t2 + 2t3
Aφ .
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