Journal of Symbolic Computation 46 (2011) 977-996

Contents lists available at ScienceDirect
kRl Journal of

WA <, mbolic
WP Computation

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

A perturbed differential resultant based implicitization
algorithm for linear DPPEs

Sonia L. Rueda
Dpto de Matematica Aplicada, E.T.S. Arquitectura, Universidad Politécnica de Madrid, Avda. Juan de Herrera 4, 28040-Madrid, Spain

ARTICLE INFO ABSTRACT
Artic{e history: Let K be an ordinary differential field with derivation d. Let » be
Received 10 November 2010 a system of n linear differential polynomial parametric equations

Accepted 9 April 2011

c I in n — 1 differential parameters, with implicit ideal ID. Given a
Available online 7 May 2011

nonzero linear differential polynomial A in ID, we give necessary
and sufficient conditions on A for & to be n — 1 dimensional. We

- : . . . prove the existence of a linear perturbation £ of £, so that the
Differential rational parametric equations . . . . .
Differential resultant linear complete differential resultant dCRes, associated to £y is
Implicitization nonzero. A nonzero linear differential polynomial in ID is obtained,
Perturbation from the lowest degree term of dCResy, and used to provide an
implicitization for £.

Keywords:

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The use of algebraic elimination techniques, such as Grobner bases and multivariate resultants, to
obtain the implicit equation of a unirational algebraic variety is well known (see for instance (Cox
etal,, 1997, 1998)). The development of similar techniques in the differential case is an active field of
research. In Gao (2003), characteristic set methods were used to solve the differential implicitization
problem for differential rational parametric equations and, alternative methods are emerging to
treat special cases. In Rueda and Sendra (2010), linear complete differential resultants were used to
compute the implicit equation of a set of linear differential polynomial parametric equations (linear
DPPEs). As in the algebraic case, differential resultants often vanish under specialization and we are
left with no candidate for the implicit equation. This reason prevented us from giving an algorithm
for differential implicitization in Rueda and Sendra (2010). Motivated by Canny’s method (Canny,
1990) and its generalizations in D’Andrea and Emiris (2001) and Rojas (1999), in the present work, we
consider a linear perturbation of a given system of linear DPPEs, and use linear complete differential
resultants to give a candidate for the implicit equation of the system.
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Given a system £ (X, U) of n linear ordinary differential polynomial parametric equations x; =
Py(U), ..., x, = P,(U), inn — 1 differential parameters u;, ..., u,_; (we give a precise statement of
the problem in Section 2), we give an algorithm to decide if the dimension of the implicit ideal ID of
& isn — 1 and, in the affirmative case, provide the implicit equation of #.

The linear complete differential resultant 0CRes(x; — P;(U), ..., x, — P,(U)) is the algebraic
resultant of Macaulay, of a set of differential polynomials with L elements. It was defined in Rueda
and Sendra (2010), as a generalization of Carra’-Ferro’s differential resultant (Carra’Ferro, 1997) (in the
linear case), in order to adjust the number L, of differential polynomials, to the order of the derivatives
of the variables uq, ..., u,_q in F; = x; — P;(U).

In this paper, we provide a perturbation £4(X, U) of #(X, U), so that the linear differential
polynomials F; — p¢1(U), ..., F, — p¢,(U) have nonzero linear complete differential resultant
0CResy (p), which is a polynomial depending on p. It will be shown that the coefficient of the lowest
degree term of dCRes,(p) is a nonzero linear differential polynomial, which belongs to the implicit
ideal ID of # (X, U). In fact, if 9CRes,(p) has a nonzero constant term, with respect to p, it equals
dCRes(Fy, ..., F,) and, as proved in Rueda and Sendra (2010), it gives the implicit equation of P (X, U).

The main result of this paper generalizes the result previously mentioned from Rueda and Sendra
(2010). Given a nonzero linear differential polynomial A in ID, necessary and sufficient conditions
on A are provided so that A(X) = 0 is the implicit equation of £ (X, U). The higher order terms in
the equations of £ (X, U) and the rank of the coefficient matrix, of the set of L polynomials used to
construct the differential resultant dCRes(Fy, ..., F;), play a significant role in this theory. The fact
that we are dealing with linear differential polynomials will be also relevant, allowing us to treat
them by means of differential operators.

The paper is organized as follows. In Section 2, we introduce the main notions and notation. Next
we review the definition of the linear complete differential (homogeneous) resultant in Section 3.
Definitions regarding linear differential polynomials in ID are given in Section 4. The next section
contains the main result of the paper, namely a characterization of the implicit equation of ID, in
the n — 1 dimensional case, is provided in Section 5. In Section 6, we give a perturbation £y (X, U)
of (X, U), with nonzero differential resultant, and use it to obtain a nonzero linear differential
polynomial in ID, candidate to provide the implicit equation. Finally, in Section 7, we give an
implicitization algorithm and examples.

2. Basic notions and notation

This section is devoted to the introduction of the terminology, the notation and the basic notions
(as in Rueda and Sendra (2010)) that will be used throughout the paper. We refer to Kolchin (1973)
and Ritt (1950) for further concepts and results on differential algebra.

Let K be an ordinary differential field with derivation 9, (e.g. Q(t), 0 = %). By Ny we mean
the natural numbers including 0. Given a set Y of differential indeterminates over K, we denote by
{Y} the set of derivatives of the elements of Y, {Y} = {8*y | y € Y, k € Ny}, and by K{Y} the
ring of differential polynomials in the differential indeterminates Y, which is a differential ring with
derivation 0. Let X = {xq,...,x,}and U = {uq, ..., u,_1} be sets of differential indeterminates over
K. For k € Ny, we denote by x; x the kth derivative of x; and for x; o we simply write x;. Observe that

K{X} :K[xi,k | l: 1,...,n,k€No]
is a differential domain with derivation o. The differential rings K{U} and K{X UU}, which will be also

used throughout the paper, can be defined analogously.
As defined in Rueda and Sendra (2010), we consider the system of linear DPPEs

x; = Pi(U),
P(X,U) = : (1)
Xn = Pn(U)a
where Py, ..., P, € K{U}, with degree at most 1 and notall P; € K,i = 1, ..., n. There exists a; € K

and a homogeneous differential polynomial H; € K{U} such that
Fi(X,U) =x; — P;(U) = x; — a; + H;i(U).
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Given P € K{X UU} andy € X U U, we denote by ord(P, y) the order of P in the variable y. If P
does not have a term in y then we define ord(P, y) = —1. To ensure that the number of parameters is
n — 1, we assume that foreachj € {1, ..., n— 1} there existsi € {1, ..., n} such that ord(F;, u;) > 0.

The implicit ideal of the system (1) is the differential prime ideal

ID = {f e K{X} | f(P1(U), ..., Py(U)) = 0}.

Given a characteristic set C of ID, then n—|€]| is the (differential) dimension of ID. By abuse of notation,
we will also speak about the dimension of a DPPE system, meaning the dimension of its implicit
ideal.

If dim(ID) = n — 1, then ¢ = {A(X)} for some irreducible differential polynomial A € K{X}. The
polynomial A is called a characteristic polynomial of ID. An implicit equation of a (n — 1)-dimensional
system of DPPEs, in n differential indeterminates X = {xi, ..., x,}, is defined as the equation A(X)
= 0, where A is any characteristic polynomial of the implicit ideal ID of the system.

Let K[d] be the ring of differential operators with coefficients in K. If K is not a field of constants
with respect to d, then K[d] is not commutative but 0k — kd = d(k), for all k € K. The ring K[d]
of differential operators with coefficients in K is left Euclidean (and also right Euclidean). Given
£, £ € K[3], by applying the left division algorithm we obtain q, r € K[d], the left quotient and
the left reminder of £ and £’ respectively, such that £ = «£'q + r where deg(r) < deg(L').

3. Linear complete differential resultants

We review next the results on linear complete differential resultants from Rueda and Sendra
(2010), which will be used in this paper.

Let D be a differential integral domain. Let f; € D{U} be a linear ordinary differential polynomial
of order 0;,i = 1, ..., n. We assume that the polynomials fi, . .., f, are distinct. For eachj € {1, ...,
n— 1}, let O(f;, ;) = ord(f;, u)), if ord(f;, uj) > 0 and O (f;, ;) = 0, if ord(f;, u;) = —1. We define the
positive integers

yi(fi, ..., fo) ==min{o; — O(f, uy) | i € {1,...,n}},

n—1
v f) =D v f)-
j=1

LetN = Z?:l 0;, the completeness index y (f1, . . ., fy) verifies y (f1, ..., fu) < N—ojfori=1,...,n.
We defined the linear complete differential resultant dCRes(f, . . ., f;) in Rueda and Sendra (2010),
as the Macaulay’s algebraic resultant of the differential polynomial set

PS(fi,....f) == {" O fi . of fili=1 oy =y, )
Since the differential polynomials fi, . . ., f, are distinct, the set PS(f1, ..., f,) contains L = Zle (N—
0; — y + 1) polynomials in the following set 'V of L — 1 differential variables

V= {uj,u“,...,uj,N_yj_y | )/j:)/j(f1,...,fn),j: 1,...,n— 1}.

Let h; € D{U} be a linear ordinary differential homogeneous polynomial of order o0;,i = 1, ...,
n, with N = Z?:l 0; > 1. We assume that the polynomials hy, ..., h, are distinct. We define the
differential polynomial set

PS"(hy, ..., hy) = (N %Y Thy L Bl By |
ie{l,...,n}, N—o0;—y —1>0,y =y(hy,...,hp}.

Observe that N > 1 implies PS"(hy, ..., hy) # (. The linear complete differential homogenous re-
sultant dCRes" (hy, . .., h,) is the Macaulay’s algebraic resultant of the set PSh(hl, ..., hy). Since the
differential polynomials are distinct, the set PS"(h, ..., h,) contains L" = Z?:](N — 0; — y) poly-

nomials in the set V" of [" differential variables

Vh = {Uj, Uity ey Llj,N_yj_y_1 | Vi = ]/j(h1, ey hn),j = ], oo, — 1}.
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We review next the matrices that will allow the use of determinants to compute dCRes(fy, . .., fn)
and 9CRes"(hy, ..., hy). The order u; < --- < u,_; induces an orderly ranking on U (i.e. an order on
{U}) as follows (see Kolchin, 1973, page 75): u;j < Uy < (j, 1) <iex (I, k). We set 1 < u;.

Fori=1,...,n,y = y(f1,...,fn)and k = 0,..., N — o; — y, we define the positive integer
I, k) =>1(—1)(N—y)— Z;;l] on+i+kin{1, ..., L}. The complete differential resultant matrix M (L)
is the L x L matrix containing the coefficients of ¥ ~%~7~kf; as a polynomial in D[V], in the I(i, k)th
row, where the coefficients are written in decreasing order with respect to the orderly ranking on U.
In this situation:

dCRes(f1, ..., fn) = det(M(L)).

IfN > 1,fory = y(hy,...,hy),i € {1,...,n},N—oi—y—1 >0andk=0,...,N—o;—y —1,
define the positive integer I"(i, k) = (i— 1)(N—y — 1) = >y_} op +i+kin {1, ..., L"}. The complete
differential homogeneous resultant matrix M (L") is the L" x [" matrix containing the coefficients of
N—0i—v—k=1p, 35 a polynomial in D[V"], in the I"(i, k)th row, where the coefficients are written in
decreasing order with respect to the orderly ranking on U. In this situation:

dCRes"(hy, ..., hy) = det(M(LM)).

Throughout the remaining parts of the paper, we will say differential (homogeneous) resultant
always meaning linear complete differential (homogeneous) resultant.

3.1. Linear complete differential resultants from linear DPPEs

We highlight, in this section, some facts on differential resultants of the differential polynomials F;
and H;, obtained from a system of linear DPPEs as in Section 2.

Lety = y(F1,...,F) = y(Hy, ..., Hy) and D = K{X}. The differential resultants dCRes(Fy, ...,
F,) and 9CRes" (Hy, . .., Hy) are closely related, as shown in Rueda and Sendra (2010), Section 5. Since
Fi(X,U) = x; — a; + H;(U), if N > 1 the matrix M (L") is a submatrix of M (L), obtained by removing n
specific rows and columns. This fact together with the identities below allowed us to prove that (when
N>1)

dCRes(Fy, ..., F,) =0 < 3CRes"(Hy, ..., H,) = 0.
The next matrices will play an important role in the remaining parts of the paper.

e Let S be the n x (n— 1) matrix whose entry (i, j) is the coefficient ofun,j,oi,yn_j inF,ie{l,...,n},
j e {1,...,n — 1}. We call S the leading matrix of (X, U). Fori € {1,...,n}, let S; be the
(n — 1) x (n — 1) matrix obtained by removing the ith row of S.

e Let M;_; betheLx (L—1) principal submatrix of M (L). We call M;_; the principal matrix of (X, U).

Let X = {X;, Xi1, ..., Xin—o—y | i=1,...,n}.Givenx € X,sayx = x;, withk € {0,1,...,N —
0; — Y}, let My be referred to as the submatrix of M;_ obtained by removing the row corresponding
to the coefficients of ¥F; = Xk + 3%(H;(U) — a;). Then, developing the determinant of M(L) by the
last column, we obtain
n N—oi—y
OCRes(Fy, ..., Fa) =Y Y bydet(My,)(Xix — 9*ay), (2)

i=1 k=0

with by = %1, according to the row index of x; x — 9%a; in the matrix M(L).

4. The implicit ideal ID

Let (X, U), F;, H; be as in Section 2. Let PS = PS(Fy, ..., F,) and let ID be the implicit ideal of
P (X, U). In this section, we review the computation of ID in terms of characteristic sets (see Gao,
2003; Rueda and Sendra, 2010) and give some definitions, related with linear differential polynomials
in ID, that will be important in the remaining parts of the paper.
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Let X and 'V be as in Section 3.1 and observe that PS C K[X]['V]. Let (PS) be the ideal generated
by PS in K[X][V] and, let [PS] be the differential ideal generated by PS in K{X}{U}.

Let (i, )), (k,]) € Ng be distinct. We write (i,j) < (k,I)ifi > k,ori = kandj < L The order
X, < --- < X, induces a ranking on X (see Kolchin, 1973, page 75), using the monomial order <:
Xij < Xp| < @,J) < (k, ).

e We call R the ranking on X U U that eliminates X with respect to U, that is 8*x > 3%"u, forall x € X,
u e Uandk, k* € Ng.

e We call R* the ranking on X U U that eliminates U with respect to X, that is 9x < 8¥"u, for all
xeX,ueUandk, k* € Ng.

Note that, because of the particular structure of F;, with respect to R then PS is a chain (see Ritt,
1950, page 3) of L differential polynomials, with L as in Section 3. Let + be a characteristic set of [PS]
with respect to R* and A¢ = A N K{X}. By Gao (2003), Lemma 3.2 and Theorem 3.1 then

ID = [PS] N K{X} = [Ao].

To compute a characteristic set of [PS] w.r.t. R*, we will use the reduced Grébner basis of (PS) with
respect to lex monomial order induced by the ranking R*. We call § the Grébner basis associated to
the system P (X, U).

We are dealing with a linear system of polynomials and computing a Grébner basis is equivalent to
performing Gaussian elimination. Some details on this computation were given in Rueda and Sendra
(2010), and we include them below to be used further in this paper. Let My; be the L x (2L) matrix

whoserow I(i, k), withi = 1,...,nandk = 0, ..., N—o0;—y, contains the coefficients of gN—0i—v—kf,
as a polynomial in K[ X][V], and where the coefficients are written in decreasing order w.r.t. R*,
r 1 —gN-o17v gy
1 —ay
My = | M1 :
1 —9N-on—vgq,
L 1 —a, i

The polynomials corresponding to the rows of the reduced echelon form E;; of My, are the elements
of the Grobner basis associated to (X, U). Let g9 = ¢ N K{X}. Given P € K{X U U}, the lead of P is
the highest derivative present in P w.r.t. R*, we denote it by lead(P). From Rueda and Sendra (2010),
Lemma 20(1):

Lemma 4.1. The Grébner basis associated to the system P (X, U) is a set of linear differential polynomials
g = {Bo,By,...,B_1}, where By < By < --- < Bj_1 with respect to the ranking R* and By € Go.
Hence,

1. lead(By) < lead(B;) < --- < lead(B;_1) w.r.t. the ranking R* and,
2. (PS) N K{X} = (4o) is nonzero.

Given P, Q € K{X U U}, we denote by prem(P, Q) the pseudo-remainder of P with respect to Q,
(Ritt, 1950, page 7). Given a chain A4 = {Aq, ..., A;} of elements of K{X U U} then prem(P, A) =
prem(prem(P, A;), {A1, ..., A;_1}) and prem(P, ) = P.

Algorithm 4.2. Given the set of differential polynomials PS, the next algorithm returns a subset A of
[PS].

1. Compute the reduced Grobner basis § of (PS) with respect to lex monomial order induced by R*.

2. Assume that the elements of § are arranged in increasing order By < By < --- < B_; w.rt. R*.
Let A° := {By}.Forifrom 1toL — 1doR; := prem(B;, A"~ 1),ifR; # 0 then A' := A~ U [R;} else
A= AT A = Al
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Lemma 4.3. With the notation used in Algorithm 4.2, let us assume that, if R; # 0 then lead(R;)) =
lead(B;). Then Algorithm 4.2 returns a characteristic set 4 of [PS] with respect to R*.

Proof. We prove first that «4 is an autoreduced set w.r.t. R*. Given A € A, there existsi € {1, ...,
L — 1} such that A = A"! U {A} and A = prem(B;, A"~ "). Therefore, A is reduced w.r.t. every
polynomial in 4~'. Let us assume that A’ # 4. Given B € A\, B = prem(B;, A/~!) for some
jel{i+1,...,L— 1}. By assumption and Lemma 4.1(1), lead(B) = lead(B;) > lead(B;) = lead(A),
which shows that A is reduced w.r.t. B. We have proved that A is reduced w.r.t. every polynomial in 4
and therefore » is autoreduced.

Since # is autoreduced and linear, [4] is a prime differential ideal, with » as its characteristic set.
From [PS] = [+A], it follows that #4 is a characteristic set of [PS]. O

4.1. On linear differential polynomials in ID

In this section, we give some definitions that will play an important role throughout the paper. Let
us consider the linear span over K of the polynomials in 8 = {8*F; | k € Ng,i =1, ..., n}, thatis

n
spang P8 = {Z FFEX,U) | FeK[O],i=1,..., n}.
i=1

Observe that spang & 4 is a subset of the set of linear polynomials in [PS].
Lemma 4.4. 1. Given a nonzero B in spang P4, there exist unique differential operators ¥, ..., ¥y in
K[0] such that

n

BX,U) =Y FH(F(X, U)).

i=1
2. Given a nonzero linear differential polynomial B in ID then B belongs to spany & 8. Furthermore, there
exist unique differential operators ; € K[d],i =1, ..., nsuch that

BX) =) Filxi—a) and Y F(HU) =0.
i=1 i=1

Proof. 1. Let us suppose that there exist § € K[d],i = 1,...,n such that BX,U) = Zf=1 &;
(Fi(X,U)). Then Y1, &(x;)) = Y i, Fi(x;). Thus fori = 1, ..., n, the linear polynomials & (x;) =
Fi(x;), which implies & = F;.

2. Given a linear B in ID = [PS] N K{X}, B € K{X} implies that there exist ; € K[d],i =1,...,n
and a € Ksuch that B(X) =a+ Z?:1 Fi(x;). By definition of ID, B(P,(U), ..., P,(U)) = 0 but

B(P(U), ..., Pa(U)) = a+ Y Fi(a) + Y FH(—Hi(U)) =0.
i=1 i=1

Thusa = Y !, Fi(—a;) and Y, Fi(H;(U)) = 0.Since F;(X,U) = x; — a; + Hi(U),i = 1,...,n,
this proves the result. O
Remark 4.5. Leta;,i = 1,...,n,beasinSection2.1fa; =0,i =1, ..., n, then, for all linear B in [PS],
B € spany P 4.

If B belongs to (PS) then ord(B, x;) < N —o0; —y,i =1, ..., n.Let spangPS be the linear span over
K of the polynomials in PS, that is

n
spanyPS = {Z Fi(F(X, V) | Fi € K[D], deg(F) <N —o0; —y,i=1,..., n}.
i=1

Observe that spangPS is a subset of the set of linear differential polynomials in (PS).

Remark 4.6. The Grobner basis § associated to & (X, U) is obtained from M,; by Gaussian elimination,

thus ¢ C spangPS. Also, by Lemma 4.4(2), the linear differential polynomials in (40) = (PS) N K{X}
belong to spanyPS.
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Definition 4.7. Given a nonzero differential polynomial B in spangPS, with B(X,U) = 2?21 Fi
(F(X, U)), F € K[9].

1. We define the co-order of B in (PS) as the highest positive integer c(B) such that 3®B e (PS).
Observe that

¢(B) =min{N —o; — y —deg(F;) | i€ {1,...,n}, F # 0}.

2. Fori e {1,...,n},let ; be the coefficient of 3V 07 —<® in #;, if # # 0 and o;; = 0, if F; = 0. We
call (ay, . .., ay) the leading coefficients vector of B in (PS) and we denote it by 1(B).

Let S be the leading matrix of the system & (X, U). Denote by ST the transpose matrix of S.
Remark 4.8. Given a nonzero B € spangPS.

1. The ith row of S consists of the coefficients of uy_j Ny, ;—y—c@).j € {1,...,n—1}in N—0i—y—c(B)
Fi(X, U) (alternative description to the one given in Section 3.1).
2. By 1,iford(B,u;) < N—y;—y —c(B),forj = 1,...,n—1,thenl(B)S = 0, thatis 1(B)" € Ker(S").

Definition 4.9. Given a nonzero linear differential polynomial B in ID, with B = Z';:l Fi(xi — aj),
Fi € K[d].

1. We define the ID-content of B as a greatest common left divisor of #1,..., %, (we write
gcld(#1, . .., F,)). We denote it by IDcont(B).

2. There exist £; € K[d] such that & = IDcont(B)L;,i =1, ...,n,and £y, ..., £, are coprime (we
write (L1, ..., £y) = 1). We define an ID-primitive part of B as

IDprim(B) (X, U) = Y _ £i(x; — ay).
i=1

3. If IDcont(B) € K then we say that B is ID-primitive .

Given B € (PS) NK{X}, by Remark 4.6, B € spanyPS.If A = IDprim(B) then c(A) > deg(IDcont(B))
and deg(L;)) < N—o0;—y —c(A),i=1,...,n
Lemma 4.10. Given a nonzero linear differential polynomial B € (PS) N K{X}, it holds that IDprim(B) €
(PS) N K{X}.

Proof. Fori =1,...,nandj =1, ..., n — 1, there exist differential operators .£;; € K[d] such that
Hi(U) = Z}:ﬂ Lijw). IfBX, U) = YL, Fi(x; — a;) then Y1, Fi(H;(U)) = 0. As a consequence,
ZL] Fi(Lj(uj)) = 0forj € {1,...,n — 1}. Let £ = IDcont(B) then # = LL;, with £; € K[J]
and IDprim(B) = Y [, £Li(x; — a;). Thus £ Y\, £LiL; = 0 and £ # 0 so the differential operator
Y i LiLj = 0.We conclude that ) ;_, £;(H;(U)) = 0. Therefore IDprim(B) = Y ;_, £Li(F:(X, U)) €
(PS), which proves the lemma. O

5. Conditions for dim(ID) = n—1

Let P (X, U), F;, H; be as in Section 2. Let PS = PS(Fy, ..., F;) and let ID be the implicit ideal of
P (X, U).Let S and M;_; be the leading and principal matrices of (X, U) respectively, as defined in
Section 3.1. Let § be the Grobner basis associated to the system £ (X, U), $o = $ N K{X} and denote
by || the number of elements of 4.

By Lemma 4.1, the ideal (4¢) is nonzero. Given a nonzero linear differential polynomial A in (4o),
by Remark 4.6 we can talk about its co-order c(A). In this section, if A is ID-primitive, we provide
necessary and sufficient conditions on S, M;_; and c(A) for A(X) = 0 to be the implicit equation of
P X, U).

5.1. Necessary conditions for dim(ID) = n — 1

If the dimension of IDisn—1thenID = [A] and A is a characteristic polynomial of ID. By Lemma 4.1,
Aislinear and A € (40). We give some more requirements for A in the next theorem.
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Lemma 5.1. 1. |§o| = L — rank(M;_1).
2. For every nonzero linear B € (o), |%0| > ¢(B) + 1.

Proof. 1. Let My; be the L x 2L matrix defined in Section 4 and E,; its reduced echelon form. The
number of elements of §, is the number of rows in E,; with zeros in the first L — 1 columns. Thus
[0l = L — rank(M_1).

2. Given a nonzero linear B € (§o) = (PS) N K{X}, by definition of c(B) then 9B, ..., 3*®B ¢
(PS) N K{X}. Also, there exists k € {1, ..., n} such that ord(B, xy) = N — o, — y — c(B). We can
assume that the coefficient of X, y_o,—y —c(s) in Bis 1. Thus M, is row equivalent to an L x 2L matrix
with 8°®B, ..., 8B, Bin the last c(B) + 1 rows. Namely, replace the row of M,; corresponding to
the coefficients of N7 ~{F, by 9°“®~B t = 0, ..., c¢(B), and reorder the rows of the obtained
matrix. Therefore |§9| > c(B) + 1. O

Theorem 5.2. Let G be the Grobner basis associated to the system P (X, U) with implicit ideal ID, G =
g NK{X}. IfdimID = n — 1 then ID = [A], where A is a nonzero linear differential polynomial verifying:

1. Ais an ID-primitive differential polynomial in ().
2. G0l =c(A) + 1.

Proof. By Lemma 4.1, $o = {Bo, B1, .. ., Bn}, withm € {0, ..., L — 2}. Since By € ID, By = Dy(A) for
anonzero Oy € K[d], which implies that A is a linear polynomial in ID.

1. Let £ = IDcont(A) and A’ = IDprim(A). If A is not ID-primitive then deg(.£) > 1and A = £L(A),
contradicting that {A} is a characteristic set of ID. By Lemma 4.4(2), A € spang#4. There exist
unique differential operators #; € K[d],i = 1,...,n, such that A(X) = Z?zl Fi(x; — a;). Since
Bo(X) = Z?:l Do(Fi(x; — a;)) € spangPS, deg(F;) < N —0; — y and A € spangPS. In particular,
A€ (PS) NK{X} = (50)-

2. Recall that By < B; < - -+ < By, therefore

9’0 - {DOO(A)s DOI(A)s ey "(Dm(A)}v

with O; € K[d], deg(D;) > deg(D;_1),i = 1,...,m. Now, A € (§o) implies A = Do (A) +
Y1D1(A) + - - - + YD (A). Therefore, Yo Do + y1D1 + - - - + YmDm = 1, which implies y; = --- =
¥Ym = 0and Dy € K. Thus m < c(A) and, by Lemma 5.1, || = c(A) + 1. O

Observe that, if dim ID = n — 1, given A and B nonzero linear ID-primitive differential polynomials
in (4o), then ID = [A] = [B] and c(A) = c(B).

Corollary 5.3. Let § be the Grobner basis associated to the system £ (X, U) with implicit ideal ID, §o =
g NK{X}. IfdimID = n — 1, for every nonzero linear ID-primitive differential polynomial A in ($0), then
ID = [A] and |§o| = c(A) + 1.

IfN = ZL 0; = 0 then £ (X, U) is a system of n linear equations in n — 1 indeterminates.

Lemma 5.4. IfN = 0, then dimID = n — 1ifand only ifrank(S) = n — 1.

Proof. The matrix M (L) is the n x n matrix whose n x (n — 1) principal submatrix is S and, whose
last column contains x; — g; in the ithrow, i = 1, ..., n. For linear U; € K{X}, the following statement
holds,

rank(S) =n—1< ¢ = {By,u; —U1(X), ..., up—1 — Up—1(X)}.
Equivalently, {By} is a characteristic set of ID. O

The next example shows that,if N > 0and n > 2 thenrank(S) = n—1is not a necessary condition
fordimID =n — 1.
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Example 5.5. Let K = Q(t), 0 = % and consider the system (X, U), of linear DPPEs, providing the
set of differential polynomials

FiX,U) =% —uy —up; — Uz,
EX,U) =% + 2up — 2uy 1 — 2uy 9,
F3(X,U) =x3 — 2up +uy g+,

in K{x1, X2, x3}{u1, Uy }. The set PS(Fy, F, F5) contains L = 9 differential polynomials and y = 0. The
leading matrix S of (X, U) hasrank 1 < n — 1 = 2 and equals

-1 -1
S = —2 _2 .
1 1
The Grébner basis associated to the system # (X, U) is ¢ = {Bo, By, ..., Bs},
1

1
g = {Xm - §X2,1 — X2 —X3,X12 — 5X2.2 — X211 —X3,1, U — X1 + X2 + X3,

1 1 1
Uy — Exz — X3, U1+ Exz.l — X2 +X31 — X3, Uz 1 — Exz,l — X3.1,

1 1
Uz + EXZ’Z — X211+ X32 —X31,Uz2 — 5X2,2 —X32,Uz3+ U3 —X22 —X32¢(.

Using Algorithm 4.2, by Lemma 4.3, a characteristic set of [PS] equals 4 = {By, B, B3}. Thus ID has
dimension n — 1 and By(X) = 0 is an implicit equation of ID.

5.2. Sufficient conditions for dim(ID) = n — 1

In this section, we will assume rank(S) = n — 1, to prove that the necessary conditions given in
Theorem 5.2 are also sufficient conditions, for a nonzero linear differential polynomial A in (§0) to be
a characteristic polynomial of ID.

Recall that, by Remark 4.6, the Grobner basis associated to £ (X, U) is a subset of spang PS, and thus
Definition 4.7 applies.

Lemma 5.6. Let § be the Grobner basis associated to the system P (X, U) with implicit ideal 1D, o =

g N K{X}. Let S be the leading matrix of # (X, U). Given a nonzero linear ID-primitive differential

polynomial A in (o), with |$o| = c(A) + 1, the following statements hold.

1. Forj=0,1,...,c(A), there exist D; € K[d], with deg(D;) = j, such that o = {By = Do(A), B1 =
Di(A), ..., Beay = Deay(A)}.

2. Ifrank(S) = n — 1. Given B € 4\%o, let us suppose there exists a positive integer eg, such that
1 <e < cA)+1andordB,uj)) < N—y —y —epj = 1,...,n — 1. Then there exists a
linear differential polynomial B € (o), such that c(B — B) > eg.

Proof. 1. Since |§o| = L — rank(M;_1) = c(A) + 1, there exists an echelon form E of My, whose last
c(A)+1 rows contain the coefficients of 34, ..., dA, A. Then the last c(A)+1 rows of the reduced
echelon form E,; of My, contain the coefficients of Bcay = Dec(a)(A), ..., B1 = D1(A), By = Do(A),
for some D; € K[0], deg(D;) =j,j =0, 1, ..., c(A). Therefore §o = {Bo, B1, ..., Beay}-

2. Lets € {0,...,eg — 1}. By 1, the co-order of B.)_s equals c(Bca)—s) = S. Since Beg)—s € K{X},
ord(B)—s, 4j) < N —y; — y — s, hence by Remark 4.8, 1(B.x)—s)" € Ker(ST). Given B € §\§o, we
will prove by induction on s that, fors = 0, ..., eg — 1, there exists a linear Cs € (o) such that
c(B — C;) > s+ 1. The linear differential polynomial in (§¢) we were looking for is B = Cep—1.

By Remark 4.6, there exist ¥ € K[d], with deg(¥#;) < N —o; — y,i = 1,...,n, such that
B = Y I, Fi(Fi(X, U)). Let B; be the coefficient of dN~%~7 in #. By assumption, ord(B, u;) <
N—y—y—eg<N—y—y,s0B" = (Bi,....Bn)" €Ker(ST). Now rank(S) = n — 1, which
means that dim Ker(S™) = 1, so there exists & € K such that 8 = wl(Beay). Let Co = B, then
¢(B — Cp) > 1. This proves the claim for s = 0.
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Assuming the claim is true fors — 1, s > 1, there exists alinear C;_1 € ($o) such thatc(B—Cs_1)
> s. Then there exists ° € K[d], with deg(¥°) < N —o0; —y —s,i = 1,...,n, such that
B— G_1 = Y i, F(F(X,U)). Let B} be the coefficient of 9"~%7~* in F°. By assumption,
ord(B—Cs_1,4)) < N—yj—y—eg < N—yj—y—s,50 (BT = (85, ..., BS)T € Ker(ST). Now there
exists s € K such that ° = usl(Bea)—s). Let G = Cs_1 + wsBeay—s, thenc(B—GCG;) > s+ 1. O

Theorem 5.7. Let § be the Grobner basis associated to the system # (X, U) with implicit ideal ID, o =
g NK{X}. Let S be the leading matrix of (X, U). Ifrank(S) = n — 1, and if there exists a nonzero linear
ID-primitive differential polynomial A in ($0), with |$9| = c(A) + 1, then A is a characteristic polynomial
of ID.

Proof. If c(A) = Othenrank(M;_;) = L— 1. By Theorem 18(2) and Lemma 20(4) in Rueda and Sendra
(2010), and Lemma 5.6(1), A is a characteristic polynomial of ID.

Let us suppose that c(A) > 0. We use Algorithm 4.2 to prove the result. By Lemma 5.6(1), o =
{B() = cho(A), By = é’D](A), ey Bc(A) = JDC(A)(A)}. FOTj [S] {1, e, N — 1}, let

It = {B € K{X, U} | lead(B) = ujy, k € No}.

Then §\$o = {Bcay+1 - - -» Bi—1} = u};l(g N I}).Giveni € {c(A) +1,...,L— 1}, B; € [}, for some
ji € {1, ..., n — 1}. The proof is based on the following claims:

1. Fori € {1,..., c(A)}, by Lemma 5.6(1), prem(B;, A"~') = 0.Thus {Bo} = A% = A' = --- = AP,
2. Let Ry = prem(B;, A1), i = c(A) + 1,...,L — 1. We will prove below, by induction on i, that
either R; = 0 or lead(R;) = lead(B;).

From the previous statements and Lemma 4.3, it follows that » is a characteristic set of [PS] w.r.t.
R*. Furthermore, in the ith iteration of Algorithm 4.2(2) either an element not in K{X} is added to
A1 or no element is added to A'~!. This proves that

Ao = ANKX} = A" = {Do(A)}

and ultimately that A is a characteristic polynomial of ID.

Proof of 2. Observe that I, ,, N AA = @, which implies lead(Rca)+1) = lead(Bc)+1)- Given
i€f{cA)+2,...,L—1}if I[N A" = @thenlead(R;) = lead(B;). Let us assume that I}, N A" # (.
We will prove next that R; = 0.

By induction hypothesis 8 = {Bc@a)+1, - - ., Bi—1} N I}, # ¥. We prove first that there exists B € 8
such that

1 < eg = ord(B;, uj;) — ord(B, u;;) < c(A) + 1. (3)

Let us suppose that eg > c(A) + 1, for all B € B.Thene = min{eg | B € B} > c(A) + 1. Let
o0 = ord(B;, uj;) and let E;; be the L x 2L matrix in echelon form (as in Section 4), whose rows are the
coefficients of the polynomials in §. By definition of e, no row of E5; has a pivot position in the columns
indexed by uj; -1, . . ., Uj; o—et1- Thus rank(M;_;) <L —1— (e — 1) < L — 1 — c(A), contradicting
that L — rank(M;_1) =| 4o |= c(A) + 1.

By (3), ord(B,u;;) < N — y;, — v —egand, B € [} implies ord(B, u;) < ord(B, u;), forj =
1,...,n — 1. By Lemma 5.6(2), there exists a linear polynomial B € (§¢) such that c(B — B) > e.
Let C; = prem(B;, B — B), which is a linear polynomial. Recall that B € 8 and B € K{X}. This implies
that B € I}, and lead(B — B) = lead(B) < lead(B;). Thus, by definition of C; and the fact that both
B;, B € Ij, the inequality lead(C;) < lead(B;) holds. By definition of e, there exists a differential
operator ¥ € K[d], with deg(#) < eg, suchthat GG = B; — ¥ (B — B). Now, c(B — B) > eg guarantees
that # (B — B) € (PS), which implies G; € (PS).

To finish, we use B; = C; + # (B — B) to prove that prem(B;, 4 ~!) = 0. We proved in the previous
paragraph that, the linear polynomial C; € (PS) and lead(C;) < lead(B;). Also, § = {Bo, B1, ..., Bi—1}
is the reduced Grébner basis of (PS), with lead(By) < lead(B;) < --- < lead(B;_1). Then GG =
)/oBo + -+ )/1;131;1, with Yo, V1, -+, Vi1 € K. It holds that, BQ, ey BC(A) € [eA)O] C [:}47'-_1]. For
every | € {c(A) + 1,...,i — 1}, the linear polynomial B; = prem(B;, A"~!) + P, for some linear
polynomial P € [4/~1], hence B; € [4'] C [A"']. Thus C; € [A"']. Recall that B € B, s0 B = By,
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with c(A) + 1 < lp < i — 1. Observe that, the linear polynomial B € (§o) C [4°] C [4'"'] and
By, € [A~1], then F (B — B) € [4'~']. At this point, we have proved that B; is a polynomial in [4™"],
which implies that prem(B;, A~') = 0. O

Corollary 5.8. Given a system £ (X, U) of linear DPPEs, with implicit ideal ID. Let S and M;_1 be the

leading and principal matrices of 2 (X, U) respectively. If rank(S) = n — 1 then the following statements
are equivalent.

1. The dimension of IDisn — 1.
2. There exists a nonzero linear ID-primitive differential polynomial A such that L — rank(M;_,) =

c(A) + 1.
In such situation, A(X) = 0 is the implicit equation of (X, U).
Proof. By Theorem 5.2, (1)=>(2). By Theorem 5.7, (2)=(1). O

Given £ (X, U) with implicit ideal ID and leading matrix S. If rank(S) < n — 1, it is natural to
wonder if there exists a linear system of DPPEs &’ (X, U), with implicit ideal ID’ and leading matrix
S’, such that ID = ID" and rank(S’) = n — 1. We will not deal with this question in this paper but, we
show next how in Example 5.5 this question is easily solved.

Example 5.9. We continue with Example 5.5. Let n(U) = u; — u, and let us replace u; by n(U) in
P (X, U) to obtain the system

J"(X, U) = ?(X], Xy, X3, T}(U), llz).
From #’(X, U) we obtain the polynomials

FiX,U) =X —ug +up —uqq,
Fy(X,U) = x + 2uy — 2uy 1,
F3(X,U) = x3 — 2up + uy 1.

In this case, the completeness index y’ = y, = 1 and, the leading matrix S’ of #'(X, U) has rank

n— 1= 2 and equals

1 -1
S = 2 =2].
-2 1

In fact, A = dCRes(F;, F, F;) = 4x3 + 2X; 1 — 4x1,1 + 4%, and by Rueda and Sendra (2010), Theorem
21, A(X) = 0 is the implicit equation of £’(X, U). Therefore, ID = [By] = [A] = ID’, with By as in
Example 5.5.

6. Linear perturbations of &# (X, U)

Let £ (X, U), F;, H; be as in Section 2. Let p be an algebraic indeterminate over K, thus d(p) = 0.
Denote K, = K(p) the differential field extension of K by p. A linear perturbation of the system
P (X, U) is a new system

x1 = PiU)+pei(U),
Pe(X,U) = :
Xnp = Pn(U)+p¢n(U)»
where the linear perturbation ¢ = (¢1(U), ..., ¢,(U)) is a family of linear differential polynomials in

K{U}.Fori=1,...,n,let
F/(X,U) = F(X,U) —p¢;(U) and H(U) = H;(U) — p§(U).

The set PS; = PS(Fd’, o, F,?) is a set of linear differential polynomials in Kp[X][V] C K,{X UU}. Let
(PSy) be the ideal generated by PSy in K,[X]['V]. We prove next the existence of a linear perturbation

¢ such that 8CRes(F¢, el F,‘f) # 0.
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Let us suppose that o, > 0,_1 > - - - > 04 to define the perturbation ¢ = (¢,(U), ..., ¢,(U)) by
Un—1,01—yp_1+ 1 =1,
¢i(U) = { Un—ioj—y,; T Un—iy1, 1=2,...,n—1, (4)
us, i=n.
We use this perturbation to prove that dCRes(F ¢, ey F,? ) # 0 but, as expected, the linear perturba-

tion that makes aCRes(F¢, A F,‘f’) # 0 is not unique (see Sections 7.1 and 7.3).

Let us suppose that N > 1. We denote by M (L") the complete differential homogeneous resultant
matrix, for the set of linear differential polynomials H?, ..., H?. The matrix My (L") is L' x L", with
elements in K[p], and there exists an L" x " matrix My, with elements in K, such that My(L") =
M(L") — p M. Then

dCRes"(H?, ..., H?) = det(My (L") = det(M(L") — pMy). (5)

Let S be the leading matrix of Py(X,U).Fori e {1,...,n},let Sf’ be the (n — 1) x (n — 1) matrix
obtained by removing the ith row of S?.

Proposition 6.1. Given a system & (X, U) of linear DPPEs and the perturbation ¢ defined by (4), the
following statements hold.

1. The determinant ofS,‘f is nonzero and it has degree n — 1in p.
2. IfFN > 1 then 3CRes" (H¢, ce, ,?) is a polynomial in K[p], of degree L" and not identically zero.

Proof. 1. Observe that Sf,’ has p’s in the main diagonal.

2. By (5), we can write det(My Iy = pLh det((1/p)M (L") — My). If we sety = 1/p then the matrix
obtained from yM (L") — My aty = 0is —My. Thus det(—M,) is the coefficient oprh indet(M, ).
The remaining part of the proofis devoted to show that det(My) # 0, which ensures that the degree
of det(My (L") in p is L".

The matrix My contains in its Ih(i, k)th row the coefficients, as a polynomial in D[V"], of
N-or—k-lgp.),i =1,....n,N—0j—y —1 >0k =0,...,N —0; — y — 1. We will
prove that det(My) # 0 in two steps:

2.1. We reorganize the rows of My to get a matrix M, which has ones in the main diagonal and, in
every row at most one nonzero entry not in the main diagonal, equal to 1.

2.2. We perform row operations on M to get an upper triangular matrix M’, with 1’s in the main
diagonal.

2.1. We define 0; := 0; — ¥y—j,j = 1, ..., n — 1and O, := 0,. The matrix M, has "=m-1)
(N —o04 —y)+ (n— 1)o, — y rows where

n—1 n—1
"= m=1) 0+ ) (00— yap- (6)
j=1 j=1

IfN -0, —y =0then0; = 0andN —0; —y =0, —0j = 0, — Ypj,forj=1,...,n— 1.
If N — o0, — y > 0, the assumption 0, > --- > 07 to define (4) implies0 <N —o0, —y — 1 <
N—oj—y—1j=1,...,n—1

Letg :={j e {l,....,n—1} | 0 — ¥u—j > 0}. Let I" be the submatrix of My, whose rows
contain the coefficients of the 0,(n — 1) — y = Z;;ll (0n — yu—j) differential polynomials in the
set

(N gy, L AN O gy | e g,

where N — 0, — y — 0 = N — 0 — ¥ — (05 — ¥a—j)- Each one of the previous rows has a 1,
respectively, in the column indexed by the monomials in the set

2y = {un—j.N—Vn—j_V—k |J € 5, k=1,...,0, — y”—j}‘
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Now we reorganize the rows of I". Forj € gandk = 1,...,0, — ya_j, let us suppose that
Un—j N—y,_j—y—k isin columncj € {1, ..., (n—1)o,—y} of I" and, let A, be the ((n—1)0, —y) x "
matrix whose row cj, contains the coefficients of 8N‘°j‘V"‘¢j. Thus A, has ones in the main
diagonal of its (n — 1)o, — y principal submatrix and, in each row at most one nonzero entry
not in the mentioned diagonal, equal to 1. If N — 0, — y = 0, by (6), then I" = M, and the matrix
M = A,.
We assume that N — 0, — y > 0. Observe that,ifo; =0theny; =0,j =1,...,n — 1, since
yi<orletd:={ie{l,...,n—1}| 0; > 0}.Giveni € {, fori # 1 we define the polynomials
A I o S L S P NN P
Vik = | gh-Then Onr—kgy  j=i+1,....n
k=1,...,0;,and fori = 1 we define the polynomials
w}k =% g, j=2,...,n,k=1,...,0;.

Let us denote by r(l/f’k) the row vector of My containing the coefficients of Wk Let Ajy, k =

1,...,0; bethe submatnx of My obtained by stacking n — 1 of these row vectors as follows
Ai K StaCk(r(wl k) r(‘(//l 1, k r(l/fH—l k/> T(Iﬁn k l ?é 1’
stack(r(z//2 O T(l//nyk)) i=1.
The matrix A; := stack(4; 1, ..., Ai,o,-) has O;(n — 1) rows. The Ith row of A; has a 1in the column

indexed by the Ith monomial in the set
Qi — {uj’N_ZzzH»]Oh_y_k|j=n—l7'."1’ I<=l,...,Oj}, l;él,
{Un—1,0,—k» - - -> Ur,0,—k | k=1,...,01}, i=1.
The monomials in £2; are arranged in decreasing order w.r.t. the orderly ranking on U, as in
Section 3. This is the order of the monomials in the set V" indexing the columns of M.
Finally, the union of 2, with the sets £2;, i € 1, equals the set 'V". Let us suppose that 4 has

I > n— 1elements, { = {iy, ..., i}, withi; > --- > i;. Stacking the matrix A, with the matrices
inthe set {A; | i € {4}, we obtain

M :=stack(A,, Ay, ..., Aj),
with 1’s in the main diagonal and, in every row only one nonzero entry not in the main diagonal,
equal to 1.

2.2. The matrix M has three kinds of rows, which we will name as follows: right-row (left-row),
with two nonzero entries, both equal to 1, one in the main diagonal of M and the other to the right
(left) of the main diagonal of M; diag-row, with only one nonzero entry, equal to 1, which is in the
main diagonal of M.

IfN — 0, — y = 0, by (4), all the rows of M = A,, are right-rows, thus M’ := M. We assume in
the remaining parts of the proof that N — 0, —y > 0.Givenu € V" let r(u) denote the coefficient
vector of u as a polynomial in K[V"], whose L" entries are all zero except for a 1 in the column
indexed by u. Given a matrix T, let r (T) denote the set of row vectors of T.

Observe that, blocks A, and A,_ (if O,_; > 0) of M have only right-rows and diag-rows. Blocks

A i€ {n—2,...,1}N 4 have also left-rows and our goal is to replace them by diag-rows using
row operations. Giveni € {, let A} := A;, which contains the diag-rows
r(Wn) = rUnoyn op—y—t)s k=1,...,0 (7)

IfOn—1 > 0,set A} | := Ap_q.Fori € {n—2,...,1} N 4, we replace the left-rows of A; by
diag-rows, to obtain a matrix A}. It holds

{n—2,...,1}ﬂlz{i1,...,i,.,},
withH = lifn—1¢ fandH = I-1ifn—1€ {.Fort = H, ..., 1,seti ;= i;.Forj=n—1,...,i+1
replace r(y;,). k= 1,..., 0, by

i
F(Un_j1,N=30_ 0p—y—k) = T(Wj0) — T(Un_join—31_,  0p—y—k)> (8)
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to obtain a matrix A’. Set A} := A To finish

M’ := stack(A,, A,{,, cees A1{1)-

ie{n—2,...,1}N4,je{n—1,...,i+ 1}, the set {r(un*j;0j+N*Zg:,‘+1Oh*)’*k) [k=1,...,0;
is included in

, j
8= {r(un_j,,v_mj+1 opy) [ k=1,..., Zoh}.
h=i

Fort =H, ..., 1,seti:=i,. We prove next, by inductionon t, thatforj=n—1,...,i+ 1,
5{ C Usegj,...iin 1 r(A{“). (9)
Observethat{n—1,...,ig}N4 = {i}, iy}. By equation (7), 5};’1 C Ulegipigy 1(AD. Ifiy < n—2,
forj=n=—2,....iy + 1then {j, ..., iy} N & = {iy} and by the Lhs. of (8), 8,  r(al™).
Lett € {H—1,...,1},seti:=i; and let us assume that (9) is true for t + 1
5{&1 C UIGU’_”‘{FF.I}QI T(A];+1),j =n—1,..., it+] + 1. (10)

contains rows
r(”nfj,NfZL,-H on—y—k)» k=1,...,0;. (11)
Observe that, if i1 1 > i+ 1then 0;,,—1 = --- = 01 = 0. Thus (10) together with (11) proves
(9)forj =n—2,...,i+ 2.Now takej = i + 1. By the Lh.s. of (8), r(A!*?) contains
{rUn_gryn-y7_,  op—y—) [ K=1,..., 0i}. (12)
Ifi+1¢ 4,thenO;y = O0and S equals (12).1fi+1 € 4 then, by the Lh.s. of (8), r(A}1?) contains

{rUn— ity N-30_ 0p—y—i) | K =T, O} (13)
Thus S{*" is the union of (12) and (13), which proves S{*" C r(AX}) Ur(A[?). This proves (9) for
the choseniandj=n—1,...,i+ 1.

Theorem 6.2. Given a system P (X, U) of linear DPPEs, there exists a linear perturbation ¢ such that the
differential resultant BCRes(F]‘Z’, ce, F,f’) is a nonzero polynomial in K[p]{X} and det(S,‘f’) # 0.

Proof. Let ¢ be the perturbation defined by (4). By Proposition 6.1, det(Sg’) # 0.If N = 0, the result
follows from

n
CRes(F{ ... FY) =) (=) det(s})(x; — a).
i=1
IfN > 1then dCRes" (H¢, e Hf) # 0, by Proposition 6.1. This is equivalent, by Rueda and Sendra
(2010), Theorem 18(2), to dCRes(F?, ..., F) #£0. O

If nonzero, 8CRes(F¢, e F,?) is a polynomial in p, whose coefficients are linear differential
polynomials in K{X}. We focus our attention next on the coefficient of the lowest degree term, in

78 of8CRes(Ff’, .. .,F,‘f).

Theorem 6.3. Given a system $(X,U) of linear DPPEs, let ¢ be a linear perturbation such that
8CRes(F¢, e, ,?) # 0and det(SZ’) # 0. The following statements hold.

1. There exists a linear differential polynomial P in (PSy) N K,{X}, with coefficients in K[p] and content
in K, such that o, # 0, where I(P) = (a1, ..., &y).
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2. There exists a € N such that
andCRes(F?, ..., F$) = (—1)%det(S?)aCRes"(H?, ..., H))P(X). (14)

det(S?)aCRes" (H? ..., HY
Qan

Furthermore,

Proof. 1. By Lemma 4.1, there exists a nonzero linear differential polynomial B € (PSy) N K,{X}.
There exists ¢ € K, such that P(X) = cd“®B(X) has coefficients in K[p] and content in K. Observe
that ¢(P) = 0. Since P € K,{X} then ord(P, u;) < N — y; — y and, by Remark 4.8, it holds IP)T e
Ker((s*)™).If o, = 0 then det(S,‘f) # 0impliesa; = 0,i = 1, ..., n. This contradicts thatc(P) = 0
and therefore o, # 0.

2. Eq. (14) follows from Rueda and Sendra (2010), Theorem 18(1). Since the content of P(X) belongs
to K, oy divides det(SY)aCRes"(H?, ..., H?) inK[p]. O

Let Dy be the lowest degree of p in 8CRes(F¢, C, Fr‘f’) and let Ap, be the coefficient of pP¢ in
8CRes(F¢, e F,f’). We call Dy the degree of the perturbed system £y (X, U). Observe that

Dy =0 < 0CRes(Fq, ..., F,) #0.
We write Dy = —1 ifBCRes(F‘p, R F,f,”) = 0and so
Dy > 0 < CRes(FY, ..., F?) # 0.

We assume that 8CRes(F¢, cey F,?) # 0, in the remaining parts of this section. Let PS =
PS(Fq, ..., F,) and let ID be the implicit ideal of # (X, U). We will use 8CRes(F¢, . ,?) to provide
a nonzero ID-primitive differential polynomial Ay in (PS) N K{X}.

Lemma 6.4. The linear differential polynomial Ap " belongs to (PS) N K{X}.

Proof. By Rueda and Sendra (2010), Proposition 16, 8CRes(Ff’, Ce, F,‘f’) € (PS¢)NK,{X}. Furthermore,
by definition of Fi¢, i=1,...,n 8CRes(Ff, ce, F,‘f) is the determinant of a matrix with entries in
K[pl{X} and it equals pP? (AD¢ + pA’), for some A € K[p]{X}. Therefore, the linear polynomial
Ap, +pA’ € (PSy)NK[pl{X} and there exist F; € K[p][9], withdeg(F;) < N—o;—y,such thatADd) X))+
pA'(X) = Y1y Fi(F} (X, U)). Then Ap, (X) + pA'(X) = Y Fi(xi — a;) and Y, F(H (U)) = 0.

Foreachi € {1, ..., n}, there exist unique £; € K[d] and F;" € K[p][d] such that 7 = £; + p¥F;.
Then Ap, (X) + pA'(X) = Y[, £i(x — @) + p Y[ F (i — a)) and Ap, (X) = Y 1| Li(x; — a;). On
the other hand,

0= FH (U) =) LiH(U) +p ) _ L) +p Y F H U)),
i=1 i=1 i=1 i=1
which implies Y"1, £i(H;(U)) = 0. Thus, Ap,, (X) = S Li(F(X, U)), with deg(£L) <N —o; — y,

showing that Ap, € (PS) NK{X}. O

Let A, be the ID-primitive part 0fAD¢.We call Ay the differential polynomial associated to £4 (X, U).
We relate Dy with c(A,) and give conditions, on Dy, for As(X) = 0 to be the implicit equation of
P X, U).

Remark 6.5. Let #;(X, U) and 2y (X, U) be two different linear perturbations of # (X, U), with
degrees Dy > 0and Dy, > 0. Let Ay and Ay, be the associated differential polynomials.

1. Asillustrated in Example 1 of Section 7, the degrees D, and D,, may be different.
2. IfdimID = n — 1then Ay = yAy, for some y € K.

Theorem 6.6. Let 24 (X, U) be a perturbed system of (X, U), with degree Dy > 0. Let § be the Grébner
basis associated to (X, U) and §o = § N K{X}. Then |§o| — 1 < Dy.
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Proof. Let My (L) be the differential resultant matrix of F¢, e F,‘f and Mf’q the L x (L — 1) principal
submatrix of My (L). By equation (2),
n N—oj—y
OCRes(FY,....F)) =" Y bydet(MJ )(xix — 0*a),
i=1 k=0

with M)‘g.k an (L—1) x (L— 1) submatrix ofMZi1 and by, = =1, according to the row index of x; , — dka;
in the matrix M (L). Let My, , be the (L—1) x (L— 1) submatrix of the principal matrix M; _; of (X, U).
Let ry = rank(My; ). There exists an invertible matrix Ej, of order L — 1 and entries in K, such that
the last L — 1 — ry rows of Ey My, , are zero. If we divide each one of the last L — 1 — rj rows of E,-kM,‘g_ '
by p, we obtain a matrix Nfﬁ and ¢, € K such that

n N—oj—y

det(My(L)) = )~ Y cup"™ " det(Ng) (xi e — 9*ay).

i=1 k=0

Let rijpy, = max{rix | i € {1,...,n},k € {0,1,...,N —0; — y},det(Nf,i) # 0}. This proves that
L —1 — ik, < Dg.Now, rank(M;_1) > rijk, SO

|9,0| —1=L—- rank(ML_1) —-1<L—-1- Tigky = D¢. d

We showed that Dy > |§o| — 1 =L —rank(M;_1) — 1 > c(Ag) and, in general, the equality does
not hold (see examples in Section 7).

Corollary 6.7. Let 2 (X, U) be a system of linear DPPEs with implicit ideal ID and leading matrix S. Let
Py(X, U) be a perturbed system of (X, U), with degree Dy > 0. Let Ay be the differential polynomial
associated to Py (X, U). Ifrank(S) = n— 1and Dg = c(A,) then ID has dimensionn — 1 and Az(X) = 0
is the implicit equation of (X, U).

Proof. If Dy = c(A,) then, by Theorem 6.6, we have || < c(Ay)+1.ByLemma5.1, [§o| = c(Ay) +1
and, by Corollary 5.8, the result follows. O

7. Implicitization algorithm for linear DPPEs and examples

Let (X, U) be a system of linear DPPEs with implicit ideal ID. Let S and M;_; be the leading and
principal matrices of & (X, U) respectively. Assuming that rank(S) = n — 1, in this section, we give an
algorithm that decides whether the dimension of ID is n — 1 and, in the affirmative case, returns the
implicit equation of 2 (X, U). As defined in Section 6, given a perturbed system &4 (X, U) of (X, U),
of degree Dy > 0, let Ap, be the coefficient of p° in 8CRes(F¢, el F,? ) and A, the differential
polynomial associated to £y (X, U).

Algorithm 7.1. e Given a system # (X, U) of linear DPPEs whose leading matrix verifies rank(S) =
n—1.
e Decide whether the dimension is n — 1 and, in the affirmative case,
e Return a characteristic polynomial of ID.

. Compute & (X, U) with perturbation ¢ given by (4).

. Compute 8CRes(F¢, e F,?), Dy and Ap,.

If Dy = O RETURN Ap, .

. Compute Ag and c(Ag).

. IfD¢ = C(A¢) RETURN A¢.

. Compute rank(M;_1).

. If L —rank(M;—1) > c(As) + 1 RETURN “dimension less thann — 1".
CIfL— rank(ML_l) = C(A¢) + 1 RETURN A¢.

PNV A WN =

The previous algorithm follows from the results proved throughout this paper. Namely, step
3 follows from Rueda and Sendra (2010), Theorem 21, step 5 from Corollary 6.7, step 7 from
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Corollary 5.3 and step 8 from Corollary 5.8. Also, in step 1, we could use any perturbation ¢ such
that 8CRes(F¢, ceey F,‘f’) # 0. We refer to ¢ given by (4) because it is the perturbation we used to
prove Theorem 6.2.

The next examples were computed with Maple. The computation of differential resultants was
carried out with our Maple implementation of the linear complete differential resultant, available at
Rueda (2008).

7.1. Example 1

Let K = Q(t), 0 = % and consider the system £ (X, U), of linear DPPEs, providing the set of
differential polynomials in K{x1, X, x3}{u1, uz},
FiX,U) =x1 +u; —up +uq 1 — U2 —4un 1 — 33Uy,
FX,U) =X, +uy +up 1 — Uz,
F3(X,U) =x3+uy +usq+uzs.

The set PS(F;, F», F3) contains L = 13 differential polynomials and y = 0. The leading matrix S of
£ (X, U) has rank 2 and equals

-3 -1
S=1] -1 0.
1 1

We consider the perturbation ¢ = (¢1(U), ¢2(U), ¢3(U)) with

U +uy, i=1,
¢i(U) = quy, i=2,
Uz 1, i=3.

There exists a differential polynomial P € (PS,) N K,{X}, with coefficients in K[p] and content in
K, such that the determinant of the 13 x 13 matrix My (13) equals
dCRes(F, FY, FY) = dCRes"(H?, HY, HY)P(X)
=p(1+4p+4p* —p°+2p" + 11p* +p° — 12p* — 4p° + p*)P(X).
Then Dy = 1 and the coefficient of p in dCRes(F?, Ff, Ff) is
Apy =X12+X1,3 — X2 —3X21 —4Xg2 — 2Xp 3 + X3 + 2X31 + 2X35 + 2X33 + X34.
We have AD¢ = L1(X1) + L2(X2) + L3(X3), with

L1=03"+3=3*(1+9),
Lo3=—-1-30—40* =23 = —(@ + 1)(20> + 23 + 1),
L3=1+20+20%+20° +3* = 3>+ 1)@ + 1>
Therefore £ = gcld(L1, L2, L3) =1+ 0 and Ay = X1 — X2 — 2Xp 1 — 2X22 + X33 +X32 +X3,1 + X3,
with c(Ay) = 1. Then Dy = c(A,). We conclude that the dimension of ID is n — 1 = 2 and its implicit
equation Ay (X) = 0.
If we consider the perturbation ¢ = (y1(U), ¥ (U), ¥3(U)), given by (4), with

uz o, i=1,
YiU) = Uiz +up, i=2,
uq, i=3.

There exists a differential polynomial P € (PSy) N K,{X}, with coefficients in K[p] and content in K,
such that the determinant of the 13 x 13 matrix My (13) equals

dCRes(F/, FY FY) = oCRes"(H!, HY , HY)P(X)
=p* (=14 p)(p” +8p° + 15p° + 15p* — 50p> — 5p® + 13p — 3)P(X).
Then Dy, = 2 but the coefficient of p?isAp v = 3Ap " Therefore Ay, = A, as expected.
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7.2. Example 2

Let K = Q(t), 0 = % and consider the system £ (X, U), of linear DPPEs, providing the set of
differential polynomials in K{x1, X2, X3, X4 }{u1, Uy, us},
Fi(X,U) = X1 +2uy —us —ug 1 + 3uz — U3,
FR(X,U) =X +2u; —us +2up 1 + U3,
F3(X,U) = x3 + 2u; —u3 + 3uy 1 — 2u3 1,
Fa(X,U) = x4 —2uy +u3 — 3uy 1 + us3 1.

The set PS(Fy, F», F3, F4) contains L = 18 differential polynomials and y = y; = 1. The leading matrix
S of #(X, U) has rank 3 and equals

-1 3 -1
1 0 0
S=12 3 2
1 -3 -2
We consider the perturbation ¢ = (¢1(U), ¢ (U), ¢3(U)), given by (4), with
U3 2, i=1,
Uyo +us, i=2,
¢ =1,

up+u;, =3,
uq, i=4.

There exists a differential polynomial P € (PSg) N K,{X}, with coefficients in K[p] and content in K,
such that the determinant of the 18 x 18 matrix My (18) equals

dCRes(FY, FY, FY FJ) = dCRes"(H?, HY, HY, HJ)P(X)

= p3(—9009p°> — 233p® + p'! + 1917 + 7p'® — 553p” — 20p°
—2070p + 9828p* + 12033p? — 4198p> — 1680p°)P(X).

Then Dy = 3 and the coefficient of p? in 8CRes(F¢, FZ“), F3¢, Ff) is

AD¢ = —]917(2X1,2 — 6X2‘2 + 9X2‘3 — 5X3yz + 9X3y4 — 9X4yz + 8X4yg + 9X4y4).
We have AD¢ = L1(X1) + L2(X2) + L3(x3) + L4(x4), with

L1 = —19179%2,
L3 = —19173%(99 — 6),
£3 = —19173%(99° — 5),
L4 =—19173%(95° + 89 — 9).
Therefore £ = —19179° and Ay = 2x1+9%; 1 —6X3 +9X3  —5X3 494 2 +8x4 1 — x4, with c(Ay) = 2.
Then Dy > c(Ag).
Replace p in M, (18) by zero to obtain M (18), whose principal 18 x 17 submatrix is M;_;. Compute

L — rank(M;—1) = 3.Then c(A4) + 1 = L — rank(M;_). We conclude that the dimension of ID is
n — 1 = 3 and its implicit equation A4 (X) = 0.

7.3. Example 3

Let K = Q(t), 0 = % and consider the system &£ (X, U), of linear DPPEs, providing the set of
differential polynomials in K{x1, x5, x3}{u1, uz},
FiX,U) =x1 =3 4uj1+uip —up —4uy 1 — 3uy,,
EX,U)=x4+uj1+uy — U,
FsX,U) =x3+24u; 1 +tuy +uyq.
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Then the set PS(Fy, F,, F3) contains L = 13 differential polynomials and y = 0. The leading matrix S
of #(X, U) has rank 2 and equals

-3 1
S=|-1 0].
1 1

We consider the perturbation ¢ = (¢1(U), ¢, (U), ¢3(U)), given by (4), with

u2,25 i= 17
$i(U) = Juip+up, i=2,
uq, i=3.

There exists a differential polynomial P € (PSy) N K,{X}, with coefficients in K[p] and content in K,
such that the determinant of the 13 x 13 matrix M, (13) equals 8CRes(F¢, Fj’, F3¢) =—-plp+1)PX).
In this case, asp(p + 1) = — det(Sf)BCResh(H¢, Hf, Hf) where I(P) = (a1, a2, ar3) is the leading
vector of P. Then Dy = 1 and the coefficient Ap, of p in dCRes(F?, Ff, Ff) equals
Ap, = L1(X1 — 3) + L2(x2) + L3(x3 + 2)
with
L1 = —664 — 2t + 228t — 16t* + (312 — 2t* + 187t> — 19t> — 510t)d
+ (=23 — 464 + 198t — 15t%)9% 4 (—=21t% + 156t — 2t> — 308)d°>,
Lo = 16t% 4+ 263 — 228t 4 664 + (—139t% + 25> + 1680 4 2t* — 174t)d
+ (=75t% + 2t* — 640t + 2164 + 31t%)9% + (—624t + 841> + 8t> + 1232)3°,
L3 = (—32t% + 456t — 4t> — 1328)9 + (952t — 97t% — 2012 — 10t3)d?
+ (—4t3 — 48t% — 460 + 270t)d° + (21t — 156t + 2t> + 308)d*.
Using the Maple package OreTools, we check that £ = gcld(L£1, £3, £3) equals

o —(66°+125t7 + 3027 — 2988¢? + 1424¢ + 464)
215 4 47t5 + 37t4 — 2484t3 + 11042t2 — 18248t + 11704
ThenAD¢ = L(Ay), withc(Ay) = 1and Dy = c(Ay). We conclude that the dimensionof IDisn—1 = 2
and its implicit equation Ay (X) = 0.
If we take a different perturbation v = (Y1 (U), ¥, (U), ¥3(U)) with
Upp+ug, i=1,

Yi(U) = u2, i=2,
uy 1, i=3.

We obtain Dy, = 1 and the coefficient of p in dCRes(F., Ff, Ff) is
Ap, = Ki(x1 — 3) + Ka(x2) + K3(x3 + 2)
with
K1 = (t° — 156 + 11t* + 12t + 154t> — 76t%)d
+(t* — 100 — 94t + 8t> 4 204t)3% + (—12 + 88t — 58t + 12> + t4)d°,
K, = 664+ 2t3 — 228t + 16t% + (—13t* 4 820 4 90t> — 904t + 62t> — t°)d
+ (412 — 17t* 4 14t3 + 34617 — t° — 8921) >
+ (48 — 352t + 232t% — 48t — 4t%)d3,
K3 = —664 — 16t> — 2t + 228t + (—664 + 892t — 244t> + 2t* 4 14t°)d
+ (676t — 406t% + 5t* + 54t> — 156)9° + (—80t% + 2t* + 60t + 28t> + 64)d°
+ (12 — 88t + 582 — 12t% — t*)9%.
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Using the Maple package OreTools we check that X = gcld(K4, K-, K3) equals

_ —(5t° + 114¢° + 286t* — 3692t% + 9732t — 12024t + 6208)
T t7 4 2516 4 58t5 — 1108t4 4 3908t3 — 588012 + 3824t — 456
Thus Ap, = K (Ay) and c(Ay ) = 1. Therefore, as it should be, we obtain the same conclusion, with

12 — 88t + 58t% — 12t3 — ¢*
308 — 156t + 212 + 263 ¢

Ay
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