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a b s t r a c t

A digraph is connected-homogeneous if any isomorphism between finite connected
induced subdigraphs extends to an automorphism of the digraph. We consider locally-
finite connected-homogeneous digraphs with more than one end. In the case that the
digraph embeds a triangle we give a complete classification, obtaining a family of tree-
like graphs constructed by gluing together directed triangles. In the triangle-free case we
show that these digraphs are highly arc-transitive. We give a classification in the two-
ended case, showing that all examples arise from a simple construction given by gluing
along a directed line copies of some fixed finite directed complete bipartite graph. When
the digraph has infinitely many ends we show that the descendants of a vertex form a
tree, and the reachability graph (which is one of the basic building blocks of the digraph)
is one of: an even cycle, a complete bipartite graph, the complement of a perfect matching,
or an infinite semiregular tree. We give examples showing that each of these possibilities
is realised as the reachability graph of some connected-homogeneous digraph, and in the
process we obtain a new family of highly arc-transitive digraphs without property Z .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

By a digraph we mean a set with an irreflexive antisymmetric binary relation defined on it. So a digraph D consists of a
set of vertices VD together with a set of pairs of vertices ED, called arcs, such that there are no loops (arcs between a vertex
and itself) and between any pair of vertices we do not allow arcs in both directions. A digraph is called homogeneous if
any isomorphism between finite induced subdigraphs extends to an automorphism of the digraph. The finite homogeneous
digraphs were classified by Lachlan in [17] and, in a major piece of work, Cherlin in [3] classified the countably infinite
homogeneous digraphs.

Various other symmetry conditions have been considered for digraphs. In [25,2] the class of highly arc-transitive digraphs
was investigated. For any natural number k a k-arc in a digraph D is a sequence (x0, . . . , xk) of k+ 1 vertices of D such that
for each i (0 ≤ i < k) the pair (xi, xi+1) ∈ ED. A digraph D is said to be k-arc-transitive if given any two k-arcs (x0, . . . , xk)
and (y0, . . . , yk) there is an automorphism α such that α(xi) = yi for 0 ≤ i ≤ k, and D is said to be highly arc-transitive
if it is k-arc-transitive for all k ∈ N. In particular it follows that in a k-arc-transitive digraph the subdigraphs induced by
any pair of k-arcs are isomorphic to each other. Specifically, if D is a connected infinite locally-finite digraph then D will
have a k-arc (x0, . . . , xk)whose induced subdigraph only contains the arcs (xi, xi+1), and thus if in addition D is assumed to
be k-arc-transitive then all k-arcs in D will have this form. For undirected graphs high-arc-transitivity is not an interesting
notion since the only highly arc-transitive undirected graphs are cycles or trees, but for digraphs the family is very rich, and
is still far from being understood. Following [2] several other papers have been written on this subject; see [11,20,21,24]
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for example. In contrast to the results on homogeneity described in the previous paragraph, the property of being highly
arc-transitive is not restrictive enough for an explicit description of all possible countably infinite examples to be obtained.

In this paper we consider a variant of homogeneity where we only require that isomorphisms between connected
substructures extend to automorphisms. A digraph is connected-homogeneous if any isomorphism between finite induced
connected subdigraphs extends to an automorphism of the digraph. Of course, any homogeneous digraph is connected-
homogeneous, but the converse is far from being true. For example any digraph tree with fixed in-and out-degree
is connected-homogeneous, but is not homogeneous, since its automorphism group is not transitive on non-adjacent
pairs. This notion was first considered for (undirected) graphs in [12,9], where the finite and locally-finite connected-
homogeneous graphs were classified. More recently this has been extended to arbitrary countable graphs in [15]. Part of the
motivation for [15] came from the fact that the undirected connected-homogeneous graphs are a subclass of the distance-
transitive graphs; in the sense of [1]. For digraphs we shall see that there is an analogous relationship between connected-
homogeneity and high-arc-transitivity. Specifically, for a large family of digraphs, connected-homogeneity actually implies
high-arc-transitivity, so this notion gives rise to a natural subclass of the highly arc-transitive digraphs.

Our ultimate aim is to classify the connected-homogeneous countable digraphs. In general this could be a difficult
problem, especially in light of the fact that it would generalize Cherlin’s result [3] for homogeneous digraphs. For undirected
graphs by far the easiest part of the classification is in the infinite locally-finite case (where locally-finite means that all
vertices have finite degree). Indeed, the infinite locally-finite distance-transitive digraphs were classified in [19], and since
connected-homogeneity implies distance-transitivity this dealswith the locally-finite case, for undirected graphs.Motivated
by this, in this paper we concentrate on the class of locally-finite connected-homogeneous digraphs.

When working with locally-finite graphs and digraphs there is a natural division into consideration of one-ended
digraphs and of those with more than one end. Roughly speaking, the number of ends of a graph is the number of ‘ways
of going to infinity’, so a two-way infinite line has two ends, while an infinite binary tree has infinitely many (see Section 2
for a formal definition of the ends of a graph), and the number of ends of a digraph is the number of ends of its underlying
undirected graph. A substantial theory exists for dealing with graphs with more than one end and therefore they are more
tractable than one-ended graphs in most instances. For undirected graphs, connected-homogeneity actually implies that
the graph must have more than one end in the locally-finite case (see [19]) and this is one of the reasons that this class
is reasonably easy to handle. As we shall see below, a locally-finite connected-homogeneous digraph need not have more
than one end, so the one-ended case must be handled separately. Here we work exclusively on the case where the digraph
has more than one end since, by analogy with undirected graphs, this case should be the most manageable. Even with this
additional ends assumption, the family of digraphs obtained is very rich. In addition to the above motivation, this work may
also be thought of as contributing to a general programme, initiated in [26], aimed at understanding the class of transitive
digraphs with more than one end. It also provides yet another illustration of the usefulness of Dunwoody’s theorem, and
the associated theory of structure trees (in the sense of [4]), for investigations of this kind.

We now give a brief summary of our main results. After introducing the basic concepts in Section 2, we start our
investigations by looking at many ended 2-arc-transitive digraphs in Section 3. Under the assumption that the stabiliser of
a vertex acts primitively on its in- and out-neighbours, if the digraph has more than one end we show its reachability graph
must be bipartite, and if the digraph has strictly more than two ends then we prove that the descendants (and ancestors) of
each vertex form a tree. These two results are proved using Dunwoody’s theorem (stated in Section 2) and the associated
theory of structure trees. In Section 4 we begin our study of connected-homogeneous digraphs, obtaining a structural result
for the triangle-free case in Theorem 4.1. The majority of this section is devoted to proving part (iii) of this theorem, which
is a classification of locally-finite connected-homogeneous bipartite graphs. Part (iv) of Theorem 4.1 gives several families
of infinitely ended connected-homogeneous digraphs. In Section 5 further constructions are described, showing that the
examples of part Theorem 4.1(iv) on their own do not constitute a classification, in the triangle-free case. Applying results
from Section 3, the 2-ended case is dealt with in Section 6 where we show that the only examples are those given by taking
the compositional product of a finite independent set with a two-way infinite directed line. Finally, in Section 7, we give a
classification in the case that the digraph embeds a triangle, obtaining a family of digraphs built from directed triangles in
a straightforward tree-like manner. Again, both in Sections 6 and 7, Dunwoody’s theorem and the theory of structure trees
are used extensively.

Note added in proof. Very recently in [16] it has been shown by Hamann and Hundertmark that there are no other
connected locally-finite connected-homogeneous digraphs with more than one end except those mentioned in this article.
The main result of [16] is a classification of connected-homogeneous digraphs with more than one end, without any local
finiteness assumption. Its proofmakes use of a new theory of structure trees based on vertex cut systems, introduced recently
by Dunwoody and Krön [8].

2. Preliminaries: ends, structure trees, reachability relations, and descendants

Let D = (VD, ED) be a digraph. Given vertices x, y ∈ VD we write x → y to mean (x, y) ∈ ED. If every pair of distinct
vertices of D are joined by an arc then D is called a tournament. Given a digraph Dwe say a vertexw is an out-neighbour of a
vertex v if (v,w) ∈ ED andwe defineD+(v) = {w ∈ D : (v,w) ∈ ED} and the out-degree of v as d+(v) = |D+(v)|. Similarly
we say a vertex w is an in-neighbour of a vertex v if (w, v) is in ED and set D−(v) = {w ∈ D : (w, v) ∈ ED} and define
the in-degree of a vertex v as d−(v) = |D−(v)|. We say that D is locally-finite if every vertex has finite in- and out-degree.
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The neighbourhood of v is defined as the set D(v) = D+(v)∪ D−(v) and the degree of a vertex v is defined as d(v) = |D(v)|.
We use Γ (D) to denote the undirected underlying graph of D: so Γ (D) is the undirected graph obtained by replacing every
arc of D by an edge. A walk in D is a finite sequence v0, v1, . . . , vn of vertices, where vi−1 and vi are joined by an edge in the
graph Γ (D) for i = 1, 2, . . . , n. A path is a walk without repeated vertices. By a directed path (or a directed walk) we mean a
path (or a walk) v0, v1, . . . , vn such that vi−1 → vi for i = 1, 2, . . . , n. Let u ∈ VD. For any non-negative integer r let Dr(u)
be the set of vertices that may be reached from u by a directed path of length r . For a negative integer r let Dr(u) be the set of
verticesw such that u ∈ D−r(w). If X is a subset of the vertex set of Dwe use ⟨X⟩ to denote the subdigraph of D induced by X
(the subdigraph induced by X consists of the vertices of X together with all arcs that have both end vertices in X). Similarly,
for a set Y of arcs in D we let ⟨Y ⟩ denote the subgraph consisting of all the vertices which occur as end vertices of arcs in Y
together with the arcs in Y .

In an undirected graph Γ we use ∼ to denote adjacency between vertices in the graph. Given a connected undirected
graph Γ and two vertices u, v ∈ VΓ we use dΓ (u, v) to denote the length of a shortest path from u to v, calling this the
distance between u and v in Γ . A graph Γ is called bipartite if VΓ can be partitioned into two disjoint non-empty sets X and
Y such that each edge in Γ has one end vertex in X and the other one in Y . The partition X ∪ Y is then called a bipartition of
Γ . By a bipartite digraphwemean a digraph Dwhose vertex set can be written as a disjoint union VD = X ∪ Y , where every
arc of D is directed from X to Y .

We use Kn to denote the complete graph with k vertices, Km,n denotes the complete bipartite graph with parts of
sizes m and n, Cn denotes the cycle with n vertices (i.e. a graph with vertex set {0, . . . , n − 1} and i ∼ j if and only if
|i − j| ≡ 1(mod n)). By the complement of a perfect matching on 2n vertices we mean the bipartite graph with bipartition
X ∪Y , where |X | = |Y | = nwith a bijection η : X → Y and (x, y) ∈ X×Y an edge if and only if y ≠ η(x). For each n ∈ N we
use CPn to denote the complement of perfect matching with 2n vertices. We use D3 to denote the directed 3-cycle: so this
is the digraph with vertex set {a, b, c} and a → b → c → a. More generally, for n ≥ 3 we use Dn to denote the directed
n-cycle.

A tree is a connected graph without cycles. Every tree is bipartite with a unique bipartition. We call a tree regular if all
of its vertices have the same degree and semiregular if any two vertices in the same part of the bipartition have the same
degree as one another. We call a digraph D a tree if the corresponding undirected graph is a tree.

We use AutD to denote the automorphism group of the digraph D. The digraph D is said to be vertex-transitive if its
automorphism group acts transitively on the set of vertices VD.
Ends,D-cuts and structure trees. The theory of structure trees is a powerful tool to investigate graphswithmore than one end.
In this article extensive use is made of this theory. In this subsection we provide a brief overview of the ideas and results
that will be needed. The ideas presented in this subsection are drawn from [4,23,27], to which we refer the reader for more
details.

First we outline the ideas for undirected graphs and then indicate how they will be applied in this paper for digraphs.
For the rest of this section let Γ be an infinite connected locally-finite graph. By a ray in Γ we mean an infinite sequence
{vi}i∈N of distinct vertices such that vi ∼ vi+1 for all i. The ends of the graph Γ are equivalence classes of rays where two
rays ρ and σ are said to be equivalent if there is a third ray τ such that τ intersects each of ρ and σ infinitely often. It is a
straightforward exercise to check that this is an equivalence relation on the set of all rays. Of course, any connected infinite
locally-finite graph has at least one end. In fact, it is known that a vertex-transitive graph has 0, 1, 2 or 2ℵ0 ends (this applies
to non-locally finite graphs as well, see [5]).

For a subset e of VΓ we define the co-boundary δe of e to be the set of edges a ∈ EΓ such that one vertex of a belongs
to ewhile the other belongs to e∗ (where e∗ denotes the complement of e in VΓ ), and we call the subset e a cut of Γ if δe is
finite. Clearly e is a cut if and only if e∗ is a cut, since δe = δe∗. For any ray ρ of Γ and any cut e, the ray ρ can intersect only
one of e or e∗ infinitely often, so we may speak of a ray ρ belonging to a cut e. Also, if a ray ρ belongs to a cut e, and σ is a
ray belonging to the same end as ρ, then σ also belongs to the cut e, so we may sensibly talk about the ends that belong to
a given cut.

Let G ≤ Aut(Γ ). Clearly if e is a cut, then so is its image ge under the action of g , for any g ∈ G. Given a cut e0 we write
E = Ge0 ∪ Ge∗0 to denote the union of the orbits of e0 and e∗0 under this action.

Theorem 2.1 (Dunwoody [7]). Let Γ be an infinite locally-finite connected graph with more than one end and let G ≤ Aut(Γ ).
Then Γ has a cut e0 such that with E = Ge0 ∪ Ge∗0 we have:

(i) the subgraphs induced by e0 and e∗0 are both infinite and connected;
(ii) and for all e, f ∈ E there are only finitely many g ∈ E such that e ⊂ g ⊂ f and
(iii) and for all e, f ∈ E one of the following holds:

e ⊆ f , e ⊆ f ∗, e∗ ⊆ f , e∗ ⊆ f ∗.

We call a cut satisfying the conditions of Dunwoody’s theorem a D-cut and the set E is called a tree set.
We now show how to construct a graph theoretic tree T = T (E) from E that we call a structure tree for Γ . The graph T (E)

will have directed edges that come in pairs {(u, v), (v, u)}, and there will be a bijection between the tree set E and the set of
arcs of T (E). We think of this bijection as a labelling of the arcs of T (E) by the elements of E. The arcs in T (E)will be labelled
in such a way that if e labels the arcs (u, v) then its complement e∗ labels the reverse arc (v, u). We shall write e = (u, v)
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to mean that e ∈ E labels the arc (u, v). Note that T is not a directed graph in the sense defined in Section 1, since the arc
relation on T is symmetric.

To construct T (E)we begin with the disjoint union Y of oppositely oriented pairs of arcs {e, e∗} labelled by the elements
e ∈ E and their complements. Thenwewant to glue together these edges to form a tree. Formally this is achieved by defining
an equivalence relation≈ on the set of vertices of Y . The gluing process is designed to result in a graph that will reflect the
structure of the poset (E,⊆). Given e, f ∈ E we write

f ≪ e if and only if f ⊂ e and there is no cut g in E such that f ⊂ g ⊂ e.

Now given two edges e = (u, v) and f = (x, y) in Y we write v ≈ x if x = v or if f ≪ e. Using the properties listed
in Theorem 2.1 it may be shown that ≈ is an equivalence relation on the set of vertices of Y ; for details see [23, Page 12]
and [6, Theorem 2.1]. Now define T (E) to be the graph Y/ ≈ obtained by identifying the≈-related vertices of Y . Since edges
have not been identified, the set of arcs of T (E) is still in bijective correspondence with the set E. The structure of (E,⊆) is
reflected in T (E) since, from its construction, for arcs e and f in T (E) there is a directed edge path from e to f if and only if
f ⊆ e in (E,⊆). Again using the conditions listed in Theorem 2.1, it may then be shown that T (E) is connected and has no
simple cycles of length greater than 2; in other words T (E) is a tree (see [23, Page 13] for details).

Next we want to define a mapping φ : VΓ → VT from the vertex set of Γ to the vertex set of T = T (E), that we call the
structure mapping. Given v ∈ VΓ , let e = (x, y) ∈ E be an arc such that v ∈ e ⊆ VΓ and where e is minimal in (E,⊆)with
respect to containing v, and define φ(v) = y. That φ is well-defined is proved using the properties listed in Theorem 2.1;
see [23] for details. In general φ need not be either surjective or injective; see [23]. Now the subgroup G ≤ Aut(Γ ) acts on
E and thus G acts on Y . The way that we have identified vertices in Y is clearly covariant with the action of G and thus G
acts on T as a group of automorphisms. This action commutes with the mapping φ, so for any g ∈ G and v ∈ VΓ we have
φ(gv) = gφ(v).

Just to illustrate how these properties can be usedwe show that if G ≤ Aut(Γ ) acts transitively onΓ then T will not have
any leaves (vertices of degree 1). Suppose e = (u, v) is an arc in T . Since the graph is locally finite and G acts transitively we
can find an element g ∈ G such that g(δe) is a subset of the set of edges of Γ that are contained entirely within e ⊆ VΓ .
Then either g(e) ⊆ e or g(e)∗ ⊆ e and we see that v cannot have degree 1.

The structure mapping gives us a way to relate structural information about the graph Γ to information about the tree
T . Note that if G acts vertex transitively on Γ it does not necessarily follow that G acts transitively on T , since φ is not
necessarily surjective. There is another mapΦ that maps each end of Γ either to an end of T or a vertex in T (see [23]). This
map need not be injective, but the preimage of an end in T consists only of a single end in Γ . Hence, for instance, we see
that if Γ has precisely two ends then T will also have two ends and will be a line.

Since in this paper we work with directed graphs we must explain how the ideas outlined above may be applied in
this context. By the ends of a digraph D we simply mean the ends of the underlying undirected graph Γ (D) of D. Now
VΓ (D) = VD and the theory described above then applies to Γ (D). So by saying e ⊆ VD is a D-cut we mean that as a subset
of VΓ (D) it is a D-cut of Γ (D). Clearly Aut(D) is a subgroup of Aut(Γ (D)) and so we can set G = Aut(D) ≤ Aut(Γ (D)) and
apply the above theory, letting e0 be a D-cut and considering the tree set E = Ge0 ∪ Ge∗0 and corresponding structure tree
T = T (E). The definition of the mapping φ : VD→ VT is then inherited naturally since VD = VΓ (D).

Throughout, unless otherwise stated, D will denote an infinite locally-finite connected digraph with more than one end,
G = Aut(D), e0 will denote a fixed D-cut of D, E = Ge0 ∪ Ge∗0 the associated tree set, T = T (E) the structure tree, and
φ : VD→ VT the corresponding structure map.

Reachability relations and descendants. An alternating walk in a digraph D is a sequence of vertices (x1, . . . , xn) such that
either (x2i−1, x2i) and (x2i+1, x2i) are arcs for all i, or (x2i, x2i−1) and (x2i, x2i+1) are arcs for all i. We say that e′ is reachable
from e if there is an alternating walk (x1, . . . , xn) such that the first arc traversed is e and the last one is e′. This is denoted by
eAe′. Clearly the relation A is an equivalence relation on ED. The equivalence class containing the arc e is denoted by A(e).
Let ⟨A(e)⟩ denote the subdigraph of D induced by A(e). If D is 1-arc-transitive, then the digraphs ⟨A(e)⟩, for e ∈ ED, are
all isomorphic to a fixed digraph, which will be denoted by∆(D). The following basic result about reachability graphs was
proved in [2].

Proposition 2.2 ([2, Proposition 1.1]). Let D be a connected 1-arc-transitive digraph. Then ∆(D) is 1-arc-transitive and
connected. Further, either

(i) A is the universal relation on ED and∆(D) = D, or
(ii) ∆(D) is bipartite.

In this paper in most instances we shall be working with digraphs Dwhere∆(D) is bipartite. Although∆(D) is a directed
bipartite graph, we shall often identify it with its undirected underlying bipartite graph (from which the original directed
bipartite graph may be recovered by orienting all the edges from one part of the bipartition to the other).

A question that still remains open from [2] is whether there exists a locally-finite highly arc-transitive digraph for which
the reachability relation A is universal; see [20,26]. We shall see below that for the class of highly arc-transitive digraphs
considered in this paper A cannot be universal, and hence by Proposition 2.2,∆(D)will be bipartite.
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For a vertex u in D the set of descendants of u is the set of all vertices v such that there is a directed path in D from u to v.
This set is denoted by desc(u). For A ⊆ VDwe define desc(A) =


v∈A desc(v). The set of ancestors anc(v) of a vertex v is the

set of those vertices of D for which v is a descendant. We shall also frequently be interested in the subdigraph induced by
this set of vertices, whichwe shall also denote by desc(u), similarly for anc(v). It was shown in [24] that if D is a locally finite
infinite connected highly arc-transitive digraph then for any directed line L in D the subdigraph induced by desc(L) is highly
arc-transitive and hasmore than one end. Here by a directed line Lwemean a two-way infinite sequence . . . , v−1, v0, v1, . . .
such that (vi, vi+1) is an arc for every i ∈ Z.

Note that no generality is lost by assuming that the digraphs we consider are connected, since for each of the symmetry
conditions under consideration any disconnected countable example would be isomorphic to a finite (or countable) number
of disjoint copies of one of its connected components.

3. 2-arc-transitive digraphs

Before attacking the classification of connected-homogeneous digraphs, we shall first present some preliminary results
for 2-arc-transitive locally-finite digraphs with more than one end. These digraphs were considered in [26].

The following lemma builds on [26, Lemma 2.4].

Lemma 3.1. Let D be a locally-finite connected 2-arc-transitive digraph with more than one end and G = Aut(D). We let e0
denote a D-cut and E = Ge0 ∪ Ge∗0 the associated tree set. In addition T = T (E) is the structure tree and φ : VD → VT the
structure map. Then we have the following.

(i) For all e ∈ Ge0 ∪ Ge0∗ there is no 2-arc (a, b, c) with a, c ∈ e and b ∈ e∗.
(ii) There exists a positive integer N such that for any directed path (v0, v1, . . . , vk) of length k in Dwe have dT (φ(v0), φ(vk)) =

kN.
(iii) If (v, x0, x1, . . . , xr) and (v, y0, y1, . . . , ys) are directed paths based at v and φ(xr) = φ(ys) then r = s.
(iv) If u, v ∈ D and there is a directed path in D from u to v of length n then every directed path from u to v has length n. In

particular, there are no directed cycles in D.

Proof. Part (i) is proved in [26, Lemma 2.4].
We prove part (ii) by induction on the length of the path. Given an arc v0 → v1 we set N = dT (φ(v0), φ(v1)). Since D is

arc-transitive this number N does not depend on the choice of the arc v0 → v1 and N > 0. Now suppose the result holds for
all j ≤ k and consider a directed path (v0, v1, . . . , vk, vk+1) of length k+ 1. Certainly we have dT (φ(vk), φ(vk+1)) = N and
dT (φ(v0), φ(vk)) = kN by induction hypothesis. Hence dT (φ(v0), φ(vk+1)) ≤ (k + 1)N . If dT (φ(v0), φ(vk+1)) < (k + 1)N
then φ(vk−1) and φ(vk+1) belong to the same component of T \ {φ(vk)}. Let e denote the arc in T that starts in φ(vk) and
contains vk+1. Then (vk−1, vk, vk+1) is a 2-arc with properties contradicting part (i).

Parts (iii) and (iv) follow immediately from part (ii). The last sentence of (iv) follows since if there were a directed cycle
with initial and terminal vertex v then the path (v) is a path of length 0 from v to itself, while following the directed cycle
gives a longer path. �

Lemma 3.2. Let D be a locally-finite connected 2-arc-transitive digraph with more than one end and G = Aut(D). We let e0
denote a D-cut and E = Ge0 ∪ Ge∗0 the associated tree set. In addition T = T (E) is the structure tree and φ : VD → VT the
structure map. Let u be a vertex in D. Then D has two ends if and only if for every r ∈ Z the map φ is constant on Dr(u).

Proof. Assume first that D has two ends. Then T has just two ends and is a line. Let x and y be vertices in Dr(u) for some
integer r . Suppose that r is non-negative (the case that r is negativemay be dealt with using a dual argument). By Lemma 3.1
we see that dT (φ(u), φ(x)) = dT (φ(u), φ(y)) ≠ 0. Thus there are only two possibilities for φ(x), one on each side of φ(u).
Suppose x and y have distinct images under φ. If z ∈ D−r(u) then there is a directed path of length r from z to u and thus
dT (φ(u), φ(z)) = dT (φ(u), φ(x)) = dT (φ(u), φ(y)) by Lemma 3.1(ii). Hence φ(z)must be either equal to φ(x) or φ(y), but
thatwould contradict Lemma3.1(ii) because there are directed paths of length 2r from z to both x and y and thusφ(z) ≠ φ(x)
and φ(z) ≠ φ(y).

Assume now that if r is an integer then φ(x) = φ(y) for every x, y ∈ Dr(u). Note that if x ∈ D+(u) and y ∈ D−(u) then
φ(x) ≠ φ(y). From the assumptions and Lemma 3.1(ii) we conclude that the images under φ of desc(u) and anc(u) all lie
on a line L. If v is some vertex, either in desc(u) or anc(u) then all the images under φ of desc(v) or anc(v) lie on L. An easy
induction now shows that thewhole image of φ is contained in L. The group G has just one orbit on the edges of T and thus at
most two orbits on the vertices of T . The image of φ is an orbit of G. From this and the fact that T has no leaves we conclude
that T = L and that D has just two ends. �

Before stating the next theorem we need the following observation.

Lemma 3.3. Let D be a vertex transitive digraph, and let u ∈ VD. Then desc(u) is a tree if and only if anc(u) is a tree.

Proof. We show that desc(u) is not a tree if and only if anc(u) is not a tree.
Suppose desc(u) is not a tree. Suppose first that there is a directed cycle in desc(u). By vertex transitivity wemay assume

that the vertex u is in this cycle. Then this cycle is also contained in anc(u), which is then not a tree. Suppose now that
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desc(u) has a cycle that is not a directed cycle. Hence there are distinct vertices v, x and y in the cycle such that x→ v and
y→ v are both arcs in the cycle. Since x and y are in desc(u)we can find directed paths (u, . . . , x, v) and (u, . . . , y, v) from
u to v. The union of these two paths will contain a cycle and this cycle is contained in anc(v). Hence anc(v) is not a tree and
by vertex transitivity anc(u) is also not a tree. The converse is proved similarly. �

Given a, b ∈ T , the structure tree, we use P(a, b) to denote the set of vertices of T belonging to the (unique) path in T
from a to b. Recall that the action of a group G on a set X is said to be primitive if no non-trivial equivalence relation on X is
preserved by the action.

Theorem 3.4. Let D be a 2-arc-transitive locally-finite connected digraph with more than two ends and G = Aut(D). Let u ∈ VD
and assume that Gu acts primitively on D+(u) (or on D−(u)). Then desc(u) and anc(u) are trees.

Proof. Let e0 be a D-cut, E = Ge0 ∪ Ge∗0 the associated tree set and T = T (E) the structure tree.
Since D has more than two ends by Lemma 3.2 we can assume without loss of generality that there exists r ≥ 1 such

that there are a, b ∈ Dr(u) with φ(a) ≠ φ(b) (the other possibility, with r ≤ −1 is treated in the same way working with
anc(u) instead). Let r ≥ 1 be the smallest integer such that this is the case.

Claim. For distinct vertices v andw in D+(u) we have

Dr−1(v) ∩ Dr−1(w) = ∅.

Proof of Claim. By minimality of r we see that if v is a vertex in D then φ is constant on Dr−1(v). We define an equivalence
relation on D+(u) by saying that vertices v and w in D+(u) are equivalent if and only if φ maps Dr−1(v) and Dr−1(w) to
the same vertex in T . This equivalence relation is clearly Gu invariant. Because Gu acts primitively on D+(u)we see that this
equivalence relation either has just one class or each class has just a single element. The first option is impossible by the
choice of r so each equivalence class has just a single element. If v andw are distinct vertices inD+(u) andDr−1(v)∩Dr−1(w)
is non-empty then φ would map Dr−1(v) and Dr−1(w) to the same vertex in T , which is a contradiction. �

By Lemma 3.1(iv) there cannot be any directed cycles in D. The argument used in Lemma 3.3 shows that if there is a cycle
in desc(u) then there is a cycle made up of two directed paths (u, x1, . . . , xk−1, v) and (u, y1, . . . , yk−1, v) such that xi ≠ yi
for 1 = 1, . . . , k− 1. We show that there cannot be any such cycle in D.

There are two cases to consider. First suppose that k+1 > r . Then r ≤ k and xr ∈ Dr−1(x1) and yr ∈ Dr−1(y1). We saw in
the proof of the claim above that the set of values φ takes on Dr−1(x1) is disjoint from the set of values φ takes on Dr−1(y1)
and therefore φ(xr) ≠ φ(yr). By Lemma 3.1(ii), dT (φ(u), φ(v)) = (k + 1)N and dT (φ(u), φ(xr)) = rN = dT (φ(u), φ(yr)).
Since φ(xr) and φ(yr) both lie on the path P(φ(u), φ(v)) in T it follows that φ(xr) = φ(yr), which is a contradiction.

Now we suppose that k+ 1 ≤ r . Then Dk(x1) and Dk(y1) have a common element v and ifw ∈ Dr−k(u) thenw is in both
Dr−1(x1) and Dr−1(y1), contrary to the claim above.

Thus it is impossible to find a cycle in desc(u), and desc(u) is a tree. Then, by Lemma 3.3, anc(u) is also a tree. �

Corollary 3.5. Let D be a 2-arc-transitive locally-finite digraph with more than two ends and G = Aut(D). Let u ∈ VD and
assume that Gu acts doubly transitively on D+(u) and D−(u). Then desc(u) and anc(u) are trees.

Theorem 3.6. Let D be a 2-arc-transitive locally-finite digraph with more than one end, let G = Aut(D) and v ∈ VD. If Gv acts
primitively both on D+(v) and D−(v) then the reachability relation A is not universal and hence∆(D) is bipartite.

Proof. Let e0 be a D-cut, E = Ge0 ∪ Ge∗0 the associated tree set and T = T (E) the structure tree.
We consider various cases depending on the behaviour of the structure mapping φ.
By Lemma 3.1(ii), for each pair of adjacent vertices in D the distance between their images in T is always some constant

N . Let r be an integer 0 ≤ r ≤ N . For a vertex x ∈ D+(v)we define φr(x) as the unique vertex on the path P(φ(v), φ(x)) that
is in distance r from φ(v) in T . The fibers of φr define a Gv invariant equivalence relation on D+(v). Since Gv acts primitively
on D+(v) we know that either φr is a constant map or φr is injective. Let r denote the largest integer 0 ≤ r ≤ N such that
φr is constant and define c+v as the vertex in T that is in the image of φr . Thus if x, y are distinct vertices in D+(v) then the
paths in T from φ(v) both pass through c+v but then part their ways. Similarly we define c−v by considering D−(v) instead of
D+(v).

Moreover let x ∈ D+(v) and x′ ∈ D−(v) and define the following numbers

F1 = dT (φ(v), c+v ), F2 = dT (c+v , φ(x))
B1 = dT (φ(v), c−v ), B2 = dT (c−v , φ(x

′)).

From the claim, and by vertex transitivity, it follows that these numbers depend only on D. Note also that B1 + B2 = N =
F1 + F2.

By Lemma 3.1(i), given any x ∈ D−(v) and y ∈ D+(v) the images φ(x) and φ(y) must be in different connected
components of T \ {φ(u)}.
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Given x, y ∈ D+(v) and x′, y′ ∈ D−(v) with x ≠ y and x′ ≠ y′ the graph induced by P(φ(x′), φ(x)) ∪ P(φ(y′), φ(y)) is
depicted below.

Either F2 = 0, in which case φ(x) = φ(y) for all x, y ∈ D+(v), or F2 > 0, in which case φ(x) ≠ φ(y) for all x, y ∈ D+(v)
with x ≠ y. The corresponding statements for B2 and D−(v) also hold.

Suppose that F2 = 0. Then φ is not injective on D+(v), and it may or may not be injective on D−(v). Let W =

(x1, y1, x2, y2, . . .) be an alternating walk in D. If x1 → y1 then for all i since yi, yi+1 ∈ D+(xi+1) we have φ(yi) = φ(yi+1)
and thus φ(yi) = φ(y1). On the other hand, if the walk W starts with the arc x1 ← y1 then we find that φ(xi) = φ(x1) for
all i. In either case it follows that the image ofW under φ is in a bounded distance from φ(y1) and so A cannot be universal
by Lemma 3.1(ii). Likewise we can deal with the case B2 = 0, so from now on we may assume F2 > 0 and B2 > 0 (i.e. φ is
injective both on D+(v) and D−(v)).

We have two cases to consider, depending on the values of F2 and B1.

Case 1. F2 > B1.

Suppose (u, v, w) is a directed path. If the reachability relation was universal then there would be an alternating path
W = (x1, y1, x2, y2, . . . , xs, ys) or W = (x1, y1, x2, y2, . . . , xs) such that the first arc traversed would be u → v and the
last one would be v → w. We show this to be impossible by demonstrating that φ(x1) ≠ φ(xs) and φ(x1) ≠ φ(ys) (for all
s > 1).

Since F2 > B1, we know that c+xi lies on the path P(φ(xi), c−yi ) and c−yi lies on the path P(c+xi , φ(yi)). The path P(φ(xi),
φ(xi+1)) can be split up into three segments, the first one being the path between φ(xi) and c+xi (which has length F1), then
the path between c+xi and c−yi (which has length F2 − B1) and finally the path between c−yi and φ(xi+1) (which has length
B2). In general the paths P(c+xi , c

−
yi ) and P(c−yi , c

+
xi+1) have only the vertex c−yi in common. We also note that P(c−yi , c

+
xi+1) and

P(c+xi+1 , c
−
yi+1) have only the vertex c+xi+1 in common. The paths P(c+xi , c

−
yi ) and P(c−yi , c

+
xi+1) both have length F2−B1. By joining

together all the paths P(c+xi , c
−
yi ) and P(c−yi , c

+
xi+1) for i = 1 to i = s− 1 we get a path Q in T from c+x1 to c+xs and this path has

length 2(s− 1)(F2 − B1). Then P(φ(x1), c+x1)∪ Q ∪ P(c+xs+1 , φ(xs)) is a path in T from φ(x1) to φ(xs) and has strictly positive
length if s > 1. Hence φ(x1) ≠ φ(xs). That φ(x1) ≠ φ(ys) is proved similarly.

Case 2. F2 ≤ B1 (and so B2 ≤ F1).

Here we see that both c+x1 and c−y1 lie on the path P(φ(x1), φ(y1)). Since we are assuming that F2 ≤ B1 we know that
c+x1 lies between c−y1 and φ(y1). Since c−y1 is also on the path P(φ(y1), φ(x2)) we see that c+x1 is also contained in the path
P(φ(y1), φ(x2)). Both c+x1 and c+x2 are in distance F2 from φ(y1) and both lie on the path P(φ(y1), φ(x2)). This implies that
c+x1 = c+x2 . Then of course we get by induction that c+x1 = c+x2 = · · · = c+xs . Whence d(c+x1 , φ(xi)) = F1 and d(c+x1 , φ(yi)) = F2
for every i. From this we get a uniform bound on the diameter of the image under φ of every alternating path in D. Hence it
is impossible that the relation A is universal. �

Corollary 3.7. Let D be a 2-arc-transitive locally-finite digraph with more than one end. Set G = Aut(D). If for a vertex v ∈ VD
the group Gv acts doubly transitively both on D+(v) and D−(v) then the reachability relation A is not universal and hence∆(D)
is bipartite.

A digraph D is said to have property Z if there is a digraph homomorphism from D onto the two-way infinite directed
line. The example given in [21] shows that the conclusion of the theorem above cannot be replaced by ‘‘has property Z ’’; see
Section 5 for more on this. Of course not every highly arc-transitive digraph satisfies the hypotheses of the above theorem
(counterexamples are constructed easily using the universal covering construction of [2]) so Theorem 3.6 cannot be used to
prove in general that A is not universal for any locally-finite highly arc-transitive digraph.

4. Connected-homogeneous digraphs without triangles

We now turn our attention to the main subject of this article: the study of connected-homogeneous digraphs. Recall
from the introduction that a digraph D is called connected-homogeneous (or simply C-homogeneous) if any isomorphism
between finite connected induced subdigraphs of D extends to an automorphism of D. We begin here by considering the
case where D has more than one end and is triangle-free, meaning that the underlying graph of D does not embed a triangle.
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By applying results from the previous section we shall see that these digraphs form a special subfamily of the infinite highly
arc-transitive digraphs. Note that there are examples of one-ended C-homogeneous locally finite digraphs. For example it
may be verified that the one-ended digraph constructed in [24, Example 1] is C-homogeneous.

Before stating the main result of this section we first need a construction which will be used to build examples of
C-homogeneous digraphs. This construction was introduced in [2], where it was used to construct universal covering
digraphs for highly arc-transitive-digraphs.

Let∆ be an edge-transitive, connected bipartite graph with given bipartition X ∪ Y . Let u = |X | and v = |Y |, noting that
in general u and v need not be finite. We shall construct a digraph DL(∆) that has the property that its reachability graph is
isomorphic to∆. Let T be a directed tree with constant in-valency u and constant out-valency v. For each vertex t ∈ T let ϕt
be a bijection from T−(t) to X , and letψt be a bijection from T+(t) to Y . Then DL(∆) is defined to be the digraph with vertex
set ET such that for (a, b), (c, d) ∈ ET , ((a, b), (c, d)) is a directed edge of DL(∆) if and only if b = c and (ψb(a), ϕb(d)) is
an edge of ∆. The digraph DL(∆) may be thought of as being constructed by taking T and replacing each vertex of T by a
copy of ∆. Then for copies of ∆ that are indexed by adjacent vertices a and b of T , we identify a single vertex from one of
the copies of∆with a vertex from the other copy of∆, with the bijections determining the identifications. Since∆ is edge
transitive it follows that different choices of bijections ϕy and ψy for y ∈ VT will lead to isomorphic digraphs, and DL(∆) is
used to denote this digraph.

Note that without the assumption that ∆ is edge transitive, different choices of ϕy and ψy for y ∈ VT can lead to non-
isomorphic digraphs. For instance, suppose that ∆ is the bipartite graph where X = {x, x′}, Y = {y, y′} and the edges are
(x, y), (x, y′) and (x′, y′). Then∆ is clearly not edge transitive. Now the functions ϕy andψy for y ∈ VT can be defined in such
away that every vertex in the digraphDL(∆) arising from the above constructionwill have an even number of directed edges
adjacent to it (i.e. each vertex either has in- and out-degree 2, or in- and out-degree 1). But different choices of functions
ϕy and ψy for y ∈ VT can give rise to vertices in DL(∆) with exactly three edges adjacent to them, and hence to a different
digraph.

It is immediate from the definition of DL(∆) that the reachability graph of DL(∆) is ∆. In other words, we have
∆(DL(∆)) = ∆.

Theorem 4.1. Let D be a connected locally-finite triangle-free digraph with more than one end. If D is C-homogeneous then

(i) D is highly arc-transitive,
(ii) A is not universal and hence∆(D) is bipartite,
(iii) in particular ∆(D) is isomorphic to one of: a cycle Cm (m even), a complete bipartite graph Km,n (m, n ∈ N), complement of

a perfect matching CPn (n ∈ N), or an infinite semiregular tree Ta,b (a, b ∈ N),
(iv) conversely for every bipartite graph B listed in (iii), the digraph DL(B) is a connected triangle-free locally-finite

C-homogeneous digraph with∆(DL(B)) isomorphic to B.

In addition, if D has more than two ends then

(v) desc(u) (and anc(u)) is a tree, for all u ∈ VD.

Proof. For part (i), observe that from C-homogeneity and the absence of triangles it follows that D is 2-arc transitive and
that, with G = Aut(D),Gv acts doubly transitively on D+(v) and D−(v) for any vertex v. Applying Lemma 3.1(iv) we see that
the subdigraph induced by a k-arc (v0, . . . , vk) only contains the arcs (vi, vi+1). It then follows from C-homogeneity that
given any other k-arc (w0, . . . , wk) there is an automorphism α with α(vi) = wi for 0 ≤ i ≤ k. Thus D is k-arc-transitive
for all k, and therefore highly arc-transitive. Part (v) follows from Corollary 3.5 and (ii) follows from Corollary 3.7.

Part (iii) follows from Theorem 4.6.
For part (iv), the facts that DL(B) is connected, triangle-free, locally-finite and that∆(DL(B)) ∼= B are all immediate from

the definition of DL(B). That DL(B) is C-homogeneous will be proved in Theorem 4.7.

In the next section we give some additional examples, showing that the construction DL(B) on its own does not
exhaust all examples of infinitely ended triangle-tree locally-finite C-homogeneous digraphs. In Section 6 we shall see that
Theorem 4.1(v) does not hold in the 2-ended case. The rest of this section will be devoted to proving Theorems 4.6 and 4.7
which will establish parts (iii) and (iv) of Theorem 4.1.

We begin by quickly dealing with the situation where the out-degree (or dually the in-degree) of D is equal to 1. Let D be
a connected locally-finite triangle-free C-homogeneous digraphwithmore than one end. IfD has out-degree equal to 1 then
the only cycles that D can contain are directed cycles. But by Lemma 3.1(iv), D does not have any directed cycles. It follows
that D is a directed tree. Dually if D had in-degree 1 then D would be a tree. Therefore, since C-homogeneity implies vertex
transitivity, if the indegree of D equals 1 then D is isomorphic to the unique directed tree where every vertex has indegree 1
and outdegree k for some fixed k ∈ N. There is an obvious dual statement if the outdegree of D is 1. Hence, since our interest
is in classification, from now on we may, in the triangle-free case, suppose that D has in-degree at least 2 and out-degree at
least 2.

We know from Theorem 4.1(ii) that ∆(D) is a bipartite graph. Now we want to determine all the possibilities for ∆(D).
To do this we shall show that the bipartite graph ∆(D) inherits C-homogeneity from D, so that ∆(D) is a locally-finite
C-homogeneous bipartite graph.
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Definition 4.2. Let Γ be a bipartite graph with given bipartition X ∪Y . By an automorphism of the bipartite graph Γ = X ∪Y
we mean a bijection ϕ : Γ → Γ that sends edges to edges, non-edges to non-edges, and preserves the bipartition (i.e.
ϕ(X) = X and ϕ(Y ) = Y ). We say that Γ is a homogeneous bipartite graph if every isomorphism θ : ⟨X ′ ∪ Y ′⟩ → ⟨X ′′ ∪ Y ′′⟩
(where X ′, X ′′ are subsets of X , and Y ′, Y ′′ are subsets of Y ) between finite induced subgraphs of Γ that preserves the
bipartition (i.e. θ(X ′) = X ′′ and θ(Y ′) = Y ′′) extends to an automorphism of Γ . We say that Γ is a C-homogeneous
bipartite graph if any isomorphism between finite induced connected subgraphs which preserves the bipartition extends
to an automorphism of the bipartite graph Γ .

The countable homogeneous bipartite graphs were classified in [13]. We shall apply this result below in Lemma 4.5
where we list the finite homogeneous bipartite graphs. Note that there is a difference between homogeneous bipartite
graphs and homogeneous graphs that are bipartite (for example, K2,3 is a homogeneous bipartite graph, but as a graph it is
not homogeneous since it is not even vertex transitive).

Lemma 4.3. Let D be a triangle-free locally-finite infinite connected C-homogeneous digraph with more than one end. Then the
underlying undirected graph of ∆(D) is a locally-finite C-homogeneous bipartite graph.

Proof. By Theorem 3.6,∆(D) is bipartite, and it clearly inherits local-finiteness from D. To see that∆(D) is C-homogeneous,
fix a copy ⟨A(e)⟩(e ∈ ED) of ∆(D) in D. Clearly ⟨A(e)⟩ contains at least one arc, namely the arc e ∈ ED. Since D is
C-homogeneous any isomorphism between finite connected induced substructures of ⟨A(e)⟩ which preserves the
bipartition extends to an automorphism of D. This automorphism of D preserves the A equivalence classes of edges given
by the reachability relation, hence it fixes ⟨A(e)⟩ setwise. Thus by restricting to ⟨A(e)⟩ we get an automorphism of this
bipartite graph which extends the original isomorphism between connected subgraphs. �

This reduces the problem of determining the possibilities of the reachability graph ∆(D) to the problem of classifying
the locally-finite C-homogeneous bipartite graphs.
Classifying the locally-finite C-homogeneous bipartite graphs. The finite and locally-finite C-homogeneous graphs were
classified in [12,9], and the countably infinite C-homogeneous graphs were classified in [15]. Note that as for homogeneity,
there is a difference between a C-homogeneous bipartite graph and a C-homogeneous graph that happens to be bipartite.
Therefore in order to classify the C-homogeneous bipartite graphs it is not simply a case of reading off those undirected
C-homogeneous graphs that happen to be bipartite. It turns out, however, that many of the arguments used in [15] for the
study of C-homogeneous graphs may be easily adapted in order to obtain results about C-homogeneous bipartite graphs.
We now give a classification of the locally-finite C-homogeneous bipartite graphs, which is stated in Theorem 4.6. We note
that extending this to all countable bipartite graphs, not just those that are locally-finite, would not require much more
work, with the only additional examples being infinite valency analogues of locally-finite ones, and the generic ‘random’
homogeneous bipartite graph (i.e. the Fraïssé limit of the family of all finite bipartite graphs; see [10] for details).

For the remainder of this subsection Γ will denote a connected C-homogeneous locally-finite bipartite graph with
bipartition X ∪ Y . If the vertices of X (or of Y ) all have degree 1 then Γ ∼= K1,m for some m ≥ 1, so we shall suppose
that this is not the case.

The following lemma is proved by modifying the arguments of [15, Lemmas 7 and 30].

Lemma 4.4. Let Γ be a connected C-homogeneous locally-finite bipartite graph with bipartition X ∪ Y . If Γ is not a tree and
has at least one vertex with degree greater than 2 then Γ embeds C4 as an induced subgraph.

Proof. Let Cn be the smallest cycle that embeds into Γ . First we establish n ≤ 6 and then we shall rule out n = 6 as a
possibility.

Suppose, seeking a contradiction, that the smallest cycle that embeds is Cn where n ≥ 7. Note that nmust be even since
Γ is bipartite. Fix a vertex v ∈ VΓ with degree at least 3. Such a vertex exists by the assumptions of the lemma. Let a, b, c be
distinct elements of Γ (v); they will be pairwise non-adjacent as Γ is bipartite. By C-homogeneity the path (b, v, c) extends
to a copy (v, b, b1, . . . , bk, c) of Cn. Since n ≥ 7 it follows that k ≥ 4 and therefore a is not adjacent to bi for all 1 ≤ i ≤ k
(since any such edge would create a cycle in Γ shorter than Cn itself). Also, a is not adjacent to c or b since they all belong to
the same part of the bipartition of Γ . Now by C-homogeneity there is an automorphism α, preserving the bipartition, and
satisfying

α(⟨c, v, b, b1, b2, . . . , bk−1⟩) = ⟨a, v, b, b1, b2, . . . , bk−1⟩.

Note that the vertex α(bk) does not belong to B = {v, a, b, c, b1, b2, . . . , bk} since α(bk) is adjacent both to a and to bk−1,
and none of the vertices in B have this property. Consider ⟨a, v, c, bk, bk−1, α(bk)⟩. If α(bk) is adjacent to c (which happens
for instance if α(bk) = bk) then ⟨a, v, c, α(bk)⟩ ∼= C4 which is a contradiction. Otherwise α(bk) ≁ c and α(bk) ≁ bk (since
they are in the same part of the bipartition) and ⟨a, v, c, bk, bk−1, α(bk)⟩ ∼= C6, which is again a contradiction. We conclude
that n ≤ 6, and hence since Γ is bipartite, the only possibilities are n = 4 or n = 6. So to complete the proof of the lemma
it suffices to show that n ≠ 6.

Seeking a contradiction suppose that C6 is the smallest cyclewhich embeds inΓ . Fix an edge {x, y} in the graphΓ = X∪Y
with x ∈ X and y ∈ Y , and without loss of generality suppose that x has degree at least 3. Let {xi : i ∈ I} = Γ (x) \ {y} and
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let {yj : j ∈ J} = Γ (y) \ {x}. Also define Xi = Γ (xi) \ {x} for i ∈ I , and Yj = Γ (yj) \ {y} for each j ∈ J . Our assumptions
on cycles ensure that distinct sets Xi and Xi′ are disjoint with no edges between them for all i, i′ ∈ I , and distinct sets Yj and
Yj′ are disjoint with no edges between then for all j, j′ ∈ J . Moreover the sets Xi and Yj are disjoint for all i ∈ I, j ∈ J , since
Xi ⊆ X while Yi ⊆ Y .

Let i ∈ I, j ∈ J and consider the graph ⟨Xi ∪ Yj⟩. For every v ∈ Yj there is at most one u ∈ Xi with v ∼ u, for otherwise
with u, u′ ∈ Xi, v ∼ u and v ∼ u′ then ⟨xi, u, u′, v⟩ would be a square, a contradiction. Similarly, every u ∈ Xi is adjacent
to at most one v ∈ Yj. Since Γ embeds C6 there is at least one pair u ∈ Xi and v ∈ Yj with u ∼ v. By C-homogeneity the
pointwise stabiliser of {x, y, xi, yj} acts transitively on Yj and also acts transitively on Xi. It follows that every vertex in Xi is
adjacent to exactly one vertex of Yj, and vice versa. Hence ⟨Xi ∪ Yj⟩ is a perfect matching. In particular |Xi| = |Yj| for all i ∈ I
and j ∈ J , and this implies |J| = |Xi| = |Yj| = |I|. It follows from this that all of the vertices in Γ have the same degree, and
that this degree is strictly greater than 2.

Let y1 ∈ Γ (y) \ {x} and x1, x2 ∈ Γ (x) \ {y} with x1 ≠ x2. This is possible since x has degree at least 3. There is a map
ϕ : X1 → X2 given by composing the bijection from X1 to Y1, and that from Y1 to X2, given by the perfect matchings ⟨X1∪Y1⟩

and ⟨X2 ∪ Y1⟩. Fix a, b ∈ X1 with a ≠ b. By C-homogeneity there is an automorphism α fixing {x, y, x1, x2, y1, a, b} and
interchanging ϕ(a) and ϕ(b). Then the unique neighbour of a in Y1 is adjacent to ϕ(a) but not to ϕ(b), a contradiction. �

Lemma 4.5. Let Γ be a connected C-homogeneous locally-finite bipartite graph with bipartition X ∪ Y . Let x ∈ X and y ∈ Y be
such that {x, y} ∈ EΓ , and define A = Γ (x)\ {y} and B = Γ (y)\ {x}. ThenΩ = ⟨A∪B⟩ is a finite homogeneous bipartite graph,
and therefore is one of: a null bipartite graph, complete bipartite, complement of a perfect matching, or a perfect matching.

Proof. If either A or B is empty thenΩ is a null bipartite graph, so suppose otherwise. The graphΩ is finite since Γ is locally
finite. Let ϕ : U → V be an isomorphism between induced subgraphs of Ω that preserves the bipartition. Then extend
this isomorphism to ϕ̂ : {x, y} ∪ U → {x, y} ∪ V by defining ϕ̂(x) = x and ϕ̂(y) = y. Now ϕ̂ is an isomorphism between
connected induced subgraphs and so by C-homogeneity extends to an automorphism α of Γ . But g fixes both x and y, so
α(Ω) = Ω and the restriction of α toΩ is an automorphism of the bipartite graphΩ extending ϕ. Finally, by inspection of
the list of homogeneous bipartite graphs given in [13, Section 1] we obtain the possibilities forΩ listed in the lemma. �

Note that by Lemma 4.4 ifΓ is not a cycle or a tree then the bipartite graphΩ in Lemma 4.5 has at least one edge, and so is
not a null bipartite graph. We are now in a position to complete the classification of locally-finite C-homogeneous bipartite
graphs, which will prove part (iii) of Theorem 4.1.

Theorem 4.6. A connected graph Γ is a locally-finite C-homogeneous bipartite graph if and only if Γ is isomorphic to one of the
following:

(i) cycle Cm (m even);
(ii) infinite semiregular tree Ta,b (a, b ∈ N);
(iii) complete bipartite graph Km,n (m, n ∈ N);
(iv) complement of a perfect matching.

Proof. Clearly each of the graphs listed is a locally-finite C-homogeneous bipartite graph. For the converse, letΓ = X∪Y be
an arbitrary locally-finite C-homogeneous bipartite graph. By definition each vertex in Γ has one of two possible valencies
(depending on the part of the bipartition that the vertex belongs to). If all the vertices in X (or dually in Y ) have degree 1
then Γ ∼= Km,1 for some m, so suppose otherwise. Also, if Γ is a cycle or a tree then we are done, so suppose not. Thus Γ
satisfies the hypotheses of Lemma 4.4 and hence embeds a square C4.

Let x, y, A, B and Ω be as defined in the statement of Lemma 4.5, noting that Ω must have at least one edge since Γ
embeds a square. We now consider each possibility forΩ , as listed in Lemma 4.5, determining the possibilities for Γ in each
case.
Case 1:Ω is complete bipartite. Then ({x} ∪ B)∪ ({y} ∪ A) induces a complete bipartite graph. Also since x has degree |A| + 1,
every vertex in B also has degree |A| + 1. Similarly every vertex in A has degree |B| + 1. Since Γ is connected it follows that
there are no other vertices, i.e. Γ = ({x} ∪ B) ∪ ({y} ∪ A) and so Γ is a complete bipartite graph.
Case 2:Ω is the complement of perfect matching with at least four vertices. Since the degree of x is |A| + 1 it follows that every
vertex in B also has degree |A| + 1. Let b ∈ B and let z be the unique neighbour of b not in A ∪ {y}. Fix a ∈ A with a ∼ b. By
C-homogeneity |Γ (y) ∩ Γ (a)| = |Γ (y) ∩ Γ (z)| = |B|. Since z ≁ x it follows that B ⊆ Γ (z). Let z ′ be the unique neighbour
of z not in B ∪ {x}. Since |Γ (x) ∩ Γ (b)| ≥ 2 (because squares embed by Lemma 4.4) it follows that |Γ (b) ∩ Γ (z ′)| ≥ 2,
which in turn implies that there exists v ∈ A with v ∼ z ′. Now using a dual argument to the one above we conclude that
Γ (z ′) = A ∪ {z}. This completely determines the structure of Γ , and we conclude that Γ is the complement of a perfect
matching.
Case 3:Ω is a perfect matching. IfΩ has either 2 or 4 vertices then this comes under one of the previous cases, so suppose that
Ω has at least 6 vertices. Following [15, Proposition 33] let {p1, p2, p3} ⊆ A and let f : A→ B be the bijection determined
by the perfect matchingΩ . Since the 2-arcs xyf (p1) and yxp1 both extend uniquely to squares it follows by C-homogeneity
that the same is true for all 2-arcs in the graph Ω . For i, j ∈ {1, 2, 3} let rij be the vertex that extends the 2-arc pixpj to a
square. Clearly rij ∉ {x} ∪ B for any 1 ≤ i < j ≤ 3, and also r12 ≠ r23. By C-homogeneity there is an automorphism α
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satisfying α(r12, p1, x, p3, r23) = (r12, p1, x, p3, f (p3)) (these connected substructures are each isomorphic to a line with 5
vertices, since Γ is bipartite). However, since α fixes pointwise the triple of vertices {x, p1, r12} it must also fix p2. But this
is impossible since p2 ∼ r23 while p2 ≁ f (p3). This is a contradiction, and we conclude that this case (with |Ω| ≥ 6) does
not happen.

This covers all possibilities forΩ and completes the proof of the theorem. �

Using theDL(∆) construction described above, we now show that each of the bipartite graphs listed in Theorem4.6 arises
as the reachability graph of some locally-finite C-homogeneous bipartite graph. This will complete the proof of part (iv) of
Theorem 4.1.

Theorem 4.7. The digraph DL(∆) is C-homogeneous if and only if ∆ is isomorphic to one of: a cycle Cm (m even), an infinite
semiregular tree Ta,b (a, b ∈ N), a complete bipartite graph Km,n (m, n ∈ N), or the complement of a perfect matching.
Proof. We follow the same notation as used in the proof of [2, Theorem 2.2]. By Theorem 4.6 it is sufficient to prove that
DL(∆) is C-homogeneous if and only if∆ is a C-homogeneous bipartite graph.

If DL(∆) is C-homogeneous then, by Lemma 4.3, so is∆. For the converse let∆ be a connected C-homogeneous bipartite
graph. Let Di (i = 1, 2) be connected finite subdigraphs of D = DL(∆) with ϕ : D1 → D2 a given isomorphism. From
the definition of DL(∆) it is immediate that ∆(D) = ∆(DL(∆)) ∼= ∆. For an edge e in DL(∆) let V (e) denote the vertex
set of the bipartite graph ⟨A(e)⟩. We must extend ϕ to an automorphism ϕ̂ of D. Let ED1 = {a1, . . . , ar} ⊆ ED, and let
ED2 = {b1, . . . , br} ⊆ ED with ϕ(ai) = bi for all i. Note that here we have specified D1 and D2 by listing edges rather than
listing vertices.

Observe that for any edge e ∈ ED and any two vertices x, y ∈ V (e), any path in D from x to y must be contained in V (e).
This is a consequence of the fact that the set of all blocks V (f )(f ∈ ED) carries the structure of a tree, and any distinct pair
of blocks V (f ) and V (f ′) intersect in at most one vertex. So any path from x to y not contained in V (e) would have to leave
V (e) and then later re-enter V (e) at a common vertex, contradicting the definition of path. Since D1 is connected, it follows
from this observation that for all e ∈ ED if D1 intersects V (e) then ⟨D1 ∩ V (e)⟩ is a connected subdigraph of ⟨V (e)⟩.

Since ∆ is C-homogeneous, and ⟨D1 ∩ V (f )⟩ is empty or connected for all f ∈ ED, for each edge e ∈ D1 we may fix an
isomorphism θ(e, ϕ(e)) : V (e)→ V (ϕ(e)) which extends ϕ �V (e)∩VD1 . We now define ϕ̂ : VD→ VD inductively as follows.
Begin by defining ϕ̂ : V (a1) → V (b1) as ϕ̂ = θ(a1, b1). Let Vk denote the set of all vertices of D that lie in a block V (f ) at
distance at most k (in the underlying tree of blocks) from the block V (a1). Suppose that ϕ̂ has been defined on Vj(j ≤ k) and
consider Vk+1. Let V (a) be a block where a = (u, v) is a directed edge that intersects Vk, chosen so that either u ∈ Vk or
v ∈ Vk, but not both. Suppose that v ∈ Vk and u ∉ Vk, the reverse is dealt with using a similar argument. Let a′ ∈ ED be an
arc satisfying V (a′) ∩ V (a) = {v}. Now there are two possibilities.

First suppose that V (a) = V (ai) for some ai ∈ ED1. In this case, since D1 is connected we can choose a path p from a
vertex of the edge a1 ∈ ED1 to a vertex of the edge ai ∈ ED1. Now, since u ∉ Vk, v ∈ Vk, and u and v are adjacent, it follows
that the block V (a) = V (ai) lies at distance k + 1 from the block V (a1). Then since V (a′) ∩ V (a) = {v} and V (a′) lies at
distance k from V (a1) in the underlying tree of blocks, it follows that the path p must intersect the block V (a′) and must
contain the vertex v. As p is a path in D1 we conclude that v ∈ D1. Now we define ϕ̂ : V (a)→ V (ϕ(ai)) as ϕ̂ = θ(ai, ϕ(ai)).
Note that ϕ̂ has now been defined twice on the vertex v, using θ(a′, ϕ(a′)) as well, but in both cases v is sent to ϕ(v) since
v ∈ VD1. So the map remains well-defined.

On the other hand, if V (a) ≠ V (ai) for any ai ∈ ED1 then let v′ = ϕ̂(v), which is defined since v ∈ Vk, and let u′ be any
vertex in D with u′ → v′. Then setting b = (u′, v′) we define ϕ̂ : V (a) → V (b) to be any isomorphism α : V (a) → V (b)
that satisfies α(v) = ϕ̂(v). Such an isomorphism α exists since∆(D) ∼= ∆ is C-homogeneous.

Since any two distinct blocks at distance k from V (a1) are disjoint, ϕ̂ is a well-defined mapping from VD to itself. The
mapping ϕ̂ is onto since every vertex w ∈ VD lies in a block V (f ) at some finite distance s from V (b1), and so after stage
s the vertex w will be in the image. The mapping ϕ̂ is one–one, since given x, y ∈ VD with x ≠ y, if there exists f ∈ ED
with x, y ∈ V (f ) then ϕ̂(x) ≠ ϕ̂(y), since ϕ̂ �V (f ) is a bijection with range V (f ). Otherwise, there exist disjoint blocks V (a)
and V (a′) with x ∈ V (a) and y ∈ V (a′), and ϕ̂(x) ≠ ϕ̂(y), since ϕ̂ preserves the distances between blocks. Finally we must
check that ϕ̂ is a digraph homomorphism. If x, y ∈ V (f ) for some f ∈ VD then, since ϕ̂ �V (f ) is an isomorphism between two
copies of∆, it follows that (x, y) ∈ ED if and only if (ϕ̂(x), ϕ̂(y)) ∈ ED. Otherwise, x and y do not belong to a common block,
which implies that they are not adjacent in D, and their images do not belong to a common block, and so are not adjacent in
D either, as required. It follows that ϕ̂ : VD→ VD is a digraph isomorphism. �

This completes the proof of Theorem 4.1.

5. More constructions of connected-homogeneous digraphs

In this section we present some examples showing that the DL(∆) construction on its own is not enough to give a
classification of infinitely ended locally-finite triangle-free C-homogeneous digraphs. In the process we obtain a new family
of highly arc-transitive digraphs without property Z .

We begin with an informal description of a family of digraphs which will be denotedM(n, k)where n, k ∈ N with n ≥ 3
and k ≥ 2. Then we go on to give a formal definition of M(n, k) below. The digraph M(n, k) is C-homogeneous, and its
reachability graph is isomorphic to the complement of a perfect matching CPn. Before we proceed we need the following
definition.
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Fig. 5.1. A partial view of the digraph Y3 ∼= M(3, 2) defined in [21]. The arrows indicate the orientation of the arcs, while the dotted edges represent
non-adjacent matched pairs of vertices, in the copies of CP3 .

Definition 5.1 (Reachability Intersection Digraph). Let D be an arc-transitive digraph whose reachability graph ∆(D) is
bipartite. The reachability intersection digraph R(D) of D has vertex set the A-classes of D, and an arc C1 → C2 if and
only if there is a 2-arc x→ y→ z in Dwith (x, y) ∈ C1 and (y, z) ∈ C2. Note that R(D) can have pairs of vertices with arcs
between them going in both directions. We view such pairs as being joined by an undirected edge.

Our construction is based on that given by Malnič et al. in [21, Section 2]. The notion of reachability intersection digraph
defined above generalises the definition of intersection graph given in [21]. For each odd integer n ≥ 3 the construction
in [21] gives a highly arc-transitive digraph, denoted Yn, without property Z . The digraph Yn has in- and out-degree equal to
2, and the reachability digraph∆(Yn) is an alternating cycle of length 2n.

Following the description given in [21], to give an intuitive recursive definition of the digraph Yn, start with an alternating
cycle∆ of length 2n. At each pair of antipodal vertices u and v of∆, glue an alternating cycle∆u,v of the same length to∆,
in such a way that u and v are antipodal on∆u,v as well, and that their in- and out-degrees equal 2. In this way, every vertex
on ∆ attains valency 4 (in-degree 2 and outdegree 2). The process is repeated in each of the new alternating cycles and at
each pair of antipodal vertices of valency 2. See [21, Figure 1] for an illustration of the digraph Y5.

The reachability digraphs of Yn are precisely the alternating cycles of length 2n from which it is built. It can be seen that
any two adjacent alternating cycles in the above construction intersect in precisely two antipodal vertices. That is, given
any two reachability digraphs ∆1 and ∆2 in Yn, if ∆1 and ∆2 are adjacent in the reachability intersection digraph then
|∆1 ∩ ∆2| = 2. That Yn does not have property Z can be seen by taking one half of each of these two alternating cycles ∆1
and∆2 to obtain an unbalanced cycle.

Now it may be easily verified that for n ≥ 4 the digraph Yn is not C-homogeneous. To see this, fix a 2-arc (a, x, b) in Yn
(where n ≥ 4), let ∆1 be the reachability graph of the arc a → x (which by definition is isomorphic to C2n) and let ∆2 be
the reachability graph of the arc x→ b. Then |∆1 ∩∆2| = 2, say∆1 ∩∆2 = {x, y}. (To visualise this, the reader is advised
to look at [21, Figure 1] where ∆1 is the alternating cycle that goes around the perimeter of the circle and ∆2 is the ‘thin’
alternating cycle attached to the perimeter at its top and bottom vertices.) If Yn were C-homogeneous then, since n ≥ 4,
there would be an automorphism fixing each of the vertices in∆2, fixing both the in-neighbours of x (which belong to∆1),
but interchanging the two in-neighbours of y. This is clearly impossible since∆1 is a cycle.

On the other hand, as we shall see below, the digraph Y3 is C-homogeneous. Now we change our viewpoint slightly, by
viewing the 6-cycle C6 as the complement of a perfect matching CP3, this is possible since they happen to be isomorphic.
In this way, the digraph Y3 may be considered as being built up from copies of CP3, glued together as follows. Begin with a
copy X ∪ Y of CP3, where X and Y are the parts of the bipartition, and all arcs are directed from X to Y . Take a matched pair
(x, y) ∈ X × Y with x unrelated to y. Let X ′ ∪ Y ′ be another copy of CP3, with arcs directed from X ′ to Y ′, and let x′, y′ be an
unrelated pair with x′ ∈ X ′ and y′ ∈ Y . Now glue together X ∪ Y and X ′ ∪ Y ′ by identifying x with y′, and y with x′. So the
two copies X ∪Y and X ′∪Y ′ of CP3, intersect in a set of size 2, and the arcs in the digraph X ′∪Y ′ are oriented in the opposite
direction to the arcs in X ∪ Y . Repeating this process for every pair of matched vertices we obtain the tree-like structure
illustrated in Fig. 5.1. This digraph is isomorphic to the digraph Y3 from [21, Section 2]. Drawn in this way the underlying
reachability intersection digraph is made clearly visible, and is isomorphic to a trivalent tree. There is an obvious natural
generalisation of this digraph where we glue together copies of CPn (n ≥ 3) in the same tree-like way. We shall denote
this digraph by M(n, 2) for n ≥ 3. The underlying reachability intersection digraph of M(n, 2) is a tree of valency n. The
construction may be generalised further still in such a way that the reachability intersection digraph is isomorphic to the
Cayley graph of the free product of a finite number of copies of some fixed finite cyclic group, with respect to the natural
generating set (see below). For example, we useM(4, 3) to denote the digraph illustrated in Fig. 5.2, which is built up from
copies of CP4 and has reachability intersection digraph isomorphic to a tree of directed triangles, also illustrated in Fig. 5.2.
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M (4 , 3) R (M (4 , 3))

Fig. 5.2. A partial view of the digraphM(4, 3) and its underlying reachability intersection digraph R(M(4, 3)).

In general M(n, k)will be constructed in an analogous way to M(4, 3) but from copies of CPn and in such a way that the
reachability intersection digraph is isomorphic to the digraph constructed in a tree-like way from gluing together directed
k-cycles, where every vertex is the meeting point of precisely n cycles.
Formal construction for the digraph M(n, k). The following definition is based on the construction given in [21], which it
generalises. To the greatest extent possible we follow their notation and terminology. Let n, k ∈ N with n ≥ 3, k ≥ 2. Let
Tn,k be the directed Cayley graph of the free product of n copies of the cyclic group Zk

Fn,k = ⟨a1⟩ ∗ ⟨a2⟩ ∗ · · · ∗ ⟨an⟩, aki = 1, i = 1, . . . , n

with respect to the generating set A(n) = {a1, . . . , an}. Observe that every vertex of Tn,k is the meeting point of exactly n
copies of the directed cycle Dk. Next we enlarge Tn,k to a digraph T ∗n,k obtained by replacing each vertex v by a copy of the
complete graph Kn, where each edge in Kn is represented by arcs going in both directions. This is done in such a way that the
n copies of Dk that used to all meet at the vertex v, are in T ∗n,k separated out with each one attached to exactly one of the n
vertices of Kn. The digraph T ∗n,k has the property that each vertex v has exactly one neighbour→-related to it, one neighbour
←-related to it, and the remaining n−1 neighbours are both→- and←-related to v (this is depicted as an undirected edge
in Fig. 5.3 where T ∗4,3 is illustrated).

Definition 5.2. For two digraphs Γ1 and Γ2 we define their tensor product Γ = Γ1 ⊗ Γ2 to be the digraph Γ with vertex
set VΓ1 × VΓ2 and ((a, b), (c, d)) ∈ EΓ if and only if (a, c) ∈ EΓ1 and (b, d) ∈ EΓ2.

(Note that the tensor product is also sometimes referred to in the literature as the direct product, categorical product or
relational product.)

Next we construct the tensor product T ∗n,k ⊗ K⃗2 of T ∗n,k by the directed graph K⃗2 with two vertices V K⃗2 = {a, b} and one
arc a→ b. In other words, T ∗n,k⊗ K⃗2 is the canonical double cover of T ∗n,k where all arcs are oriented from level− to level+.
Note that the copies of Kn in T ∗n,k have been transformed into copies of CPn in the digraph T ∗n,k ⊗ K⃗2.

We say that an arc (x, a) → (y, b) of T ∗n,k ⊗ K⃗2 arises from a directed cycle of T ∗n,k if the arc x → y belongs to one of the
directed cycles of T ∗n,k (and not one of the copies of the complete graph Kn). In other words x → y in T ∗n,k but that there is
not an arc from y to x. Now consider just the arcs in T ∗n,k ⊗ K⃗2 that arise from directed cycles of T ∗n,k. Observe that in T ∗n,k, not
counting the undirected edges in the copies of Kn, every vertex has exactly one arc entering it and exactly one arc leaving
it, where these two arcs belong to one of the copies of a directed cycle Dk in T ∗n,k. It follows that the arcs in T ∗n,k ⊗ K⃗2 that
arise from directed cycles of T ∗n,k are pairwise disjoint, and they define a bijection (i.e. a matching) between the two levels
VT ∗n,k×{a} andVT ∗n,k×{b}, whereV K⃗2 = {a, b}. Then, the digraphM(n, k) is obtained by contracting all arcs in T ∗n,k⊗K⃗2 arising
from directed cycles of T ∗n,k (i.e. by identifying pairs of vertices related by the matching between the two levels VT ∗n,k × {a}
and VT ∗n,k × {b} described above). The digraphM(n, k) has in-degree and out-degree equal to n− 1, its reachability graph is
isomorphic to CPn, and the reachability intersection digraph is isomorphic to Tn,k.

Proposition 5.3. The digraph M(n, k) is C-homogeneous for n ≥ 3, k ≥ 2.

Proof. LetM = M(n, k), T = Tn,k and let π : EM → VT map each arc e ofM to the vertex of T corresponding to the A-class
A(e). For any connected induced substructure M1 of M , with at least one arc, we use π(M1) to denote the image of the set
of arcs ofM1 under π .

Note the T itself is not (in general) C-homogeneous. Indeed, when k ≥ 4, there are two types of induced directed 2-arc
in T : those that embed in a copy of the directed cycle Dk in T , and those that do not. However, this is essentially the only
obstruction to the C-homogeneity of T . More precisely, let∼ be the equivalence relation on ET defined by e ∼ f if and only
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Fig. 5.3. A partial view of the digraph T ∗4,3 .

if there is an induced copy of Dk in T containing both e and f . So the ∼-classes of ET are just the copies of Dk in T . Then
we say that an isomorphism φ : T1 → T2 between finite connected induced substructures T1, T2, of T respects∼ if for all
(a, b), (c, d) ∈ ET1 we have

(a, b) ∼ (c, d)⇔ (φ(a), φ(b)) ∼ (φ(c), φ(d)).

It is then not hard to see that an isomorphism φ : T1 → T2 between finite connected induced subdigraphs T1, T2 of T
extends to an automorphism of T provided φ respects∼ (in the case k ≥ 4 this is a necessary and sufficient condition for φ
to extend).

Turning our attention to M , every isomorphism ϕ : M1 → M2 between connected induced subdigraphs M1,M2 of M
(where M1 has at least one arc) induces, in the obvious way, an isomorphism ϕ̂ : ⟨π(M1)⟩ → ⟨π(M2)⟩ where ⟨π(M1)⟩
and ⟨π(M2)⟩ are both finite connected induced subdigraphs of T . In particular, any automorphism ϕ ∈ Aut(M) induces an
automorphism ϕ̂ ∈ Aut(T ).

Claim (a). The mapping ˆ : Aut(M)→ Aut(T ), ϕ → ϕ̂ is an isomorphism of groups.

Proof of Claim (a). This map is clearly a homomorphism.
To see that ˆ is injective it suffices to observe that the only automorphism ofM that fixes setwise theA-classes ofM is the

identity map. The easiest way to see this is to consider the extra structure on M coming from the fact that the reachability
digraphs are isomorphic to CPn. We do this by defining a binary relation⇒ on VM by:

x⇒ y if and only if there exist z, t ∈ VM satisfying x→ z ← t → y and x ↛ y.

In other words, x⇒ y if and only if x and y are both vertices of some A-class A(e), x and y both belong to different parts of
the bipartition of A(e), and x and y are unrelated by→ (i.e. x and y are ‘‘matched’’ in the bipartite complement of perfect
matching CPn). Moreover, the direction of⇒ corresponds to the orientation of the arcs in A(e). In the diagram in Fig. 5.2
the dotted edges correspond to⇒-related pairs. We shall call a pair (x, y)with x⇒ y and⇒-arc.

From the construction of M we see that (VM,⇒) has the structure of countably many disjoint⇒-directed k-cycles.
Moreover, if x⇒ y⇒ z, x′ ⇒ y′ ⇒ z ′ and {x, y, x′, y′} is a subset of the vertices of some A-class, then it follows from the
structure ofM that {y, z} and {y′, z ′} are subsets of different A-classes.

Now let α ∈ Aut(M) be an automorphism that fixes setwise the A-classes of M . Then, on each A-class, α induces an
automorphism,which is determined by some permutation of the⇒-arcs of theA-class. However, if for someA-class a non-
identity permutation is induced by α on its⇒-arcs then, by the observation in the previous paragraph, the automorphism
α does not fix the A-classes of M setwise, contradicting the choice of α. From this it follows that the homomorphism
ˆ : Aut(M) → Aut(T ) is injective, since α̂ = β̂ implies that αβ−1 ∈ Aut(M) is an automorphism fixing setwise the
A-classes ofM , giving αβ−1 = 1.

To see that ˆ is surjective, fix some v ∈ VT . Its preimage ∆ = φ−1(v) in M is a copy of CPn in M . Now consider Aut(T )v .
These automorphisms are easily described. An automorphism α ∈ Aut(T )v is defined by choosing a permutation of the n
copies of Dk that are adjacent to v, and then for each of the vertices on each such Dk, choosing a permutation of the n − 1
other copies of Dk attached to that vertex, and so on working our way out from the original vertex (this is analogous to
considering the stabiliser of a vertex of an infinite regular tree). Correspondingly, we may consider Aut(M)∆ ≤ Aut(M):
the automorphisms that fix ∆ setwise. These are given by first choosing some permutation of the n ⇒-related pairs in ∆,
and then for every⇒-directed k-cycle D attached to ∆, and for every A-class Ω of each⇒-arc of D , we choose freely
some permutation of the n − 1 ⇒-arcs in Ω that are not in D , and so on working our way out from ∆. In this way we



R. Gray, R.G. Möller / Discrete Mathematics 311 (2011) 1497–1517 1511

see that ˆ : Aut(M) → Aut(T ) maps Aut(M)∆ onto Aut(T )v . Finally, to generate all of Aut(T ), we observe that Aut(M)
acts transitively on the A-classes of M and hence acts vertex transitively on T . We conclude that ˆ is surjective and thus
ˆ : Aut(M)→ Aut(T ) is an isomorphism, completing the proof of the claim. �

Our aim is to show thatM is C-homogeneous. One key idea for the proof is the following:

Claim (b). For every isomorphism ϕ : M1 → M2 between finite connected induced subdigraphs M1,M2 of M the induced
isomorphism ϕ̂ : ⟨π(M1)⟩ → ⟨π(M2)⟩ is an isomorphism between finite connected induced subdigraphs of T that respects ∼,
and therefore ϕ̂ extends to an automorphism of T .

Proof of Claim (b). Let M1 be a finite connected induced subdigraph of M and let (e, f ) and (e′, f ′) be 2-arcs in M1, where
e, f , e′, f ′ ∈ EM1. Then (π(e), π(f )) ∼ (π(e′), π(f ′)) in T if and only if there is an induced subdigraph of M1 of one of the
following two forms:

◦
e
−→ ◦

f
−→ ◦ ← ◦ → ◦ → ◦ ← ◦ · · · ◦ → ◦ → ◦ ← ◦

e′
−→ ◦

f ′
−→ ◦ (5.1)

or

◦
e′
−→ ◦

f ′
−→ ◦ ← ◦ → ◦ → ◦ ← ◦ · · · ◦ → ◦ → ◦ ← ◦

e
−→ ◦

f
−→ ◦. (5.2)

This follows from inspection of the structure of M , and in particular relies on the fact that the reachability digraphs are
isomorphic to CPn and M1 is connected. The statement in the claim is then an immediate corollary. �

Now we shall use the above observations to show that M is C-homogeneous. Let ϕ : M1 → M2 be an isomorphism
between finite connected induced subdigraphs of M . Then, by Claim (b), ϕ̂ : ⟨π(M1)⟩ → ⟨π(M2)⟩ extends to some
automorphism θ of T (note that in general there will be more than one possible choice for θ ). Let σ ∈ Aut(M) satisfy
σ̂ = θ . This is possible by Claim (a) Then we see that ϕ extends to an automorphism of M if and only if ϕ′ = ϕ ◦ (σ−1 �M2)
extends to an automorphism ofM . Therefore wemay supposewithout loss of generality (by replacing ϕ by ϕ′) that for every
arc e in EM1 we have:

π(ϕ(e)) = π(e). (5.3)

Next observe that for every arc f in T there is a unique copy of the directed cycle Dk in T to which f belongs. Therefore for
every finite connected induced subdigraph Z of T there is a uniquely determined extension Z of Z obtained by adding in all
arcs∼-related to arcs of Z (i.e. we close under∼). Clearly Z is then a connected union of finitely many copies of Dk in T .

From assumption (5.3) and Claim (b) it follows that π(M1) = π(M2). Now define X = π−1(π(M1)) = π−1(π(M2)),
which is a preimage of a connected union of finitelymany directed cycles of T . So,M1 andM2 are isomorphic finite connected
substructures of X and by (5.3) the isomorphism ϕ : M1 → M2 fixes setwise the A-classes of X . We shall now prove that ϕ
extends to an automorphism of X .

There are two types of vertices in M1. We call a vertex v of M1 a corner vertex if and only if v belongs to a⇒-directed
k-cycle in X = π−1(π(M1)). Similarly we define corner vertices ofM2.

Claim (c). For all v ∈ VM1, v is a corner vertex of M1 if and only if ϕ(v) is a corner vertex of M2, in which case ϕ(v) = v.

Proof of Claim (c). A vertexw of M1 is a corner vertex if and only if eitherw is the middle vertex of a directed 2-arc ofM1,
or there is an induced subdigraph ofM1 of one of the following two forms:

◦ −→ ◦ −→ ◦ ← ◦ → w (5.4)

or

w −→ ◦ ← ◦ → ◦ → ◦. (5.5)

To see this, let w be an arbitrary corner vertex of M1. If w is the middle vertex of a directed 2-arc then clearly w is a corner
vertex, so suppose otherwise. Take a⇒-directed k-cycle in X containing w. Then since this⇒-directed k-cycle is in X ,
some directed 2-arc, with middle vertex v say, ofM1 must embed in the union of the A-classes traversed by the⇒-directed
k-cycle. ButM1 is connected, and taking a path inM1 from the directed 2-arc tow, removing unnecessary edges and applying
the fact that∆ ∼= CPn, we conclude that there is an induced subdigraph ofM1 of one of the following two forms:

◦ −→ v −→ ◦ ← ◦ → ◦ → ◦ ← ◦ · · · ◦ → ◦ → ◦ ← ◦ −→ w (5.6)

or

w −→ ◦ ← ◦ → ◦ → ◦ ← ◦ · · · ◦ → ◦ → ◦ ← ◦ −→ v→ ◦, (5.7)

then cutting down to 4-element substructures proves the result. Similarly the corner vertices ofM2 may be described. From
this description it is clear that, since ϕ is an isomorphism, v is a corner vertex of M1 if and only if ϕ(v) is a corner vertex of
M2.
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Fig. 6.1. The digraph J(2).

Now let v ∈ VM1 be a corner vertex of M1. Recall that ϕ : M1 → M2 is assumed to fix setwise the A-classes of X . It
follows that:

(i) if v is the middle vertex of a 2-arc then wemust have ϕ(v) = v, since inM every pair of 2-arcs between a given ordered
pair of A-classes in M have the same middle vertex;

(ii) since every vertex w in M has a unique⇒-outneighbour and unique⇒-inneighbour it follows that once we know
ϕ(v) = v we must have ϕ(w) = w, wherew and v are as in (5.6) or (5.7).

We conclude that ϕ(w) = w for every corner vertexw ofM1. �

Then the remaining non-corner vertices may be permuted at will within their respective A-classes, and in this way ϕ is
determined. But thenϕ is clearly the restriction of some automorphismof X fixing setwise theA-classes of X . This completes
the proof that ϕ extends to an automorphism of X .

Finally, using the fact that X is the preimage under π of a connected union of finitely many copies of Dk in T , it is not
difficult to see that every automorphism of X extends to an automorphism ofM .

We conclude thatM is C-homogeneous. �

The above construction provides a new family of locally-finite highly arc-transitive digraphs with no homomorphism
onto Z .

Corollary 5.4. The digraph M(n, k)(n ≥ 3, k ≥ 2) is highly arc-transitive with in- and out-degree equal to n− 1, and does not
have property Z.

We finish this section by describing a different family of C-homogeneous digraphs, that are constructed using the line
digraph operation.

Definition 5.5 (Line Digraph). The line digraph L(D) of a digraph D is defined to be the digraph with vertex set ED and
(directed) edges of the form (e, e′), where the arcs e, e′ give rise to a 2-arc in D.

It was proved in [2, Lemma 4.1(a)] that high-arc-transitivity is a property that is preserved when taking the line digraph
of a digraph. In general, connected-homogeneity is not preserved under taking line digraphs. The digraph J(2), which is
illustrated in Fig. 6.1 and will be formally defined below in Section 6, is C-homogeneous. A straightforward check shows
that the line graph L(J(2)) of the digraph J(2), illustrated in Fig. 6.1, is not C-homogeneous.

Indeed, the digraph L(J(2)) is easily seen to be a connected locally-finite digraph with two ends. So if L(J(2)) were
C-homogeneous then, by Theorem 6.2, this would imply that L(J(2)) ∼= J(r) for some r (where J(r) is defined below).
This is clearly not the case, since the reachability digraph of L(J(2)) is a bipartite digraph with bipartitions each of size 4,
while the in- and out-degrees of the vertices of L(J(2)) are only equal to 2. Therefore L(J(2)) is not C-homogeneous.

However, for m ≥ 2 it may be verified that the line graph L(DL(C2m)) is C-homogeneous, where C2m denotes the
alternating cyclewith 2m vertices. Note that L(DL(C2m))has reachability digraph isomorphic toK2,2. The digraphs L(DL(C2m))
form ≥ 2 do have property Z .

6. 2-ended connected-homogeneous digraphs

We begin by describing a family of examples.

Definition 6.1. For r ∈ N let J(r) denote the digraph with vertex set Z × X , where X = {1, . . . , r}, and with arcs
(i, x)→ (i+ 1, y), where i ∈ Z and x, y ∈ X .

The digraph J(2) is illustrated in Fig. 6.1. It is easy to see that for every r ∈ N the digraph J(r) has two ends and is
C-homogeneous. Indeed, the group generated by the translates, mapping (i, x) → (i+k, x) for k ∈ Z, and the transpositions,
interchanging (i, x)with (i, y) and fixing every other vertex, acts in a C-homogeneous way on the digraph J(r).

The main result of this section is the following.

Theorem 6.2. Let D be a connected locally-finite digraph with exactly two ends. Then D is C-homogeneous if and only if it is
isomorphic to J(r) for some r ∈ N.

Before proving Theorem 6.2 we first need three lemmas. Let Z denote the digraph with the set of integers as vertex set
and arcs i→ i+ 1.



R. Gray, R.G. Möller / Discrete Mathematics 311 (2011) 1497–1517 1513

Lemma 6.3. Let D be a connected locally-finite C-homogeneous digraph with exactly two ends. Then D is triangle-free and there
is a surjective digraph homomorphism θ : D→ Z. Moreover, the fibres θ−1(i) of the homomorphism θ are finite for all i ∈ Z.

Proof. Let e0 ⊆ VD be a D-cut, E = Ge0 ∪ Ge0∗ the associated tree set where G = Aut(D), and T = T (E) the structure tree.
Let φ : VD→ VT be the structure mapping. The structure tree T has just two ends and has no leaves, and is therefore a line.
There is a positive integer N such that whenever x and y are related vertices in D then dT (φ(x), φ(y)) = N . If the vertices
x, y, z form a triangle inD then φ(x), φ(y) and φ(z) are vertices in the line T such that the distance between any two of them
is N . This is clearly impossible, so D cannot contain any triangles. By Theorem 4.1(i) the digraph D is highly arc-transitive.

It is immediate from the definition of E that the group G = Aut(D) acts on T and is transitive on the undirected edges in
T , by which we mean for all e, f ∈ E either e and f belong to the same G-orbit, or e and f ∗ belong to the same G-orbit. Let
v ∈ VT . In the set of arcs of T there are only two arcs, say f and f ′, that have v as a terminal vertex. Either f is fixed by Gv
or the orbit of f under Gv has just two elements {f , f ′}. This means that the finite set δf ∪ δf ′ (here both the cuts f and f ′
are being viewed as subsets of VD) of arcs in D is invariant under Gv (where δf denotes the co-boundary of f as defined in
Section 2). Hence Gv has a finite orbit on the arcs of D and thus only finite orbits on the vertex set of D. The fiber φ−1(v) is
one of the orbits of Gv and thus is finite. Because G acts transitively on Im(φ) and the action of G on D is covariant with φ
we see that all the fibers of φ have the same finite number of elements, say K .

Fix a vertex u in D. Let pj denote the number of vertices in Dj(u) (for j ∈ Z). By Lemma 3.2 the map φ is constant on Dj(u)
and thus pj = |Dj(u)| ≤ K . Hence the out-spread of D, defined as lim supj→∞(pj)1/j, is equal to 1. By [2, Theorem 3.6] the
digraph D has property Z , that is to say there is a surjective digraph homomorphism θ : D→ Z .

The last part essentially follows from Lemma 3.2 and its proof. Indeed, we claim that for all u, v ∈ VD, if θ(u) = θ(v)
then φ(u) = φ(v). Then, since the fibres of φ are finite it will follow that the fibres of θ are also finite. So, suppose that
u, v ∈ θ−1(i) for some i ∈ Z. We claim that φ(u) = φ(v). Since D is connected we can choose an undirected path π in D
from u to v. Let u = u0, u1, . . . , uk = v be the vertices of the path π . We call a vertex uj in the path π a turning point if
either uj−1 → uj ← uj+1 or uj−1 ← uj → uj+1. We shall prove by induction on the number of turning points in π that
φ(u) = φ(v). If π has just one turning point then φ(u) = φ(v) by Lemma 3.2. For the induction step, if there is a vertex
ul ∈ θ

−1(i) with 0 < l < k then applying induction to each of the paths u = u0, u1, . . . , ul and ul, . . . , uk = v we deduce
φ(u) = φ(ul) = φ(v), as required. Otherwise, without loss of generality we may suppose that the path π is contained in
∪m≤i θ

−1(m). In this case let uj2 be the second turning point of the path π and choose a directed path π ′ from uj2 to some
vertexw ∈ θ−1(i). Such a path π ′ exists since θ is a homomorphism, and every vertex in D has outdegree at least one. Then
we may apply induction to the paths u = u0, . . . , uj2 , π

′ and (π ′)−1, uj2 , . . . , uk = v to deduce φ(u) = φ(w) = φ(v),
completing the induction step. �

Lemma 6.4. Let D be a connected locally-finite C-homogeneous digraph with exactly two ends. Let θ be a surjective digraph
homomorphism D→ Z. Then for every integer j the subdigraphs induced by∪i≤j−1 θ

−1(i) and∪i≥j+1 θ
−1(i) are both connected.

Proof. The graph D \ θ−1(j) is not connected, since every path from a vertex in θ−1(j − 1) to a vertex in θ−1(j + 1) must
include a vertex in θ−1(j). The digraph D is assumed to have precisely two ends, so if we remove a finite set of vertices from
D then we get at most two infinite components. If u is a vertex in ∪i≤j−1 θ

−1(i) then the set anc(u) belongs to the same
component of D \ θ−1(j) as u does, and this set is infinite. Similarly for a vertex u in ∪i≥j+1 θ

−1(i) the set desc(u) belongs
to the same component of D \ θ−1(j) as u. Thus D \ θ−1(j) has no finite components and there are at most two infinite
components, so the subdigraphs induced by ∪i≤j−1 θ

−1(i) and ∪i≥j+1 θ
−1(i)must be connected. �

Lemma 6.5. Let D be a connected locally-finite C-homogeneous digraph with exactly two ends. Let θ be a surjective digraph
homomorphism D → Z. Then there exist k, l ∈ N such that for all i ∈ Z, the subdigraph induced by θ−1(i) ∪ θ−1(i + 1) is
isomorphic to the disjoint union of k copies of the complete bipartite graph Kl,l. In particular,∆(D) ∼= Kl,l.

Proof. Define B as the graph ⟨θ−1(0) ∪ θ−1(1)⟩, noting that B is finite since the fibres of θ are finite. Note that each of the
graphs Bk = ⟨θ

−1(k) ∪ θ−1(k + 1)⟩ is isomorphic to the graph B. Of course all the arrows of the bipartite graph B are
oriented in the same way from θ−1(0) to θ−1(1). Clearly B is a disjoint union of a finite number of copies of the reachability
bipartite graph∆.

Next we shall prove that∆ = ∆(D) is isomorphic to Kl,l for some l ∈ N. Certainly∆ is finite, since∆ ⊆ B which is finite,
and so∆ ≁= Ta,b. So by Theorem 4.1(iii) it suffices to prove that∆ is not the complement of a perfect matching (with at least
4 vertices), and is not an even cycle Cm with m ≥ 8. Once this has been established it will follow that ∆ ∼= Kl,m for some
l,m ∈ N. Then because the fibers θ−1(i) (for i ∈ Z) all have the same size, we may conclude that l = m.

First we suppose that∆ is the complement of a perfect matching. So for each vertex v in θ−1(i) there is a unique vertex
u in θ−1(i+ 1) that is in the same component of Bi but is not related to v. For each such pair we put in a new arc u→ v and
we call these arcs red arcs to distinguish them from the original arcs in D. Each vertex in D has precisely one in-going red
arc and one out-going red arc. The digraph consisting of the vertices in D and the red arcs is therefore a collection of disjoint
directed lines such that each vertex in D belongs to precisely one of these lines and each of the lines contains precisely one
vertex from each fiber θ−1(i). The automorphism group of D also preserves the red arcs and permutes these lines. Let u be a
vertex in θ−1(0) and let a and b be vertices in D+(u). Denote with La and Lb the red lines that a and b belong to, respectively.
Since∪j≤−1 θ

−1(j) is connected it is possible to find in∪j≤0 θ
−1(j) a path P starting in a vertex in La and ending in uwith the
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property that P only contains one vertex from θ−1(0), and so P ∩ θ−1(0) = {u}. The subdigraphs of D induced by P ∪ {a}
and P ∪{b} are isomorphic. By C-homogeneity there is an automorphism that fixes all the vertices in P and takes a to b. This
automorphism will take La to Lb, but that cannot happen because the automorphism also fixes a vertex in P that belongs to
La and must therefore fix La. Hence the assumption that the∆ is the complement of a perfect matching is untenable.

Now suppose that ∆ ∼= Cm for some m ≥ 8. In particular each vertex in D has in-degree and out-degree equal to 2. Let
a, d ∈ φ−1(0) be distinct vertices such that they have a common neighbour b ∈ φ−1(1). Also let c ∈ D+(a)\{b} be the other
neighbour of a in φ−1(1). Let u, v ∈ φ−1(−1) be the vertices of D−1(d). Let w ∈ D−1(a) noting that w could belong to the
set {u, v}, and let Q be a finite subset of∪j≤−1 φ

−1(j) such that {u, v, w} ⊆ Q and ⟨Q ⟩ is connected. Such a set Q exists since
the subdigraph induced by ∪j≤−1 φ

−1(j) is connected. By C-homogeneity there is an automorphism α that fixes each of the
vertices in Q ∪ {a} and interchanges b and c . However, since α fixes u and v it must also fix d since d is their only common
neighbour in φ−1(0). But this is impossible since b ∼ d but c ≁ d since∆ has at least 8 vertices. �

Proof of Theorem 6.2. We will use the same notation as above. By Lemma 6.5 it suffices to show the digraph B =

⟨θ−1(0) ∪ θ−1(1)⟩ is connected. Seeking a contradiction, suppose that B has more than one connected component. As
observed above the digraph induced by


j≥0 θ

−1(j) is connected. From this, together with C-homogeneity, it follows that
there are distinct connected components A and B of B such that for some a ∈ A ∩ θ−1(1) and b ∈ B ∩ θ−1(1) we have
D+(a) ∩ D+(b) ≠ ∅. Let c ∈ D+(a) ∩ D+(b). So c ∈ θ−1(2). By Lemma 6.5, ⟨A⟩ ∼= ⟨B⟩ ∼= Kl,l for some l ∈ N. Since the
subdigraph induced by


i≤0 θ

−1(i) is connected, there exists a finite set F ⊆


i≤0 θ
−1(i) such that θ−1(0) ⊆ F and ⟨F⟩

is connected. Now for every a′ ∈ A ∩ θ−1(1) the mapping αa′ : ⟨F ∪ {b, a}⟩ → ⟨F ∪ {b, a′}⟩ which sends f → f (for
f ∈ F ), b → b, and a → a′, is an isomorphism between finite connected subdigraphs of D. Hence by C-homogeneity for
each a′ ∈ A ∩ θ−1(1) the isomorphism αa′ extends to an automorphism of D. Now a and b belong to the same connected
component ofB1, since they are both adjacent to c . Therefore for each a′ ∈ A∩θ−1(1) the vertices a′ = αa′(a) and b = αa′(b)
belong to the same connected components of B1 as one another. This implies that {b} ∪ (A ∩ θ−1(1)) is a subset of a single
connected component of B1. But this is impossible since by Lemma 6.5 each component of B1 is isomorphic to Kl,l, while
|{b} ∪ (A ∩ θ−1(1))| = l+ 1. This is a contradiction and completes the proof of the theorem. �

The argument in Lemma 6.5 to exclude the possibility that the reachability digraph is isomorphic to the complement of
a perfect matching can be adapted to show that the reachability digraph of a highly arc-transitive 2-ended digraph cannot
be the complement of a perfect matching.

7. Connected-homogeneous digraphs with triangles

In this section Dwill be a connected locally-finite C-homogeneous digraph with more than one end and we assume that
D embeds a triangle. Since D embeds a triangle it follows from Theorem 6.2 that D is not 2-ended, and hence must have
infinitely many ends. In this case we are able to give an explicit classification of the digraphs that arise. We now describe
this family of graphs, and then give a proof that any digraph satisfying the above hypotheses belongs to this family. Our
approach is similar to that used in [22,14].

Recall from Section 2 that D3 denotes the directed triangle. For r ∈ N we use T (r) to denote the directed Cayley graph of
the free product

⟨a1⟩ ∗ ⟨a2⟩ ∗ · · · ∗ ⟨ar⟩, a3i = 1, i = 1, 2, . . . , r

of r copies of the cyclic group Z3, with respect to the generating set A = {a1, a2, . . . , ar}. The digraph T (3) is shown in
Fig. 7.1. The corresponding undirected graphs to these occur in the classification of locally-finite distance-transitive graphs
by Macpherson in [19]. The main result of this section is the following.

Theorem 7.1. Let D be a connected locally-finite digraph with more than one end, and suppose that D embeds a triangle. Then
D is C-homogeneous if and only if it is isomorphic to T (r) for some r ∈ N.

It is an easy exercise to check that the digraphs T (r) are all C-homogeneous. The rest of this section will be devoted to
proving the other direction of the theorem. For the remainder of this section Dwill always denote a connected locally-finite
digraph with more than one end such that D embeds a triangle.

The following lemma is a straightforward consequence of the definitions.

Lemma 7.2. For v ∈ D the subdigraphs induced by D+(u) and D−(u) are finite homogeneous digraphs.

Proof. The subdigraph induced by D+(u) (respectively D−(u)) is finite since D is locally finite. Suppose ϕ : U → V is an
isomorphism between two induced subdigraphs of D+(u). Let U ′ be the subdigraph of D induced by the set U ∪ {u}. Define
V ′ similarly. The isomorphism ϕ extends to an isomorphism between U ′ and V ′ that maps u to u. The subdigraphs U ′ and V ′
are connected and thus there is an automorphism ϕ̂ of D that extends the isomorphisms U ′ → V ′. Since ϕ̂(u) = u we see
that the restriction of ϕ̂ to D+(u) is an automorphism of D+(u) that extends ϕ. Whence D+(u) is homogeneous as claimed.
The proof that D−(u) is homogeneous is similar. �
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Fig. 7.1. A partial view of the digraph T (3).

We use the same notation as in previous sections, with e0 being a fixed D-cut of D, E = Ge0 ∪ Ge∗0 the associated tree set
where G = Aut(D), T (E) the structure tree, and φ : VD → VT the structure map. Fix a vertex u ∈ D. Recall that we write
D(u) to denote all vertices that are joined to u by an arc.

Lemma 7.3. φ(D(u)) intersects more than one connected component of the graph induced by T \ {φ(u)}.
Proof. If φ(D(u)) were contained in a single connected component of T \ {φ(u)} then there would exist a cut f ∈ E with
u ∈ f and D(u) ⊆ f ∗. But this contradicts the fact that f is infinite and connected (see Theorem 2.1 part (i)). �

Since the digraph D is C-homogeneous it follows that G = AutD acts edge-transitively on the underlying undirected
graph Γ = Γ (D). It follows that there is a positive integer N such that whenever u and v are related vertices in D then
dT (φ(u), φ(v)) = N . This has the following consequence.

Lemma 7.4. If x and y are vertices in D(u) and φ(x) and φ(y) belong to different components of T \ {φ(u)} then x and y are not
adjacent in D.
Proof. In T the unique shortest path between φ(x) and φ(y) must pass through φ(u) because φ(x) and φ(y) belong to
different connected components of T \ {φ(u)}. Hence dT (φ(x), φ(y)) = 2N , so x and ymust be unrelated in D. �

Lemma 7.5. Each of the sets φ(D+(u)) and φ(D−(u)) intersects more than one connected component of T \ {φ(u)}.
Proof. Suppose that φ(D+(u)) is contained in a single component C of T \ {φ(u)}. By Lemma 7.3 there is a vertex v ∈ D−(u)
withφ(v) ∉ C.We know thatD embeds triangles, so there is a 2-arc (a, b, c) that is a part of some triangle. By arc-transitivity
we can map the arc a → b to the arc v → u. Then c is mapped to a vertex in D+(u) and it follows that v is adjacent to a
vertex in D+(u). But then, by Lemma 7.4, φ(v) ∈ C, which is a contradiction. Similarly the assumption that φ(D−(u)) is
contained in a single component of T \ {φ(u)} leads to a contradiction. �

Lemma 7.6. Suppose x and y are distinct vertices in D(u). Then x and y are adjacent in Γ (D) if and only if φ(x) and φ(y) belong
to the same connected component of T \ {φ(u)}.
Proof. Let x, y ∈ D(u) with x and y not adjacent in D. We claim that φ(x) and φ(y) belong to different components of
T \ {φ(u)}. Indeed, if they belonged to the same component C (say) then by Lemma 7.5 there exists b ∈ D(u) with φ(b)
in a connected component of T \ {φ(u)} that is different from C. We can choose b to be in D+(u) if y is in D+(u) and in
D−(u) if y is in D−(u). Note that b is unrelated to x (by Lemma 7.4) and hence ⟨x, u, y⟩ ∼= ⟨x, u, b⟩. But then there is no
automorphism extending the isomorphism between ⟨x, u, y⟩ and ⟨x, u, b⟩ that sends y to b, because dT (φ(x), φ(y)) < 2N
while dT (φ(x), φ(b)) = 2N . This contradicts C-homogeneity and therefore the assumption that x and y are not adjacent in
D cannot hold.

The other direction follows from Lemma 7.4. �

Lemma 7.7. If the subdigraph induced by D+(u) (respectively D−(u)) is not a null graph then it is isomorphic to the disjoint union
of a finite number of copies of the directed triangle D3.
Proof. By Lemma 7.6, for vertices in D+(u) the property of being related by an arc is an equivalence relation. Thus, along
with arc-transitivity, this shows that D+(u) is a disjoint union of isomorphic finite homogeneous tournaments. This proves
the lemma, since the only finite homogeneous tournaments are the trivial one-element graph, and the directed triangle D3
(see [18]). �

Lemma 7.8. Both D+(u) and D−(u) are independent sets.
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Proof. If D−(u) contains an arc x → y then D+(x) contains the arc y → u, and by vertex-transitivity D+(u) contains an
arc. Similarly, if D+(u) has an arc then so does D−(u). Hence D+(u) is a null graph if and only if D−(u) is a null graph.
Therefore, to prove the lemma it suffices to show that at least one of D+(u) or D−(u) is an independent set. Suppose, seeking
a contradiction, that neither D+(u) nor D−(u) is an independent set. By Lemma 7.7 each connected component of D+(u) and
D−(u) is isomorphic to a directed triangle. Let A be a connected component of D−(u). The argument in Lemma 7.5 shows
that some vertex in A is adjacent to a vertex b in D+(u). Let B denote the connected component of D+(u) that b belongs to.
By Lemma 7.6 both A and B are mapped by φ to the same component of T \ {φ(u)}. Using Lemma 7.6 again we conclude
that the subdigraph induced by A ∪ B ∪ {u} is a tournament F with 7 vertices. Note also that by Lemma 7.6 no vertex in A is
adjacent to a vertex in D+(u) outside B and no vertex in B is adjacent to a vertex in D−(u) outside A.

Suppose A = {a1, a2, a3} with a1 → a2 → a3 → a1. Note that both D−(a1) ∩ F and D+(a1) ∩ F will be mapped by φ
to the same connected component of T \ {φ(a1)}. But only three vertices of each of D−(a1) and D+(a1) can be mapped to
this component and since F is a tournament with 7 vertices we conclude that both D−(a1)∩ F and D+(a1)∩ F contain three
vertices. The vertices a2 and u are in D+(a1)∩ F and thus there must be a unique vertex b′ in B such that a1 → b′. The same
holds true for a2 and a3. Since F is a tournament and b′ is the unique vertex in B with a1 → b′ it follows that b′ → a2 and
b′ → a3. Then ⟨a2, u, b′⟩ ∼= ⟨a3, u, b′⟩ ∼= D3 and by C-homogeneity there is an automorphism fixing u and b′ and sending
a2 to a3. This is clearly a contradiction, since any automorphism fixing u and b′, must fix B pointwise, and hence also fixes A
pointwise.

Now we have reached a contradiction and have established the lemma. �

Lemma 7.9. The subdigraph induced by D(u) ∪ {u} is a union of |D+(u)| directed triangles D3 such that any two of them have
just the vertex u in common.

Proof. Let a be a vertex inD−(u). By Lemma7.8 and the assumption thatD embeds a triangle there is a vertex b inD+(u) such
that a and b are related. If a→ b is an arc in D then the arc u→ b is contained in D+(a), contradicting the previous lemma.
Thus b → a and ⟨a, u, b⟩ ∼= D3. We also see that if a were related to some other vertex b′ in D+(u) then, by Lemma 7.6,
φ would map a, b and b′ all to the same component of T \ {φ(u)} and thus, by Lemma 7.6, b and b′ would be adjacent
vertices in D+(u), contradicting Lemma 7.8. Applying the same argument to vertices in D+(u) we conclude that for each
vertex b ∈ D+(u) there is a unique vertex a in D−(u) such that b→ a. Now we have proved that each vertex in D(u) is in a
unique directed triangle containing u and the lemma follows. �

Proof of Theorem 7.1. Let r = |D+(u)|. We show that D ∼= T (r). Fix a vertex u′ in T (r) and let Yj denote the subdigraph of
T (r) induced by vertices in distance at most j from u′. Let Dj denote the subdigraph of D induced by vertices in distance at
most j from u.

Lemma 7.9 shows that D1 is isomorphic to Y1. Let ψ1 be an isomorphism between D1 and Y1. Note that ψ1(u) = u′. We
use induction to construct a sequence of isomorphismsψj : Dj → Yj such that if i < j thenψj agrees withψi on Di. Then we
define an isomorphism ψ : D→ T (r) such that if v ∈ Dj then ψ(v) = ψj(v).

We already know that there is an integer N such that if x and y are adjacent vertices in D then dT (φ(x), φ(y)) = N .
A preliminary step is to show that if x and y are vertices in D then dT (φ(x), φ(y)) = d(x, y)N , where d(x, y) denotes
the distance between x and y in the underlying undirected graph Γ . Assume that dT (φ(x), φ(y)) = Nd(x, y) whenever
d(x, y) ≤ k. Suppose d(x, y) = k + 1. Find a path x, x1, . . . , xk, y of length k + 1 in D. By the induction hypothesis
dT (φ(x), φ(xk)) = kN . The vertices xk−1 and y are not adjacent and are both in D(xk). Hence φ(xk−1) and φ(y) belong to
different components of T \ {φ(xk)} and the path in T from φ(xk−1) to φ(y) goes through φ(xk) and has length 2N . Thus
dT (φ(x), φ(y)) = N(k+ 1) = Nd(x, y). In particular the map φ is injective.

Suppose y is a vertex inD and d(u, y) = k+1. Let xbe a vertex inDk that is adjacent to y. If x′ is another vertex inDk adjacent
to y then dT (φ(u), φ(x)) = dT (φ(u), φ(x′)) = kN and dT (φ(u), φ(y)) = (k+1)N and dT (φ(x), φ(y)) = dT (φ(x′), φ(y)) = N .
But then both φ(x) and φ(x′) would be on the path from φ(u) to φ(y) and we also know that φ(x) ≠ φ(x′). This is clearly
impossible in a tree. Hence y is adjacent to a unique vertex x in Dk. We also see that if y and z are adjacent vertices in D such
that d(u, y) = d(u, z) = k+ 1 then there is a vertex x in Dk such that both y and z are adjacent to x.

Suppose now that we have defined the isomorphism ψk : Dk → Yk. Let x be a vertex in D such that d(u, x) = k. The
subgraph induced by D(x) consists of r triangles. One of these triangles will be contained in Dk and the others will only have
the vertex x inside Dk. The same is true in relation to the vertexψk(x) and Yk. Nowwe can clearly extendψk to those vertices
of D(x) that are in distance k + 1 from u. Doing this for all the vertices in Dk that are in distance k from u will give us the
desired extension ψk+1 of ψk. �
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