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a b s t r a c t

The pregnancy complications of unexplained intrauterine growth restriction and early onset
preeclampsia are thought to share a common aetiology in placental malperfusion secondary to deficient
maternal spiral artery conversion. A key question is whether the contrasting clinical manifestations
reflect different placental pathologies, or whether they are due to altered maternal responses to
a common factor derived from the placenta. Recently, molecular evidence of protein synthesis inhibition
secondary to endoplasmic reticulum stress has provided an explanation for the small placental pheno-
type in both conditions. However, other pathways activated by more severe endoplasmic reticulum stress
are only observed in placentas from pregnancies associated with early onset preeclampsia. Here, we
review the literature and conclude that there is evidence of greater maternal vascular compromise of the
placenta in these cases. We speculate that in cases of normotensive intrauterine growth restriction the
placental pathology is centred predominantly around endoplasmic reticulum stress, whereas in cases
complicated by preeclampsia oxidative stress is further superimposed. This causes the release of a potent
mix of pro-inflammatory cytokines, anti-angiogenic factors and trophoblastic aponecrotic debris into the
maternal circulation that causes the peripheral syndrome. Maternal and fetal constitutional factors may
modulate how the placenta responds to the maternal vascular insult, and how the mother is affected by
the placental factors released. However, the principal conclusion is that the difference between these two
conditions lies in the severity of the initiating deficit in spiral arterial conversion, and the relative degrees
of endoplasmic reticulum stress and oxidative stress induced in the placenta as a result.

� 2009 Published by IFPA and Elsevier Ltd. Open access under CC BY license.
1. INTRODUCTION

Unexplained intrauterine growth restriction (IUGR), defined as
a failure of the fetus to reach its genetic growth potential, and early
onset preeclampsia are often considered together as consequences
of ‘placental insufficiency’. Their clinical manifestations are very
different, however, and so comparison of the placental changes in
the two conditions may shed important light on the elusive path-
ophysiological mechanisms underlying preeclampsia. A spectrum
of possibilities exists. At one extreme one might hypothesise that
the placental changes are identical and that the contrasting clinical
presentations are due solely to differences in the maternal
susceptibility to products emanating from a stressed placenta. Early
reports suggested that women who develop early onset
: þ44 1223 333840.
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preeclampsia display pre-existing, but subclinical, risks for
cardiovascular disease, but later studies showed these risks to be
shared by women who develop normotensive IUGR (reviewed in
Ref. [1]). In a variation of this theme, Ness and Sibai recently
postulated that it is the presence of maternal metabolic syndrome
that triggers the onset of preeclampsia in conjunction with
abnormal placentation [1]. At the other extreme one might
hypothesise that the placental changes are different in the two
conditions, and that these determine the contrasting clinical
outcomes.

Here, we review recent data supporting the latter hypothesis,
although we recognise that the two scenarios are not mutually
incompatible and that it is likely that both maternal and placental
factors may contribute to differing degrees in individual cases.
Evidence is drawn from the literature, and from our own recent
data. Within the older literature the terms IUGR and ‘small for
gestational age’ (SGA) were often used interchangeably, although it
is now realised that the two are not synonymous. Not all SGA babies
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identified from centile distributions are growth restricted, and the
use of Doppler velocimetry to assess uterine arterial resistance, and
of ultrasound to compare cranial and abdominal growth trajecto-
ries, has led to a more precise diagnosis of IUGR. Equally, the
distinction between early- and late-onset preeclampsia has not
always been made. When reviewing studies we have, wherever
possible, drawn on those in which there is clear evidence of true
IUGR or early onset preeclampsia, and pointed out those in which
doubt exists.

2. SPIRAL ARTERIAL CONVERSION

Reduced trophoblast invasion, resulting in deficient conversion
of the uterine spiral arteries, has long been implicated in the
causation of IUGR and preeclampsia. There is general agreement
that it is the myometrial segments of the arteries that are most
severely affected, and that there is a gradation between IUGR cases
that are normotensive and hypertensive (IUGRþ PE) [2–5]. Thus,
Khong et al. reported that physiological changes were present in
the decidual segments of approximately 60% of placental bed
biopsies from cases of SGA (defined as birth weight <10th centile)
compared with 20% in the myometrial segments. The equivalent
values for SGAþ PE samples were 40% and 0% respectively, whereas
in normal controls physiological changes were seen in both
segments of all arteries [6]. A similar gradation was also found by
Gerretsen et al. at the endometrial/myometrial junction. In addi-
tion, these authors observed a strong positive correlation within
the SGA population alone between the birth weight centile and the
presence of physiological changes [3].

In many descriptions of uteroplacental blood flow it is stated
that deficient spiral artery conversion is associated with reduced
placental perfusion. It is not clear, however, how dilation of the
terminal segment of an artery can have a major impact on the
volume of flow through the vessel. Whilst it is true that the funnel-
like dilatation will reduce the local resistance to blood flow, the
length of the dilated segment is only 2–3 mm [7], and so the
contribution to the overall uterine arterial resistance is likely to be
very small. Indeed, if resistance is a key factor one might ask why
the changes associated with physiological conversion do not extend
further towards, or even into, the arcuate arteries. The answer may
lie in the fact that the segment of the spiral artery just below the
endometrial/myometrial junction is unique in that it is particularly
contractile and responsive to endocrine stimuli [8,9]. Contraction of
this segment is thought to limit blood loss at the time of
menstruation, but whilst this may be an advantage during the non-
pregnant cycle it poses a danger to feto-placental wellbeing if it
occurs during pregnancy. Hence, we have speculated that one of the
principal functions of physiological conversion is to remove the
smooth muscle from this segment, ensuring uninterrupted flow to
the placenta [10]. Failure to do so would place the placenta at
increased risk of ischaemia–reperfusion-type insult, which is
a powerful stimulus for the generation of oxidative stress [11].

A second mechanism by which deficient spiral artery conversion
may predispose the placenta to malperfusion is through its asso-
ciation with acute atherotic changes. These changes are charac-
terised by the presence of lipid-laden mononuclear cells that form
intimal plaques [12,13]. The plaques project into the vessel lumen,
and so may restrict uteroplacental blood flow depending on their
size. Whilst there seems agreement that these lesions are common
in the decidual segments of spiral arteries in cases of IUGRþ PE,
their association with IUGR alone is contentious. In a small study
Sheppard and Bonner reported acute atherotic changes in both
normotensive and hypertensive cases of SGA [13]. By contrast,
Brosens et al. examined a larger collection of samples and did not
detect the lesion in any normotensive pregnancy, whether SGA
(defined as birth weight <10th centile) was present or not [2]. They
did, however, observe the lesion in 9/24 placental bed biopsies from
cases of SGAþ PE. Reconciling these conflicting claims is difficult,
given the limitations imposed by the sampling techniques
employed and the fact that ex vivo collapse of the vessels gives
a very false impression of their calibre in vivo.

Nonetheless, the morphological data suggest that the maternal
circulation to the placenta is compromised to a greater degree in
cases of early onset preeclampsia associated with growth restric-
tion than in IUGR alone. This conclusion is consistent with the
finding from a prospective study that mean birth weight is lower in
pregnancies complicated by IUGR secondary to preeclampsia
(2164 g) than in cases of unexplained IUGR (2555 g) [14]. Similarly,
placental villous and capillary surface areas tend to be lower in
cases of IUGRþ PE than IUGR alone, although the differences were
not statistically significant when these groups were compared
against normal controls and cases of late-onset preeclampsia,
where the values are almost twice as large [15].

One might expect, therefore, that the placental pathology may
be more severe in cases of IUGRþ PE than in IUGR alone. Vascular
compromise can affect the activity of a wide range of cell organ-
elles. In the past, much attention has been paid to the syncytio-
trophoblastic mitochondria, and their role in inducing apoptosis
[16–18]. Here, we focus on the endoplasmic reticulum, which is the
site of synthesis and processing of all secretory and membrane-
bound proteins.

3. ENDOPLASMIC RETICULUM STRESS

Endoplasmic reticulum (ER) stress has recently been identified
as a major regulator of cell homeostasis through its involvement in
post-translational protein modifications and folding, and its
capacity to activate the unfolded protein response (UPR) [19–21].
Normal folding requires that unique conditions be maintained
within the ER lumen, and nascent proteins are initially bound to
Ca2þ-dependent chaperone proteins, such as glucose-regulated
protein 78 (GRP78 or BiP). To enable these chaperones to function
correctly the ER lumen contains a very high concentration of Ca2þ

ions, maintained by active transport through Ca2þ ATPases. The
lumen is also an oxidative environment, critical for the formation of
disulphide bonds. Disturbance of these conditions leads to accu-
mulation of misfolded proteins within the lumen, triggering the
evolutionarily conserved UPR. The UPR aims to restore homeostatic
balance within the ER, but if this cannot be achieved it activates the
apoptotic machinery. Because of the high energy requirements of
the ER, the UPR can be activated by relatively minor metabolic
disturbances.

The UPR comprises three principal signalling pathways that have
overlapping functions. The sensor molecules, PKR-like endoplasmic
reticulum kinase (PERK), inositol-requiring 1 (Ire1) and activating
transcription factor 6 (ATF6), are transmembrane proteins whose N-
termini project into the ER lumen (Fig. 1). Normally these sensors
are held inactive through binding of GRP78 to their N-terminus, but
withdrawal of this chaperone by competitive binding to accumu-
lating misfolded proteins causes dimerisation, autophosphorylation
and activation of PERK and Ire1. Activation of PERK results in the
phosphorylation of eukaryotic initiation factor 2 subunit a (eIF2a),
rapidly blocking protein translation and reducing the protein
burden within the ER. Ire1 contains an endoribonuclease domain,
and when activated splices XBP-1 pre-mRNA to produce a variant
encoding the 41 kDa XBP-1 protein, a bZIP-family transcription
factor. XBP-1 activates transcription of genes regulating the break-
down of misfolded proteins, and ER biogenesis. When ATF6 is freed
from GRP78 it translocates to the Golgi where it is cleaved to form
a transcription factor that promotes expression of ER chaperone
genes. In severe cases, the PERK and ATF6 pathways lead to
increased expression of CHOP, a pro-apoptotic protein [19,20].



Fig. 1. Diagrammatic representation of the signalling pathways activated in the unfolded protein response following ER stress. The sensor molecules, PKR-like endoplasmic
reticulum kinase (PERK), inositol-requiring 1 (Ire1) and activating transcription factor 6 (ATF6), are transmembrane proteins normally held inactive by the binding of GRP78/BiP, but
are released when the GRP78 preferentially binds to misfolded proteins accumulating in the ER lumen. The UPR aims to restore homeostasis within the ER, but there are also links to
the inflammatory response through the Ire1 pathway and TNF receptor-associated factor 2 (TRAF2).
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Because the UPR is a homeostatic mechanism one would
expect teleologically to see a graded response in activation of
signalling pathways consequent upon ER stress. This is indeed
what we observed when JEG-3 choriocarcinoma cells were
exposed to incremental doses of tunicamycin, which blocks
glycosylation within the ER and is a potent inducer of the UPR.
Thus, at low doses there was increased phosphorylation of eIF2a
and increased GRP78, at more moderate doses activation of CHOP,
and at high doses an increase in GRP94 (Fig. 2A). The rate of
apoptosis in the cells correlated closely with the expression of
CHOP. Equally, in a time-course experiment using a low sublethal
dosage of tunicamycin we observed increased phosphorylation of
eIF2a and increased GRP78 and 94, but no activation of CHOP,
indicating that the latter is an endstage phenomenon (Fig. 2B). It
was also notable that these cells proliferated at a slower rate than
untreated controls.
Fig. 2. An illustration of the fact that the different signalling pathways comprising the UPR
JEG-3 cells with tunicamycin. A) Exposure to increasing doses of tunicamycin for 24 h; B) exp
the American Society of Investigative Pathology.
Because ER stress can be induced in other systems by vascular
malperfusion [22] we examined placentas from cases of IUGR and
IUGRþ PE for evidence of activation of the UPR. We restricted the
analyses to placentas delivered by caesarean section, as our
previous work had shown that stress-response signalling pathways
are activated strongly in the placenta following labour [23].
Increased phosphorylation of eIF2a was observed in both sets
compared to normal controls, and to the greatest extent in the
IUGRþ PE placentas. Consequently, the levels of many kinases,
including those of the AKT/mTOR pathway, were reduced, leading
to multiple blocks to translation initiation [24]. One of the proteins
particularly affected by the UPR in other systems is cyclin D1 [25],
and levels were severely reduced in our IUGR and IUGRþ PE
placentas compared to normal controls. A lower rate of cell
proliferation could explain the placental phenotype in IUGR, and
our in vivo and in vitro results are consistent with a recent report of
can be activated separately, and at different levels of ER stress, following treatment of
osure to a low dose (0.31 mg/ml) for 6–48 h. Adapted from Ref. [24] with permission of



Table 1
A summary of changes observed in pregnancies complicated by IUGR and IUGRþ PE
compared to normal controls.

Variable IUGR IUGRþ PE

Spiral artery conversion Y YY [3,6]
Spiral artery atherosis [ [[ [2]
Villous vol. at term YY YY [15]
Birth weight Y YY [13]
Hypoxia-activated genes Normal [ [49]
Placental NDRG1 expression [ [[ [48]
DNA damage [ [ [45]
Syncytiotrophoblast apoptosis [ [[ [28–30]
Maternal serum STBM Normal [ [32]
Maternal serum sFLT Normal [ [52]

[ [[ [53]
Maternal serum PlGF Y Y [52]
Maternal urinary PlGF Normal YY [54]
Maternal serum cell-free fetal DNA Normal [ [55]
Maternal serum leptin Normal [ [56]
Maternal serum TNF-a, IL-6, IL-8 Normal [[ [57]
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a lower frequency of cytotrophoblast cells immunopositive for Ki67
antigen in cases of severe IUGR [26]. The central importance of
these pathways to placental growth is illustrated by the fact that in
the mouse knockout of Akt1 alone causes placental and late-onset
fetal IUGR [27].

Further evidence that the degree of ER stress was greater in the
IUGRþ PE placentas than in the IUGR alone cases was provided by
the fact that levels of GRP94 and CHOP were significantly raised in
former, but not in the latter [24]. CHOP is a transcription factor that
inhibits expression of BCL-2, and so is pro-apoptotic. Several
studies have estimated the frequency of apoptosis in placentas from
complicated pregnancies, but have reported widely differing values
depending on the techniques employed. Indices for nuclei of all cell
types of 0.17%, 0.24% and 0.39% have been reported for normal,
IUGR and IUGRþ PE placentas respectively on the basis of light and
transmission electron microscopic appearances [28,29]. Similar
values were obtained for normal and preeclamptic placentas using
the TUNEL technique by Allaire et al. [30]. By contrast, Ishihara et al.
obtained values of approximately 1%, 4% and 8% in the syncytio-
trophoblast alone on the basis TUNEL labelling [31]. Despite these
differences in absolute values there is general agreement that
apoptosis is increased in IUGR placentas, and even more so in those
from cases of IUGRþ PE. This increase in cell death could also
contribute to the smaller placental phenotype, but more impor-
tantly may underlie the shedding of trophoblastic microparticles
that occurs in preeclampsia but not in IUGR alone [32]. This debris
has been implicated in the activation of the maternal endothelial
cells that characterise the maternal syndrome [33].

To conclude, ER stress and evidence of the UPR are observed in
both IUGR and PEþ IUGR placentas, but to a greater extent in the
latter. The consequent reduction in cell proliferation, coupled with
increased rates of apoptosis, provides a plausible and sufficient
explanation for the small placental phenotype of IUGR. But can the
difference in degree of ER stress explain the enhanced inflamma-
tory response that underpins the maternal syndrome of
preeclampsia and distinguishes the clinical manifestations of these
two conditions? The increased trophoblastic apoptosis observed in
IUGRþ PE is a strong potential factor through its association with
microparticulate debris. Another possibility is the close relation-
ship between ER stress and oxidative stress, and the additional
contribution that the latter may make to the pathophysiology.

4. PLACENTAL OXIDATIVE STRESS AND THE
INFLAMMATORY RESPONSE

There are three principal ways by which ER and oxidative stress
may be linked. Firstly, if sufficiently severe the same vascular
stimulus may give rise to both stresses. Thus, ischaemia–reperfu-
sion and hypoxia may precipitate ER stress through perturbations
of calcium homeostasis, but can also lead to increased generation of
reactive oxygen species (ROS) through mitochondrial pathways or
by proteolytic cleavage of xanthine dehydrogenase to the xanthine
oxidase form [34]. Activity of the latter is notably higher in
preeclamptic placentas than in normal controls [35].

Secondly, protein folding is an oxidative event that itself
generates ROS [36]. A high secretory burden or repeated attempts
to refold misfolded proteins may therefore lead to increased
intracellular concentrations of ROS.

Thirdly, the UPR can activate some of the same intracellular
inflammatory signalling pathways as oxidative stress [19,37]. Ire1
contains a Ser/Thr kinase domain in addition to its endor-
ibonuclease domain, and is capable of activating the NF-kB pathway
through phosphorylation of IKK, and the p38MAPK pathway
through ASK1 (Fig. 1). Furthermore, activation of NF-kB can arise
through the inhibition of protein translation secondary to activation
of PERK, as the half-life of IKK is shorter than that of NF-kB [37].
We have recently demonstrated that exposing term placental
explants to hypoxia-reoxygenation in vitro is a powerful generator
of oxidative stress [11], and stimulates increased secretion of pro-
inflammatory cytokines, such as TNFa and IL-1ß, and anti-angio-
genic factors, such as the soluble receptor for vascular endothelial
growth factor (sFLT-1) [23,38]. It also results in increased tropho-
blastic apoptosis, and the release of free fetal DNA [17,39]. These
changes can be effectively blocked by addition of the antioxidant
vitamins C and E, or inhibitors of the p38 and NF-kB pathways
[23,40].

All these factors released from villous explants have been
implicated in the pathophysiology of preeclampsia, and levels are
different in cases of IUGRþ PE than in IUGR alone (Table 1). Is it
possible, therefore, that the additional presence of placental
oxidative stress accounts for the different clinical presentations of
IUGR and IUGRþ PE?

5. THE CONTRIBUTION OF PLACENTAL OXIDATIVE
STRESS TO PREECLAMPSIA

There is extensive evidence of placental oxidative stress in
preeclamptic placentas [41,42], and it is generally believed that
this plays a key intermediary role in generation of the syndrome
[43,44]. In contrast, little attention has been paid to placentas
from cases of IUGR alone. In one of the few studies to compare
IUGR and IUGRþ PE placentas no difference in the levels of 4-
hydroxynonenal, a product of lipid peroxidation, was detected
immunohistochemically between IUGR and preeclamptic
placentas [45]. Equally, however, the levels were no different
from those in normal control placentas, but this negative result
may reflect the mode of delivery of the placentas studied. The
authors did not state whether these were delivered vaginally or
by caesarean section, but it is now appreciated that labour
induces significant placental oxidative stress and lipid perox-
idation [46]. Nonetheless, levels of oxidative DNA damage, as
detected by antibodies against 8-hydroxy-20-deoxyguanosine,
were higher in IUGR (P¼ 0.012) and IUGRþ PE placentas
(P¼ 0.0021) than in normals, with a trend towards being
greatest in the latter [45].

In another study examining placental antioxidant defences
a reduced level of the mRNA encoding glutaredoxin was found in
IUGRþ PE placentas, whereas the level in IUGR was the same as in
normal controls delivered by caesarean section [47]. The level of
thioredoxin mRNA was reduced in both IUGR and IUGRþ PE
placentas compared to the controls, with a trend to a greater
reduction in the latter.



Fig. 3. Diagrammatic representation of how placental ER stress and oxidative stress may contribute to the pathophysiologies of IUGR and IUGRþ PE. We speculate that in IUGR
alone the pathology is predominantly based around ER stress, with homeostatic responses, in particular protein synthesis inhibition, being responsible for the small placental
phenotype. When maternal vascular compromise is more severe placental oxidative stress may be superimposed, causing the additional release of a cocktail of pro-inflammatory
factors that result in the peripheral syndrome of preeclampsia.
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These results are consistent with more recent data showing an
increase in the level of the hypoxically regulated protein NDRG1 (N-
myc downstream-regulated gene 1) at both the protein and the
mRNA levels in IUGRþ PE compared to IUGR alone [48]. Increased
expression was also observed in normal placentas following labour
and vaginal delivery, suggesting that malperfusion is an adequate
stimulus for its upregulation. A difference in expression of hypox-
ically regulated genes between the two groups was also observed
by Vaiman et al. using suppression/subtraction hybridisation
technologies [49]. While specific gene profiles could be identified
for IUGR and IUGRþ PE caesarean delivered placentas, only those
genes within the latter’s grouping were identified as being
hypoxically regulated.

Thus, although detailed comparisons of oxidative stress have not
been made between non-laboured IUGR and IUGRþ PE placentas,
the available data do suggest that stress is greater in the latter.

6. OVERVIEW

From this review it will be appreciated that there are many
common features in the placental changes seen in unexplained
IUGR and IUGRþ PE, and that the differences are mostly a matter of
degree. We speculate that the two conditions represent different
points along a spectrum of placental pathologies secondary to
deficient spiral artery conversion (Fig. 3). Minor deficiencies in
arterial conversion may lead to low grade fluctuations in villous
oxygenation that cause homeostatic responses in the form of mild
ER stress. It is probable that these occur from the time of onset of
the maternal circulation at the start of the second trimester. Protein
synthesis inhibition will result in reduced cell proliferation, leading
to the small placental phenotype. Whether translation inhibition
also causes the reduced levels of System A amino acid transporters
that are characteristically seen in IUGR placentas [50] remains to be
determined. Potentially, this loss of transporter activity could
compound the fetal growth restriction induced by the small
placental phenotype, although interestingly System A transporter
activity is normal in SGAþ PE placentas [51].

More major deficiencies in physiological conversion will cause
more severe, and perhaps more frequent, periods of placental
ischaemia–reperfusion through greater spontaneous vaso-
contractility. The distal parts of the spiral arteries will also be
exposed to these fluctuations in flow, and this most probably
accounts for the development of secondary atherotic lesions in
these segments. The lesions will occlude the arterial lumens to
a greater or lesser degree depending on their size, causing a more
permanent reduction in maternal placental blood flow. We spec-
ulate that the greater severity of vascular insult experienced by the
placenta in such cases superimposes oxidative stress on top of the
pre-existing ER stress. Consequent upon this there is stimulation of
stress-response pathways, resulting in the release of pro-inflam-
matory cytokines into the maternal circulation. Whether this is an
adaptive response aimed at increasing maternal blood pressure and
so improving placental perfusion remains to be determined.
However, under the most severe stress the endpoint of all these
signalling pathways is activation of the apoptotic cascade. As
a result a potent cocktail of pro-inflammatory cytokines, anti-
angiogenic factors and trophoblastic apoptotic debris is released
into the maternal circulation, where the components combine to
activate the maternal endothelial cells and so cause the peripheral
syndrome of preeclampsia (Fig. 3).

This model fits with existing data and provides further testable
hypotheses. When considering the model it should be remembered
that the definitions of IUGR and IUGRþ PE are artificial clinical
constructs, and that both birth weight and maternal blood pressure
vary as a continuum across patient groups. A spectrum of placental
pathology and maternal responses is therefore to be expected. It
should also be remembered that there are potentially critical
interactions between maternal and fetal constitutional factors and
the magnitude of the two stress responses. Hence, maternal diet, in
particular her intake of micronutrients, may play a key role in
determining the efficacy of the placental antioxidant defences.
Fetal polymorphisms that affect activity of the principal antioxidant
enzyme defences may also be important. Finally, the maternal
response to the cocktail of placental factors may be heavily influ-
enced by the presence of dyslipidaemia or the metabolic syndrome.
Despite these caveats, there is increasing evidence that the
placental pathophysiology is different in the two conditions, and
that this most probably reflects a gradation in the severity of the
initiating maternal vascular compromise.
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