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Neuroimaging has been facing a data deluge characterized by the exponential growth of both raw and processed
data. As a result, mining the massive quantities of digital data collected in these studies offers unprecedented
opportunities and has become paramount for today's research. As the neuroimaging community enters the
world of “Big Data”, there has been a concerted push for enhanced sharing initiatives, whether within amultisite
study, across studies, or federated and shared publicly. This article will focus on the database and processing
ecosystem developed at the Montreal Neurological Institute (MNI) to support multicenter data acquisition
both nationally and internationally, create database repositories, facilitate data-sharing initiatives, and leverage
existing software toolkits for large-scale data processing.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Neuroimaging is facing a deluge of both raw and processed data. The
amount of data reported by studies published in the journalNeuroImage
has doubled every 26months since 1995 and is expected to reach 20 GB
per study within a few years (Van Horn et al., 2014). As a result, mining
the massive quantities of digital data collected in these studies offers
unprecedented opportunities and has become paramount for today's
research. As the neuroimaging community enters the world of “Big
Data,” there has been a concerted push for enhanced sharing initiatives,
whether within a multisite study, across studies, or federated and
publicly shared (Mennes et al., 2013; Poline et al., 2012; Van Horn
et al., 2014).

A single study rarely achieves a sample size comparable to those
found in larger-scale data repositories. Smaller initiatives are limited
in the range of possible analyses that can be applied on their population
of interest (Xuan et al., 2010). Sharing datawithin a larger community is
a practical way to address these issues with greater statistical power
and propose scientific questions beyond the scope of a single research
group. Furthermore, the robustness of biological findings across differ-
ent methods or processing architectures encourages confidence in the
rative Neuroscience (MCIN),
logical Institute (MNI), McGill
B4, Canada.

. This is an open access article under
reproducibility of results, a fundamental requirement of good scientific
practice (Glatard et al., 2015; Poline et al., 2012).

At the same time, cross-site data sharing bringswith it a broad range
of issues in terms of site/scanner compatibility (Jovicich et al. 2009,
2013, 2014) and the logistical challenges of IT interoperability. The
acquisition, storage, and curation of neuroimaging and related data
files has therefore become a major Big Data challenge in the context of
online sharing initiatives (Dinov et al., 2014;Wood et al., 2014). Several
database systems have been constructed to address these issues, such as
COINS (Wood et al., 2014), LONI IDA (Van Horn & Toga, 2009), LORIS
(Das et al., 2011), XNAT (Marcus et al., 2007; Gutman et al., 2014),
and others. However, many are under-equipped to deal with the wide
array of data-sharing challenges (Dinov et al., 2014).

This article focuses on the database management and processing
ecosystem developed at the Montreal Neurological Institute (MNI) to
support multisite data acquisition, both nationally and internationally.
Specifically, this manuscript addresses the creation of database reposi-
tories, facilitation of sharing initiatives, and leveraging of existing
software toolkits for large-scale processing.
Materials and methods

The MNI ecosystem consists of two principal – and independently-
functioning – platforms, LORIS and CBRAIN. Themulti-purpose longitudi-
nal database, LORIS, was created for data management, quality control
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(QC), and dissemination (Das et al., 2011),while CBRAINwas implement-
ed as a collaborative high-performance computing (HPC) platform for
processing (Sherif et al., 2014). Together, they provide a comprehensive
environment for large-scale processing, combining remote visualization
tools (Sherif et al., 2015) and fully automated pipelines such as CIVET
(www.bic.mni.mcgill.ca/ServicesSoftware/CIVET; Kim et al., 2014;
Macdonald et al., 2000), NIAK (Bellec et al., 2012) and other software
pipelines (SPM-batch: www.fil.ion.ucl.ac.uk/spm; FSL: http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki; Freesurfer http://freesurfer-software.org) (Fig. 1).

A key feature of LORIS is joint management of heterogenous data
(i.e., behavioral, clinical, imaging, genomics), often collected within a
longitudinal design. Each stage, from clinical and imaging acquisition
to processing and statistical analysis, was designed to create a logical
flow for data handling (Fig. 2).

(i) Core

Built on LAMP technologies (Linux, Apache, MySQL, PHP), LORIS is
an open-source platform (https://github.com/aces/Loris) designed as
an extensible and modular system, organizing heterogeneous data for
multisite longitudinal studies (Fig. 3).

Behavioral and Clinical data are typically entered or uploaded directly
via aweb browser, with real-time summary statistics to track each stage
of acquisition. A customizable behavioral battery of psychometric mea-
sures provides metrics of ongoing data collection.

Imaging data are stored in both raw and processed forms. The origi-
nal DICOM files are archived and images are then converted to MINC
format (Vincent et al., 2004), where extensive provenance capabilities
track processing using MINC tools. Other file formats (e.g., NIfTI,
NRRD) are available for use with separate processing environments.

Genomic data are handled through a genomics module that enables
hosting, visualization, and dissemination of summary genetic and
epigenetic data. Typically, imported directly into LORIS from genetic
analysis pipelines or other sharing platforms (e.g., CBRAIN), input files
Fig. 1. LORIS and CBRAIN integration. Datasets hosted in LORIS' data-sharing platform can be p
pipelines and repositories.
are cross-linked with imaging and behavioral data. Integrated links to
resources (e.g., UCSC Genome Browser) facilitate rapid visualization of
results (Kent et al., 2002).

(ii) Quality control (QC)

Visualization and QC of image files are tailored to each modality and
customized per type of review (on-site, centralized, manual, or auto-
mated). Supported imaging modalities include structural MRI (T1, T2,
PD), functional MRI (fMRI, PET, SPECT), diffusion, spectroscopy, and
electrophysiology (MEG, EEG). Independent tools, such as DTIPrep,
have been integrated as part of the QC pipeline for raw and processed
diffusion imaging data (Liu et al., 2010). In addition, a feedback module
with configurable permissions allows users (such as radiologists) to as-
sess scan quality, selecting from over 30 intensity, movement, coverage,
QC annotations, and diffusion-specific artifacts. Finally, LORIS provides
protocol checking, where violations are flagged in a real-time scan pro-
tocol violations module. After images have passed automated protocol
checking, multiple reviewers can then examine an image for diagnostic
quality and pathology within the radiological review module.

LORIS also includes a suite of behavioral QC modules, such as (i) the
conflict resolver module for double data entry mismatches; (ii) the feed-
backmodule, enabling users to input and query QC flags and annotations
for every field; (iii) data integrity flagging, which verifies every field for
consistency and completeness; (iv) a certification tool for assessment
and maintenance of examiner reliability across sites, an essential feature
for longitudinal studies with significant staff turnover; and (v) real-time
statistics.

(iii) Data query tool (DQT)

LORIS facilitates web-based data-sharing, complete with viewing,
querying, and downloading capabilities, requiring just a web browser.
The DQT (MacFarlane et al., 2014; https://github.com/aces/Data-Query-
rocessed via CBRAIN's processing utilities, and can be seamlessly disseminated to external
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Fig. 2. LORIS Web Interface. LORIS provides an intuitive web-based interface for data entry, management, visualization and querying.

Fig. 3. LORIS architecture. LORIS acquires and storesmultiplemodalities of data (i.e., behavioral/clinical, imaging, genetic). Imaging data are stored independently from any image process-
ing pipeline, enabling direct processing by external image analysis software. Dissemination tools allowusers to aggregate, query anddistribute subject data in a powerful andflexibleman-
ner to neuroimaging processing pipelines and analysis suites.
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Tool) enables download of scalar data (e.g., clinical, behavioral) that can
be simultaneously linked to multi-dimensional data (images) through a
simple querying interface. This tool uses simple boolean algebra to cus-
tomize searches andfilter results, either longitudinally or cross- sectional-
ly. Typically, this allows simultaneous querying frommultiple researchers
within a LORIS-based project but can also be configured for querying
across multiple LORIS repositories. For future cross-platform interopera-
bility, the extensible NoSQL architecture (i.e., CouchDB) facilitates
federated sharing with other platforms.

(iv) Data processing via CBRAIN

CBRAIN (Sherif et al., 2014) is a web platform that enables distribut-
ed execution of software pipelines on computing networks and
aggregates multiple distributed file systems into a uniform view
(Fig. 4). The system was designed to abstract the complexities typically
associated with the use of HPC resources for image processing.

CBRAIN supportsmultiple file servers calledData Providers, using var-
ious file transfer protocols, such as SFTP, SSH, and Amazon S3. Once files
are registered on a data provider, they can be processed by any pipeline
available in CBRAIN regardless of their physical location. Tomeet privacy,
security and sharing requirements, access permissions can be defined on
files and Data Providers—for example, CBRAIN users may keep their re-
sources completely private, share them with specific groups, or make
Fig. 4. CBRAIN web interface. CBRAIN provides an intuitive web-based interface for launching
structure and for built-in visualization utilities.
them public to the entire CBRAIN community. CBRAIN maintains a com-
plete data provenance graphwhere an extensive log of all actions, param-
eters, software versions and locations are kept, and output files produced
by a pipeline are linked to the inputs.

CBRAIN is linkedwith LORIS through a RESTful web API (Application
Programming Interface) to facilitate data sharing. A specific LORIS data
provider automates file transfer and registration operations between
the two platforms, such that data can be processed using CBRAIN, and
outputs re-inserted into LORIS.

Figure 5 exemplifies the interaction of three external platforms with
CBRAIN: LONI (integration described in (Frisoni et al., 2011)), Virtual Im-
aging Platform (Glatard et al., 2013), and LORIS. All three projects use the
CBRAIN API and Data Providers to share data or virtual machines (VMs),
and to access computing resources.

A CBRAIN service is operated by the MNI, providing access to a
national network of computing resources, which supports numerous pro-
jects. For security and support reasons, access to this service is restricted
to MNI collaborators, as large resource allocations are limited to selected
Canadian scientific projects. However, for testing purposes, trial accounts
can be requested by emailing cbrain-support.mni@mcgill.ca.

The CBRAIN source code is freely available (GitHub: https://github.
com/aces/cbrain, NITRC: www.nitrc.org/projects/cbrain). Detailed docu-
mentation allows anyone to install and configure a CBRAIN service on
their own computing and storage resources (e.g., single machines, large
neuroimaging processing workloads on a distributed high-performance computing infra-
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national clusters, grids or clouds, etc.). Any scientific software installed on
these resources (including licensed software) can technically be available
through CBRAIN.

(v) Additional features

Beyond the foundation described previously, LORIS has supplemen-
tary functionality:

1. Imaging Uploader via a web browser
2. Enhanced Visualization and QC tool—BrainBrowser (Sherif et al.,

2015)
3. Instrument Builder to create data forms in a web browser
4. Personalized dashboard
5. Candidate InformationModule for status, demographics, and consent
6. Data Dictionary Builder for ontological consistency and codebook

creation
7. Document repository
8. Mobile-friendly interface
9. Survey Module to email measures to participants

10. Configuration module
11. REST API for automated retrieval or modification of data

(vi) Requirements

To use CBRAIN or LORIS, a user simply requires a computer with a
modern web browser. LORIS installation requires a Linux platform
with LAMP stack, while CBRAIN is a Ruby on Rails application. Installa-
tion and customization of either infrastructure requires some technical
expertise depending on the scale of deployment. An administrator
with good knowledge of the dataset, ethics requirements, processing
pipelines, and scientific questions would be an asset for assurance of
high-quality data.
Results

LORIS (www.loris.ca) was first implemented at the MNI in 1999 to
organize data acquisition and analysis for the multisite MRI Study of
Normal Brain Development (Evans and Brain Development
Cooperative, 2006). It is currently active in 130 sites worldwide with
over 30,000 data collection time points, more than 500 behavioral
instruments, and 75,000 variables hosted on its platform. Over 30 TBs
of imaging datasets are stored in LORIS projects, comprising more
than 200,000 acquisitions over 20,000 separate sessions.

CBRAIN (www.cbrain.ca) has been continuously operating at the
MNI since 2009, hosting numerous raw and processed datasets.
CBRAIN serves more than 300 users from 60 cities and 20 countries,
including diverse projects such as PreventAD (Tremblay-Mercier et al.,
2014), K-ADNI (Kim et al., 2014), the Lothian Birth Cohort (Karama
et al., 2013), MAVAN, and NeuroDevNet (Goldowitz and McArthur,
2011). Users from 130 virtual sites access a data storage grid of more
than 600 TBs across 25 storage servers. Between 2010 and 2014,
CBRAIN users launched 246,000 jobs on an allocation of 24 million

http://www.loris.ca
http://www.cbrain.ca
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CPU hours from Compute Canada (www.computecanada.ca) and pri-
vate servers.

The MNI ecosystem serves as repositories for the following publicly
available studies:

TheNIHMRI StudyofNormal BrainDevelopment (Evans andBrain
Development Cooperative, 2006): This was the first LORIS repository,
completing the full lifecycle of a longitudinal project in 2007. Data were
collected for more than 60 clinical instruments with over 8,000 variables,
including raw and processed data fromdifferentMNI scanners. Datawere
shared with the research network through the DQT and were eventually
federated to the NIH National Database for Autism Research (NDAR;
https://ndar.nih.gov/) for public access, in accordance with the NIH Data
Use Certification policy. Access procedures are detailedwithin the study's
official website (http://pediatricmri.nih.gov/nihpd/info/index.html). The
NIH has included additional processed data since 2007 and may
consider the addition of supplementary data on a case-by-case basis.

Infant Brain Imaging Study (IBIS, Wolff et al., 2012): IBIS is an
ongoing multisite U.S. Autism Spectrum Disorder study (www.
ibisnetwork.org), collecting data from high-risk siblings of autistic
probands. Data are incrementally federated to NDAR for public access
(NDAR; https://ndar.nih.gov/access.html). The study has collected close
to 10,000 phenotypic and imaging variables, with 4,000 subject time
points. Approximately 3 TBs of imaging data are presently housed in
IBIS, including 2,300 acquisitions that encompass a wide range of
modalities, such as structural MRI, resting-state fMRI, diffusion ten-
sor imaging (DTI), and MR spectroscopy. Selected genetic data
(SNPs, CNVs) are also included. Collaborators of the IBIS project
(e.g., EARLI, http://nationalautismnetwork.com/research/research-
programs/earli-project.html) are able to contribute to this dataset,
which can be organized as subprojects within the IBIS database.

BigBrain (Amunts et al., 2013): The BigBrain dataset (https://
bigbrain.loris.ca) has been accessed by over 20,000 different visitors. It
comprises 7,404 stained sections of a postmortem human brain, digitally
reconstructed in 3D. The raw data, totaling approximately 1 TB at full res-
olution, are made freely available for download in slice format as MINC
and NIfTI formats. Lower-resolution versions can also be downloaded in
3D for ease of visualization. Crowd sourcing efforts have recently been ini-
tiated enabling external research groups to contribute to processing and
parcellation of the BigBrain.

The Autism Brain Imaging Data Exchange (ABIDE) (Di Martino
et al., 2014): ABIDE (https://abide.loris.ca) employs LORIS' data-sharing
platform in hosting 1,112 datasets, comprised of both resting-state and
structural MRI, and federated phenotypic data acquired on 539
individuals with autism across 16 international sites. Public access to
the ABIDE dataset is granted in accordance with the 1,000
Functional Connectomes Project data usage policies, as outlined at
http://fcon_1000.projects.nitrc.org/indi/abide/. No newdata are currently
being collected for ABIDE; thus, all available data reflect the complete
dataset for this neuroimaging initiative.

The Open MEG Archive (OMEGA) (Niso et al., 2015): Initiated in
2014, the Open MEG Archive (https://omega.bic.mni.mcgill.ca/main.
php) is among the first diversifiedMEG open-science projects. It houses
growing amounts of resting-state and task-related data, presently total-
ing 138 sessions from 79 study subjects. These datasets are publicly
available for download via the OMEGA LORIS repository, including de-
mographic and behavioral data, MEG, structural MRI for optimal source
imaging, and processed data in Brainstorm format (Tadel et al., 2011).
Access is freely granted to any individual who requests an account via
the login page. The OMEGA repository is expected to house additional
datasets, including electrophysiology (e.g., EEG, single cell and field re-
cordings) and imaging (e.g., fMRI, DWI, PET) modalities.

Discussion

There is clearly an increased global effort to make data available
across projects, borders, and technological platforms (Keator et al.,
2009). As a result, data sharing has become a popular term of late.
However, the disarmingly simple term obscures a multitude of
challenges that go far beyond utilizing a database system to host data
through a public website. The questions are almost endless: What
type of data…? Sharing with whom…? For how long…? What transfer
formats…? Who “owns” the data…? What privacy safeguards exist…?
Data need to be managed and processed in a clear and auditable way,
with unique consideration devoted to the curation and sharing of
clinical data. For example, subject information cannot be released
without consent (Brakewood and Poldrack, 2013; Choudhury et al.,
2014; Mennes et al., 2013). LORIS has several mechanisms to address
de-identification, both through removal of identifying data fields and
more esoteric anonymization techniques, such as defacing of anatomi-
cal images, masking of DICOM headers, and addressing privacy issues,
such as HIPAA compliance (Matlock et al., 2012).

Often lacking in data dissemination initiatives, documentation is a
multi-faceted task that must include detailed provenance tracking of
data processing (Keator et al., 2009). Comprehensive guidelines on
how to navigate the database are a sine qua non for a repository to be ef-
fective. The careful development of a logical ontology for study variables
is critical for the seamless integration, organization, and analysis of the
study. This need for common data elements increases exponentially
with the introduction of multi-institutional, federated or publicly
shared repositories. Properly defining and documenting a common
lexicon allows for precise querying and analysis to be performed on
“Big Data” (Temal et al., 2008; Turner et al., 2010; Larson, 2013), as a
small and nuanced change in semantics between sites and researchers
can critically undermine the dissemination process. Thus, LORIS has in-
tegrated several tools such as a Data Dictionary builder to enable gran-
ular definition of data fields, and facilitate project-specificmodifications
for sharing purposes.

Terms such as “interoperability” and “data harmonization” have be-
come popular buzzwords surrounding data-sharing across platforms.
Despite this trend, many existing platforms do not fully address the
range of dissemination issues, which critically impact the integrity of
publicly shared datasets (Mendelson et al., 2014). For instance, the
type of imaging format researchers use to share and process data can
vary (e.g., DICOM, MINC, NIfTI, etc.), either requiring converters and es-
sential libraries (that can produce lossy results) or employing other
platforms such as ITK (www.itk.org) or LONI Babel (Van Horn et al.,
2014). As sharing initiatives proliferate, the “order of complexity” of
data organization increases disproportionately (Mennes et al., 2013).
As a result, an API becomes essential for automated retrieval and
dissemination of data, particularly when dealing with database
federation. The importance of providing collaborators with easy access
to all relevant information cannot be overstated (Keator et al., 2013).

When dealing with large multisite studies, reproducibility across
scanners, sites, and time is imperative (Liu et al., 2010; Jovicich et al.,
2009, 2013, 2014). To identify and track scanner variability and system
errors over time and across sites, both living phantom and geometric
phantom data are used to assess scanner consistency, and to develop
compensatory transformations for distortion corrections. Geometric
phantoms include the ADNI phantom (Gunter et al., 2009), the ACR
phantom used by NIH MRI Study of Normal Brain Development
(Fu et al., 2006), and the LEGO phantom used by the IBIS study
(Caramanos et al., 2010; Fonov et al., 2010), which are used to assess
temporal and geometric corrections in gradient field nonlinearity. Addi-
tionally, “Living phantom” acquisitions, performed on project staff who
are regularly scanned at all sites, provide reproducibility information in
a more realistic biological setting than can be obtained from a relatively
simple geometric phantom (Jovicich et al., 2009, 2013).

Finally, the capacity to share information beyond a project's funding
cycle is paramount for the long-term utility of data-sharing initiatives. A
PubMed literature review conducted by Poline et al. (2012) estimated
that of 12,000 datasets with more than 12 subjects, “only a small per-
centage” of data is available in public repositories, reflecting the notably
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ephemeral state of most repositories. Concrete planning for long-term
stewardship and sustainability is an important element in public data-
sharing, one that has also begun to garner consideration from funding
agencies (Berman & Cerf, 2013; Toga & Dinov, 2015). To this effect,
LORIS and CBRAIN are both scalable initiatives, with stable long-term
funding and an open-source community that is actively contributing
to their codebases.
Conclusion

The MNI data-sharing ecosystem, based on the LORIS and CBRAIN
platforms, represents a powerful combination of digital infrastructure
for international data-sharing initiatives. These platforms leverage
20 years of established MNI tools (e.g., MINC toolkit, CIVET image
processing pipeline) and numerous external software pipelines
(e.g., SPM-batch, FSL, Freesurfer). Future workwill involve an increased
focus on federating and sharing of existing datasets, with particular em-
phasis in the areas of authentication, security, andpipeline reproducibil-
ity. We will also enhance our use of cloud technology and international
platform interoperability for greater flexibility in storage, sharing and
remote processing of multi-domain data.
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