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Lipid metabolism is highly relevant as it plays a central role in a number of human diseases. Due to
the highly interactive structure of lipid metabolism and its regulation, it is necessary to apply a
holistic approach, and systems biology is therefore well suited for integrated analysis of lipid metab-
olism. In this paper it is demonstrated that the yeast Saccharomyces cerevisiae serves as an excellent
model organism for studying the regulation of lipid metabolism in eukaryotes as most of the regu-
latory structures in this part of the metabolism are conserved between yeast and mammals. Hereby
yeast systems biology can assist to improve our understanding of how lipid metabolism is regulated.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Systems biology has evolved as a very broad research field and
it has been defined in many different ways [1–7], but the essence
of most of these definitions are twofold: (1) to obtain new insight
into the molecular mechanisms occurring in living cells or sub-sys-
tems of living cells, through the combination of mathematical
modeling and experimental biology and (2) to obtain a quantita-
tive description of biological systems in the form of mathematical
models that can be used for predictive analysis. According to this
definition mathematical modeling plays a central part in systems
biology, and the role of mathematical models is particularly rele-
vant in studies of complex biological systems where it is difficult
to extract causal information from experimental data. Analysis of
large biological networks is often considered to be the core of sys-
tems biology, but this is mainly due to the fact that such networks
can only be studied through the integration of mathematical mod-
els with experimental data. Also, smaller biological systems can
gain much from the combination of mathematical models with
experimental data as illustrated in a seminal study of the Hog
pathway in yeast [8]. The above definition does not say anything
about the use of global data, e.g. transcriptome or proteome data,
nor the development of technologies for generation of high-
throughput data sets. Although omics analysis is often considered
to be systems biology, there are many systems biology studies that
do not rely on such data, and there are clearly also some studies
that use omics data that in their essence are not systems biology.
Mathematical models have, however, shown to be particularly
chemical Societies. Published by E
useful for analysis of global data, as the complexity and integrative
nature of biological systems makes it difficult to extract informa-
tion on molecular processes from global data without the use of
models as either scaffolds for the analysis or for hypothesis driven
analysis of the data.

The type of model that one will use in a systems biology study
depends completely on the objective of the study, i.e. is the objec-
tive to analyze a given data set and obtain new biological insight or
is the objective to obtain a mathematical model that can be used to
perform predictive simulations of the biological system. Often,
there is a distinction between top-down systems biology and bot-
tom-up systems biology [9]. Top-down systems biology is basically
a data-driven process, where new biological information is ex-
tracted from large data sets. The models used in this kind of study
can be soft models like neural networks, graphs or even statistical
models. In many cases there is not a specific hypothesis and the
analysis may be rather inductive [10], but often the initial analysis
leads to some kind of hypothesis that then leads to establishment
of a coarse model which can be evaluated against the experimental
data. Bottom-up or hypothesis driven systems biology, on the
other hand, is based on the availability of very detailed knowledge,
which is translated into a mathematical formulation that can be
used to simulate the behaviour of the system. Generally there is
not enough knowledge available to build detailed mechanistic
models, and an important element of bottom-up systems biology
is therefore an evaluation of different model structures [11].

It is difficult to classify mathematical models applied in either
top-down or bottom-up systems biology as many different types
of models may be used, e.g. models based on ordinary differential
equations, stochastic models, stoichiometric models and graph
lsevier B.V. All rights reserved.
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models. Most bottom-up driven models only describe a sub-set of
the complete biological system, as there is simply not enough
quantitative information available to include interactions between
all the components within the cell. There is, however, one type of
bottom-up model that is fairly global in its approach, namely met-
abolic network models [12]. Metabolic network models are based
on collecting the stoichiometry for all metabolic reactions into a
stoichiometric matrix and through the use of flux balance analysis
it is possible to use these stoichiometric models for simulation of
growth and product formation [13]. As metabolic pathways and
architecture are well established, it is possible to expand this mod-
eling concept to cover practically all parts of metabolism, and it
may even be possible to expand these models to cover regulation
[14,15]. Thus, even though these models are bottom-up driven,
they actually provide much information about the connectivity be-
tween the different enzymes participating in the metabolic net-
work [16], and they can therefore be used as a scaffold for
organizing and integrating x-ome data [17].

Here will be given a brief overview of yeast genome-scale met-
abolic models and how they can be used as scaffolds for analysis of
complex regulatory networks in yeast. It will be illustrated that
these models are well suited for studies of lipid metabolism, as this
represents a complex metabolic network. In this context it will be
further discussed how yeast can be used as a model organism for
studies of lipid metabolism in humans. It will be shown that there
is a very high degree of conservation between lipid metabolism be-
tween yeast and human, hence studies in yeast can bring new in-
sights into regulation of lipid metabolism in human cells.
Considering the epidemic of obesity related diseases such as diabe-
tes type II, arteriosclerosis, hypertension and fatty liver, such new
insights is of significant relevance.
2. Yeast as a model organism

Saccharomyces cerevisiae (baker’s yeast) is a widely used model
organism for studying eukaryal cell physiology and molecular
events relevant for human disease. There are several inherent fea-
tures that make yeast a good model organism: (1) they are unicel-
lular microorganisms that are easy to cultivate fast in inexpensive
media which enables performing controlled experiments at many
different conditions, (2) they come both in haploid and diploid
forms and with the possibility for either sexual crossing or clonal
division (budding) enabling easy genetic manipulations and
screenings, (3) yeast can express heterologous genes either from
an episomal plasmid or from a chromosomal integration and it is
possible to fairly easy insert, delete or mutate any sequence in
the genome, (4) a collection of single deletion mutants is available
for diploid cells and for non-essential genes also for haploid cells,
(5) there is an extensive research infrastructure available with a
well-curated Saccharomyces Genome Database (SGD)
(www.yeastgenome.org) and a large number of technologies are
available for high-throughput analysis (yeast has been used to pio-
neer transcriptome, proteome and interactome studies), and (6) a
large fraction of the yeast genes have human orthologues.

In terms of glucose metabolism yeast cells do, however, deviate
from many other eukaryal cells, including many human cells, as
yeast performs aerobic fermentation at high glucose concentra-
tions. This means that despite the presence of oxygen the flux
through the tricarboxylic acid (TCA) cycle and the respiratory sys-
tem is low and most of the carbon is shunted towards ethanol [18].
This phenomenon is generally referred to as the Crabtree effect,
and it is explained by extensive glucose repression of the genes
encoding enzymes in the TCA cycle and components of the respira-
tory system [19]. The Crabtree effect is named after a seminal
study by Herbert Grace Crabtree in 1929, but it is interesting to
note that Crabtree was in fact studying carbohydrate metabolism
of tumors [20]. His studies were inspired by studies of Otto War-
burg a few years earlier [21], who also looked at the fermentative
metabolism of tumors, and that let him to identify iron as an essen-
tial component of the respiratory system, which awarded him the
Nobel Prize in Physiology and Medicine in 1931. The fermentative
metabolism of cancer cells is today known as the Warburg effect
and it is interesting to note the many similarities in fermentative
yeast metabolism and the metabolism of cancer cells [22] (cancer
cells produce lactate instead of ethanol, but both metabolic prod-
ucts are derived from pyruvate). Thus, studies on fermentative
yeast metabolism may well represent a very good model for the
metabolism of cancer cells, even though the regulatory mecha-
nisms underlying the Crabtree effect and the Warburg effect are
likely to be quite different.
3. Genome-scale metabolic modeling of yeast

Genome-scale metabolic models are comprehensive mathemat-
ical representations of all biochemical conversion processes in a gi-
ven cell. These models are reconstructed through a bottom-up
approach where any kind of information about the metabolism is
collected and used to define the stoichiometry of all possible met-
abolic reactions that can operate in the studied cell. The stoichiom-
etry of all the different reactions can be specified in a matrix form
where the columns represent reactions and the rows represent the
different metabolites (see Fig. 1). By assuming that the fluxes into
and leaving different metabolite pools are balanced (i.e. steady
state), it is possible to set up a material balance for each of the
metabolites in the model. These balances can easily be set up using
the matrix representation of the metabolic model, and they can
constrain the fluxes through the different reactions in the network
such that these have to be confined within a feasible space as illus-
trated by the cone in Fig. 1A. However, despite the large number of
constraints provided by the material balances for each of the
metabolites in the metabolic network there is still a very large de-
gree of freedoms in terms of how the metabolic network can oper-
ate, i.e. what values through the different reactions will the fluxes
attain at different conditions. It has, however, been shown that
metabolic networks tend to strive towards a given objective, which
for microorganisms in most cases involve maximization of fluxes
leading to cell mass production [23]. Other objectives, such as
maximizing overall ATP production, have also been found to give
good predictive strength for some conditions [24]. Thus, using a
simple objective function, it is possible to use these genome-scale
metabolic models for simulation of metabolism. Even though the
models provide a solution for how the fluxes operate in the meta-
bolic network, it is important to be aware that due to the large de-
grees of freedom in genome-scale metabolic networks the
objective based simulation does not necessarily result in a unique
solution in terms of the fluxes through the different metabolic
reactions in the network, as diversion through different metabolic
pathways can result in equivalent contributions to cell mass pro-
duction. Such detailed flux information can only be obtained
through the use of additional data, e.g. measurement of 13C-label-
ing of different metabolites [24,25].

Besides being useful for simulations, genome-scale metabolic
networks represent a valuable resource in terms of providing
highly annotated metabolites, reactions, enzymes, genes and even
references (Fig. 1B). Thus, these reconstructed metabolic networks
represent extensive databases on metabolism, as well as, they en-
able setting of a graph that represents the metabolic network of
the studied organism (Fig. 1C). It is interesting that the analysis
of graphs from such metabolic networks shows that the many dif-
ferent metabolic pathways are highly connected [25]. This is due to
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Fig. 1. Illustration of the reconstruction of metabolic network models and how they link ORFs to reactions and metabolites. (A) Metabolic pathway information is translated
into defined stoichiometry of all the individual reactions that can then be used for model simulations. (B) Illustration of how each reaction can be linked to a specific reference
(paper, database or the like) and also to enzymes and ORFs. (C) Illustration of how balancing of fluxes, represented as vi, into and out of metabolite pools results in an algebraic
equation that constrain the fluxes. For the complete network this can be represented by a matrix equation where S is the total stoichiometric matrix, v is a vector containing
all the fluxes in the network, and b is a vector containing the net production rate of the different metabolites. For metabolites that are not taken up or secreted by the cells
there is no net production and hence the corresponding element in the b vector is zero. (D) Graphical illustration of metabolic networks. It is seen that the network is
extremely condensed as a few metabolites participate in a large number of different reactions.
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the fact that typically more than 10% of the metabolites in these
networks participate in more than 10 metabolic reactions whereas
typically around 5% participate in more than 20 metabolic reac-
tions. Among the metabolites being these key ‘‘hubs” that are in-
volved in a large number of metabolic reactions are obviously
the co-factors ATP, ADP, NADH and NADPH, but also metabolites
like pyruvate, glutamate, acetyl-CoA and 2-oxoglutarate [9]. Due
to the high degree of connectivity in these metabolic networks
we hypothesized that cells will have a coordinated transcriptional
response to different types of perturbations, e.g. changes in envi-
ronmental conditions or introduction of directed mutations [26].
Through the use of the metabolic graphs that result from the con-
nectivity of the different metabolites and their associated enzymes
we showed that this hypothesis is likely to hold, as different per-
turbations result in coordinated gene expression changes in a large
number of genes that encode for enzymes sharing the same meta-
bolic neighbors [26]. This actually allows for integrated analysis of
different types of omics data where the metabolic networks are
used as scaffolds for the analysis [26,27]. This concept can even
be used wider for any type of biological network, i.e. protein–pro-
tein interaction networks [28] and protein–DNA networks [29].

The first yeast metabolic network was reconstructed in a collab-
orative effort of the research groups of Palsson and Nielsen [30,31].
This network contains 1175 reactions linked to 708 ORFs and this
network has been extensively used for both data analysis and for
identification of metabolic engineering targets in connection with
the development and/or improvement of biotech processes based
on yeast [32]. This network only considered cytosol, mitochondria
and extracellular space, and Palsson and co-workers therefore ex-
panded the network to cover more reactions and more compart-
ments, and this resulted in a model with 1498 reactions linked to
750 ORFs [33]. These original models contain several reactions that
are not linked to the network, and even though these models do
give a fairly good prediction of the phenotype of single gene dele-
tions [31,34] Sauer and co-workers showed that the predictive
strength could be improved by removing these non-connected
reactions [35]. This resulted in a network with 1038 reactions
linked to 672 ORFs.

All of the above-mentioned models do not describe the lipid
metabolism in great detail and Nookaew and co-workers derived
a new model from the original Förster model that contains many
more details in the lipid metabolism [36]. This network contains
1446 reactions linked to 800 ORFs, and the resulting model
iNN800 was shown to have very good simulation performance,
and probably represents the best experimentally validated model
for simulations. The iNN800 model has 65 reactions (30 in the
mitochondria and 35 in the cytosol) involved in fatty acid biosyn-
thesis, 44 reactions involved in b-oxidation, 26 reactions in lipid
degradation, 9 reactions in sphingolipid biosynthesis and 33 reac-
tions in fatty acid elongation and therefore has a very detailed
description of the lipid metabolism. This allows for precise calcula-
tions of the fluxes through the many different reactions of lipid
metabolism based on measurement of the lipid composition in
the biomass (Fig. 2).

A major problem with the different yeast models published is
that they all use slightly different nomenclatures for metabolites
and reactions, and it is therefore difficult to compare these net-
works directly. In order to solve this issue several research groups
organized a jamboree for reaching a consensus in terms of nomen-
clature for metabolites in yeast metabolic networks and also derive
a consensus metabolic network. This resulted in a network con-
taining 1857 reactions linked to 832 ORFs and 1168 metabolites
[37]. In this network all metabolites are defined by international
chemical identifier (InChi) representations or KEGG identifiers.
This allows for a very consistent representation of the metabolic
network in the systems biology markup language (SBML). Further-
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Fig. 2. Overview of lipid metabolism. (A) The main pathways in lipid biosynthesis and illustration of how different lipid species are incorporated into the biomass as either
lipid bodies (storage lipids) or membranes. TAG serves, besides as lipid storage, as a buffer of fatty acids that can be used for membrane formation during the cell cycle and it
has been shown that there are dynamic changes in the level of the TAG pool in the cell [59]. The formation of TAG from FAs is therefore shown as a reversible reaction. (B)
Illustration of the large number of different lipid species that may be present in lipid bodies and membranes. The first row indicates TAGs and the second row indicates three
key phospholipids (besides the three shown there are also phosphatidylserine and phosphatidylglycerol species). The complexity even increases with the presence of
diacylglycerols and monoacylglycerols (not shown). Sterylesters are not shown, but these can also be present with different fatty acids. AcCoA – acetyl-CoA; MalCoA –
malonyl-CoA; AceAcCoA – acetoacetyl-CoA; FAs – fatty acids; Gly3P – glycerol-3 phosphate; TAG – triacylglycerols; C16:0 – palmitic acid; C18:0 – stearic acid; C16:1 –
palmitoleic acid; C18:1 – oleic acid.
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more, with a stringent definition of the metabolites it is easy to link
these metabolic networks with data from mass spectrometry and
hereby link metabolomics data directly with metabolic networks.
Following the jamboree guidelines we have recently updated the
iNN800 model so all metabolites are presented with InChi strings
or KEGG identifiers and the model is presented in SBML format
(www.sysbio.se).

4. Comparative analysis of lipid metabolism

Lipid metabolism is quite complex involving a very large num-
ber of metabolic reactions spanning different compartments in
eukaryotic cells and resulting in the formation of a diverse group
of chemical compounds. Lipids can roughly be divided into the fol-
lowing classes: (1) fatty acids (FAs) that mainly serve a role as
intermediates in lipid biosynthesis; (2) free sterols that serve as
structural components in membranes; (3) sterol esters that are
formed from FAs and sterols and that serve as lipid storage com-
pounds, mainly as lipid bodies; (4) triacylglycerols (TAG) that are
formed from glycerol and FAs and that serve as lipid storage,
mainly stored in lipid bodies; (5) phospholipids that are formed
from FAs, glycerol and an alcohol moiety, e.g. inositol, choline or
ethanolamine, and that serves as structural compounds in mem-
branes; and (6) sphingolipids that are formed from palmitic acid
and are basically very long chain fatty acids that serves as struc-
tural components at the cell surface as well as key signaling roles,
e.g. regulation of endocytosis, ubiquitin dependent proteolysis and
cell cycle control.

Despite the large chemical variety of lipids, they all have the
same key carbon precursor, namely acetyl-CoA (see Fig. 2), and
all initial steps of lipid biosynthesis occur in the cytosol (see
Fig. 3). In mammals, acetyl-CoA in the cytosol is mainly derived
from citrate through the reaction catalyzed by ATP:Citrate-lyase.
Citrate therefore basically serves as a precursor for lipid biosynthe-
sis in mammals, which explains the important regulatory role of
citrate, e.g. on the glycolytic flux through regulation of phospho-
fructokinase. S. cerevisisae does not possess an ATP:Citrate lyase,
but it has another very efficient pathway leading to cytosolic acet-
yl-CoA. This pathway involves decarboxylation of pyruvate to acet-
aldehyde that is then converted further to acetate and acetyl-CoA
(Fig. 2). Acetaldehyde is at fermentative conditions mainly con-
verted to ethanol, but sufficient acetaldehyde is converted to acet-
yl-CoA to ensure an efficient lipid biosynthesis. Even though this
pathway is central for fermentative metabolism in yeast, it is func-
tional also at fully respiratory conditions, where it also can ensure
sufficient supply of acetyl-CoA for lipid biosynthesis. S. cerevisiae
contains two acetyl-CoA synthases, Acs1 and Acs2, and their local-
ization is still under debate, even though Acs2 is believed to be
mainly cytosolic and Acs1 is believe to be mainly peroxisomal
(both may also have partly nuclear localization to ensure acetyl-
CoA synthesis required for acetylation of DNA). Acetyl-CoA can
be transported across the mitochondrial and peroxisomal mem-
branes by the carnitine transport system, but even though S. cere-
visiae contains all the components for this shuttle system it cannot
synthesize carnitine and use of this system therefore requires addi-
tion of carnitine to the medium.

As illustrated in Fig. 2 lipid biosynthesis basically involves two
branches from acetyl-CoA, one leading to sterols and the other
leading to fatty acids (FAs) that serve as building blocks for biosyn-
thesis of TAG, phospholipids, sterylesters and sphingolipids. The le-
vel of non-esterified fatty acids (NEFAs) is generally low in the cell
and ‘‘free” fatty acids are mainly present as CoA-esters. Here FA
will, however, be used as a general term for NEFAs and CoA-esters
of fatty acids.

In the branch towards sterols the first step is the conversion of
two molecules of acetyl-CoA to acetoacetyl-CoA (Fig. 3), and even
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Fig. 3. Comparison of lipid biosynthesis and its regulation in mammals and yeast. For mammals fatty acids are also taken up via the diet and these are incorporated into the
different lipid pools (here only illustrated to the PL-pool). AcCoA – acetyl-CoA; MalCoA – malonyl-CoA; AceAcCoA – acetoacetyl-CoA; FAs – fatty acids; PA – phosphatidic acid;
DAG – diacylglycerols; TAG – triacylglycerols; PL – phospholipids; PL-PUFA – phospholipids containing poly-unsaturated fatty acids.
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though this reaction step is the committed step from the common
lipid precursor metabolite acetyl-CoA towards sterols, there is no
evidence of stringent regulation of this step. Further downstream
of the sterol pathway farnesyl pyrophosphate (FPP) is a key branch
point metabolite, as it also serves as a precursor for dolichol that is
used for N-glycosylation of proteins. The pathway from acetyl-CoA
to FPP is often referred to as the mevalonate pathway due to the
intermediate mevalonate. A key reaction step in the mevalonate
pathway is the conversion of 3-hydroxy-3-methyl-glutaryl-CoA
(HMG-CoA) to mevalonate by HMG-CoA reductase (HMGR). HMGR
is a highly regulated enzyme in the sterol pathway and it is target
of all current cholesterol lowering drugs (often referred to as stat-
ins). HMGR is regulated at the transcriptional level, protein level
and through inactivation by phosphorylation. In yeast there are
two HMGRs, Hmg1 and Hmg2.

Transcriptional regulation of the mevalonate/sterol pathway is
managed by transcriptional activators that are members of the ste-
rol regulatory element binding protein (SREBP) family. These tran-
scription factors also up-regulate the expression of several other
genes encoding enzymes involved in the sterol pathway [38]. In
mammals SREBP-2 is the transcription factor, and even though
yeast does not contain any homologues of SREBP-2, the yeast pro-
teins Upc2 and Ecm22 were recently shown to have a similar func-
tion as SREBP-2 in mammals [39,40]. SREBPs are bound to the
endoplasmic reticulum (ER) membrane, but are activated and re-
leased from the ER membrane upon dissociation from SCAP
(SREBP-cleavage activating protein), resulting in translocation of
SREBPs to the Golgi where the transcription factor part of the pro-
tein is proteolytically cleaved of from the rest of the proteins and
subsequently migrates to the nucleolus [38]. SCAP contains a mul-
tispanning ER membrane anchor that is referred to as a sterol-
sensing domain (SSD). In mammals increased cholesterol levels
results in a conformational change of the SSD domain of SCAP
which results in binding of this protein to the SSD-domain inter-
acting protein INSIG, and hereby SCAP is prevented from activating
SREBP resulting in a down-regulation of genes encoding enzymes
involved in sterol biosynthesis [38]. Whether there is direct inter-
action between cholesterol and SCAP or whether cholesterol
changes the membrane fluidity and this leads to conformational
changes of SCAP is not known [38]. Yeast has two homologues to
INSIGs, namely Nsg1 and Nsg2, and these have been shown to have
a functional role similar to the INSIG [41]. Thus, it seems like this
regulatory system is conserved between yeast and human even
though there are no direct sequence homologies between the
SREBP and SCAP proteins in yeast and human (SCAP has so far
not been identified in yeast).

HMGR has, just like the SCAP, a SSD that ties it to the ER mem-
brane. Just like the INSIG can interact with SCAP, they can interact
with HMG and hereby prevent this enzyme from undergoing ubiq-
uitination that leads to proteolytic degradation [41]. Thus, high
levels of sterol in the ER membrane results in both down-regula-
tion of gene expression and inactivation of one of the key enzymes
in the sterol biosynthetic pathway HMGR. It is interesting to note
that this regulation of HMGR at protein level can be removed
through removal of the SSD, as illustrated in studies aiming at
increasing the flux through the sterol pathway in order to have
high level production of biotechnologically relevant compounds
derived from FPP, e.g. lycopene and sesquiterpenes [42,43]. The fi-
nal level of regulation of HMGR is through phosphorylation by
AMP-activated kinase (AMPK), resulting in inactivation of the
HMGR. Even though this inactivation has been well demonstrated
in mammals it has not been confirmed yet to exist in yeast.

In the other ‘‘branch” of lipid biosynthesis acetyl-CoA is con-
verted to malonyl-CoA by acetyl-CoA carboxylase (ACC and Acc1
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in yeast). This is a committed step towards FAs and compared with
the first step of cholesterol biosynthesis this step is highly regu-
lated. Thus, ACC is, like HMGR in mammals, inactivated by AMPK,
and this regulation also exist in yeast where it is has been shown
that Acc1 is phosphorylated by the yeast AMPK orthologue Snf1
[44]. Malonyl-CoA serves as precursor for synthesis of FAs, that
are formed by the large multifunctional fatty acid synthetases
(FAS) that in yeast consists of two subunits encoded by FAS1 and
FAS2. The main product of the FAS is palmitic acid (C16:0) which
can be converted further to stearic acid (C18:0) by an elongase en-
coded by ELO1 in yeast. Both palmitic acid and stearic acid can be
converted to their corresponding mono-unsaturated fatty acids
palmitoleic acid (C16:1) and oleic acid (C18:1) by a D9-desaturase
encoded by OLE1 in yeast, see Fig. 4. These steps are the same in
mammals, but mammals also take up other fatty acids from the
diet and can convert the linoleic acid from the diet into PUFAs con-
taining several double bonds and even further elongated, e.g. ara-
chidonic acid and eicosapentaneoic acid. Yeast basically only
contains the above-mentioned four FAs (there is a low content of
shorter chain fatty acids), and it lacks the ability to convert oleic
acid to PUFAs like linoleic (C18:2) and c-linolenic acid (C18:3) like
many other, even closely associated, yeasts. One may speculate
whether the presence of only mono-unsaturated fatty acids gives
a certain membrane structure that has evolved in connection with
the development of the high ethanol tolerance of S. cerevisiae.

In mammals the FAS have been shown to be regulated by
SREBP, more specifically by SREBP-1, in a similar fashion as en-
zymes of the sterol biosynthetic pathway. In yeast the transcrip-
tion factors Mga2 and Spt23 has been shown to regulate the
expression of OLE1 and these transcription factors have been
shown to be bound to the ER membrane and activated in a similar
fashion as the SREBPs [45]. Thus, in both yeast and mammals there
is a coordinated regulation of biosynthesis of FAs and cholesterol,
which may be explained by the requirement for a coordinated bio-
synthesis of these two different types of lipids that are both needed
for proper membrane function and for storage in the form of stery-
lesters (Fig. 2). In the presence of high glucose levels, mammals do,
however, have an additional regulatory system, namely insulin
which in the presence of high glucose concentration stimulates
FA biosynthesis only, and hence allow for dedicated biosynthesis
of storage lipids in the form of TAG [38]. Based on transcriptional
Fig. 4. A simplified scheme of regulation of phospholipid biosynthesis in yeast. AcCoA – a
– palmitoleic acid; C18:1 – oleic acid; FAs – fatty acids.
analysis of livers from mice that had over-expression of SREBP-1
and SREBP-2 and a knockout of SCAP all genes under regulation
of SREBPs have been identified in mammals [46].

The integration of FAs into phospholipids and TAG, and the deg-
radation of FAs through b-oxidation are also conserved. Both in
yeast and mammals two FAs are added to glycerol-3 phosphate
to form phosphatidic acid (PA), which serves as a precursor for
the biosynthesis of phospholipids and TAGs. In the route towards
phospholipids PA is first activated to CDP-diacylglycerol through
reaction with CTP, and thereafter there is a trans-esterification
with an alcohol to form the different types of phospholipids. PA
is also the precursor for TAGs as it can be converted to first diacyl-
glycerols (DAGs) to which an additional FA is added to form TAGs.
As mentioned above, mammals can incorporate FAs from the diet
into phospholipids and TAGs, and further convert these to other
PUFAs, resulting in a far more complex and varied lipid composi-
tion than in yeast. The insertion of additional double bonds is car-
ried out by specific desaturases that are located in the ER
membrane and hence happens when the fatty acids are present
as phospholipids. On the contrary, elongation occurs only when
the fatty acids are present as CoA-esters, and there is hence a dy-
namic exchange of fatty acids between the different lipid pools
even after they have first been integrated into the phospholipid
pool.

The reactions of b-oxidation are highly conserved, and also the
regulation of b-oxidation is conserved between yeast and mam-
mals. In mammals oleic acid is activating the peroxisome prolifer-
ating activating receptor (PPAR), a transcription factor that leads to
stimulation of peroxisome formation and hence increased b-oxida-
tion in response to fatty diets. Yeast contains the transcription fac-
tor Pip2–Oaf1 that plays a similar role [47], but these proteins
share no homology with PPARs of mammals. In yeast b-oxidation
is also regulated by the transcription factor Adr1 [48], that is also
regulating glycerol metabolism and ethanol oxidation. This tran-
scription factor is probably conserved in the whole eukaryal king-
dom as it is present in fungi [49] and in humans [50].

Regulation of phospholipid biosynthesis has been studied in de-
tails in yeast and Fig. 4 gives a brief overview of some of the key
regulatory processes. As already mentioned, Snf1 the yeast ortho-
logue of human AMPK, is inactivating Acc1, but it is also stimulat-
ing b-oxidation through activation of Fox2, a multifunctional
β

cetyl-CoA; MalCoA – malonyl-CoA; C16:0 – palmitic acid; C18:0 – stearic acid; C16:1
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enzyme that harbors both 3-hydroxyacyl-CoA dehydrogenase and
enoyl-CoA hydratase activities. Both AMPK and Snf1 are activated
when the ATP production level is low in the cell, and is hence inac-
tivating ATP consuming processes such as lipid biosynthesis and
activating ATP generating processes such as b-oxidation [51]. With
oleic acid playing a key role as the entry into phospholipid biosyn-
thesis it is also not surprising that this FA plays a key regulatory
role. Thus, it acts as a feed-back inhibitor of Acc1, as an activator
of the Pip2–Oaf1 transcription factor and as an activator of Pox1,
an enzyme directly involved in b-oxidation. Thus, if there is accu-
mulation of oleic acid due to down-regulation of phospholipid bio-
synthesis there is feed-back inhibition of its own biosynthesis and
feed-forward activation of b-oxidation, a regulatory concept that is
used widely in metabolism. Phospholipid biosynthesis is stimu-
lated by the transcription factors Ino2 and Ino4 [52] ensures de-
repression when phosphatidic acid accumulates, e.g. in response
to inositol limitation (another precursor for phospholipids, see
Fig. 2). However, there is also negative regulation by the transcrip-
tion factor Opi1, which is activated by protein kinase A (PKA or
Tpk1 in yeast) [53]. PKA is activated at high glucose levels, and
the consequence of this regulatory scheme is that in the presence
of excess glucose, there is accumulation of FAs that is shunted to-
wards TAG or sterylesters (not shown in Fig. 4).

5. Systems biology of lipid metabolism

From the above it is clear that lipid metabolism involves a large
number of enzyme catalyzed reactions with regulation at different
levels. It is therefore difficult to dissect the different regulatory
modules and map how they interact in response to diet or other
environmental conditions. Studies of lipid metabolism are there-
fore an obvious area where systems biology can contribute, both
in terms of assisting with integrated analysis of high-throughput
data and in terms of predictive simulations of how different cell
types respond to variations, e.g. blood lipid levels. It is also clear
that with the high degree of conservation in regulation between
yeast and mammals, yeast is an excellent model organism for
studying lipid metabolism.

Integrated analysis of lipid metabolism requires the ability to
measure a large number of different lipid species. There are many
different methods for analysis of lipid species, and traditionally
there was performed a separation of the different lipid classes fol-
lowed by analysis of the fatty acid composition in each of these
classes. However, with the development of advanced mass spec-
trometry it has become possible to performed detailed lipidomics
Fig. 5. Overview of the global regulatory role of the protein kinase Snf1 in yeast. (A) Simpl
model is based on studies of AMPK in mammals but was found to hold also for yeast in a s
in lipid metabolism. The model is adapted from Usaite et al. [56].
analysis using a single analysis [54]. Through combination of this
kind of measurements and detailed metabolic network models it
is possible to quantify the fluxes through different pathways in li-
pid metabolism. We used this approach to analyze the global reg-
ulation of the fluxes in lipid metabolism by analyzing the
composition of structural lipids (phospholipids, sterylesters and
TAGs) in yeast grown at eight different growth conditions, and
using these data to identify global correlations between tran-
scripts, metabolite levels and fluxes through the different branches
of lipid metabolism (unpublished data). The detailed metabolic
network with a detailed description of the lipid metabolism was
essential for this study, and this illustrates how metabolic network
models can be used for integrated data analysis and for identifica-
tion of global regulatory structures.

As mentioned earlier the AMPK protein kinase plays a central
role, not only in regulating lipid metabolism, but in overall control
of energy homeostasis in the eukaryal cells (Fig. 5A). The yeast
orthologue Snf1 has also been extensively studied, but mainly for
its role in carbon metabolism. We therefore undertook a study
with the objective to identify the global role of Snf1 in the cell. A
reference strain and a strain with deletion of SNF1 were both
grown at glucose-limited conditions (where Snf1 is active), and
the transcriptome, proteome and metabolome were analyzed
[55,56]. The use of a number of different methods for integrated
data analysis, including the use of metabolic network models for
identification of reporter metabolites and co-regulated modules,
resulted in the reconstruction of a global regulatory network of
the protein kinase Snf1. A number of targets for regulation by
Snf1 not previously identified in yeast were identified by this ap-
proach, and overall it was found that Snf1 plays an equally impor-
tant role for global regulation as AMPK in mammals [56].
Furthermore, the analysis allowed for building a rather detailed
model for how Snf1 is regulating lipid metabolism and the results
are summarized in Fig. 5B. Consistent with the general model for
Snf1 activating energy producing reactions it is seen that genes
encoding enzymes of several key steps of b-oxidation are down-
regulated. It is interesting to note that ACC1 is also down-regulated
in the Dsnf1 mutant, and this is despite the fact that the oleic acid
concentration is increased and that the transcription of OAF1 is in-
creased, which according to the model of Fig. 4 lead to increased
level activity of b-oxidation. This points to a possible role of Snf1
as a key activator of b-oxidation, and this could well be through
activation of Oaf1 and Pip2. In this connection it is worth mention-
ing that the transcription factor Adr1 is also playing a role in up-
regulating b-oxidation, and this is negatively regulated by Tpk1
ified view of how Snf1 is regulating different key metabolic pathways in the cell. The
tudy of Usaite et al. [55]. (B) Detailed view of how Snf1 regulated different processes
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(or PKA) and activated by Snf1 [57,58]. Interestingly, the FAS1 and
FAS2 are also down-regulated as well as Acc1, which could point to
a reduced flux towards the fatty acids. This may likely be due to
down-regulation of b-oxidation, which leads to an increased level
of FAs, in particularly oleic acid, that then also down-regulate fatty
acid biosynthesis. Despite the down-regulation of Acc1 and the FAS
there may still be sufficient flux towards the FAs to sustain lipid
production needed for biomass formation, as the negative regula-
tion of Acc1 by Snf1 obviously is lacking in the Dsnf1 mutant.
The global study on the role of Snf1 clearly resulted in identifica-
tion of new regulatory structures, and it therefore points to the va-
lue of using top-down systems biology for analysis of complex
regulatory networks, of which regulation of lipid metabolism is a
good example. This kind of study in yeast may therefore lead to
building solid regulatory network models that due to the high de-
gree of conservation of regulation between yeast and mammals
can then be used as scaffolds for analysis of data from human
studies.

Acknowledgements

I would like to acknowledge Dina Petranovic, Goutham Vemuri,
Keith Tyo, Intawat Nookaew, Jie Zhang and Pramote Chumnanpuen
for discussions in relation to this paper. I would also like to thank
Kiran Patil for fruitful discussion on integrated data analysis and
for providing the network graph for the yeast metabolic network.
Research work carried out by my research group in this field is
sponsored by UNICELLSYS (www.unicellsys.eu), SYSINBIO
(www.sysbio.se/sysinbio), Swedish Research Council, Knut and
Alice Wallenberg Foundation and Chalmers Foundation.
References

[1] Ideker, T., Galitski, T. and Hood, L. (2001) A new approach to decoding life:
systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372.

[2] Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662–1664.
[3] Brent, R. (2004) A partnership between biology and engineering. Nat.

Biotechnol. 22, 1211–1214.
[4] Stephanopoulos, G., Alper, H. and Moxley, J. (2004) Exploiting biological

complexity for strain improvement through systems biology. Nat. Biotechnol.
22, 1261–1267.

[5] Kirschner, M.W. (2005) The meaning of systems biology. Cell 121, 503–504.
[6] Barrett, C.L., Kim, T.Y., Kim, H.U., Palsson, B.O. and Lee, S.Y. (2006) Systems

biology as a foundation for genome-scale synthetic biology. Curr. Opin.
Biotechnol. 17, 488–492.

[7] Bruggeman, F.J. and Westerhoff, H.V. (2007) The nature of systems biology.
Trends Microbiol. 15, 45–50.

[8] Klipp, E., Nordlander, B., Kruger, R., Gennemark, P. and Hohmann, S. (2005)
Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol.
23, 975–982.

[9] Nielsen, J. and Jewett, M. (2008) Impact of systems biology on metabolic
engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8, 122–131.

[10] Kell, D.B. and Oliver, S.G. (2004) Here is the evidence, now what is the
hypothesis? The complementary roles of inductive and hypothesis-driven
science in the post-genomic era. Bioessays 26, 99–105.

[11] Stelling, J. (2004) Mathematical models in microbial systems biology. Curr.
Opion. Microbiol. 7, 513–518.

[12] Price, N.D., Papin, J.A., Schilling, C.H. and Palsson, B.O. (2003) Genome-scale
microbial in silico models: the constraints-based approach. Trends Biotechnol.
21, 162–169.

[13] Price, N.D., Reed, J.L. and Palsson, B.O. (2004) Genome-scale models of
microbial cells: evaluating the consequences of constraints. Nat. Rev.
Microbiol. 2, 886–897.

[14] Barrett, C.L. and Palsson, B.O. (2006) Iterative reconstruction of transcriptional
regulatory networks: an algorithmic approach. PLoS Comput. Biol. 2, e52.

[15] Herrgard, M.J., Lee, B.S., Portnoy, V. and Palsson, B.O. (2006) Integrated
analysis of regulatory and metabolic networks reveals novel regulatory
mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627–635.

[16] Barabasi, A.L. and Albert, R. (1999) Emergence of scaling in random networks.
Science 286, 509–512.

[17] Borodina, I. and Nielsen, J. (2005) From genomes to in silico cells via metabolic
networks. Curr. Opin. Biotechnol. 16, 1–6.

[18] Gombert, A.K., Moreira dos, S.M., Christensen, B. and Nielsen, J. (2001)
Network identification and flux quantification in the central metabolism of
Saccharomyces cerevisiae under different conditions of glucose repression 183,
1441–1451.

[19] Regenberg, B., Grotkjaer, T., Winther, O., Fausboll, A., Akesson, M., Bro, C.,
Hansen, L.K., Brunak, S. and Nielsen, J. (2006) Growth-rate regulated genes
have profound impact on interpretation of transcriptome profiling in
Saccharomyces cerevisiae. Genome Biol. 7, R107.

[20] Crabtree, H.G. (1929) Observations on the carbohydrate metabolism of
tumours. Biochem. J. 23, 536–545.

[21] Warburg, O. (1926) Über den stoffwechsel der tumoren. Biochem. Z. 204, 482.
[22] Heiden, M.G.V., Cantley, L.C. and Thompson, C.B. (2009) Understanding the

Warburg effect: the metabolic requirement of cell proliferation. Science 324,
1076–1080.

[23] Feist, A.M., Herrgård, M.J., Thiele, I., Reed, J.L. and Palsson, B.O. (2009)
Reconstruction of biochemical networks in microorganisms. Nat. Rev.
Microbiol. 7, 129–143.

[24] Sauer, U. (2006) Metabolic networks in motion: 13C-based flux analysis. Mol.
Syst. Biol. 2, 62.

[25] Nielsen, J. (2003) It is all about metabolic fluxes. J. Bacteriol. 185, 7031–7035.
[26] Patil, K.R. and Nielsen, J. (2005) Uncovering transcriptional regulation of

metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA
102, 2685–2689.

[27] Cakir, T., Patil, K.R., Onsan, Z., Ulgen, K.O., Kirdar, B. and Nielsen, J. (2006)
Integration of metabolome data with metabolic networks reveals reporter
reactions. Mol. Sys. Biol. 2, 50.

[28] Ideker, T., Ozier, O., Schwikowski, B. and Siegel, A.F. (2002) Discovering
regulatory and signalling circuits in molecular interaction networks.
Bioinformatics 18, S233–S240.

[29] Oliveira, A.P., Patil, K. and Nielsen, J. (2008) Architecture of transcriptional
regulatory circuits is knitted over the topology of bio-molecular interaction
networks. BMC Syst. Biol. 2, 17.

[30] Forster, J., Famili, I., Fu, P., Palsson, B.O. and Nielsen, J. (2003) Genome-scale
reconstruction of the Saccharomyces cerevisiae metabolic network. Genome
Res. 13, 244–253.

[31] Famili, I., Forster, J., Nielsen, J. and Palsson, B.O. (2003) Saccharomyces
cerevisiae phenotypes can be predicted by using constraint-based analysis of
a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA
100, 13134–13139.

[32] Bro, C., Regenberg, B., Forster, J. and Nielsen, J. (2006) In silico aided metabolic
engineering of Saccharomyces cerevisiae for improved bioethanol production.
Metab. Eng. 8, 102–111.

[33] Duarte, N.C., Herrgård, M.J. and Palsson, B.O. (2004) Reconstruction and
validation of Saccharomyces cerevisiae iND750, a fully compartmentalized
genome-scale metabolic model. Genome Res. 14, 1298–1309.

[34] Förster, J., Famili, I., Palsson, B.O. and Nielsen, J. (2003) Large-scale evaluation
of in silico gene deletions in Saccharomyces cerevisiae. Omics J. Integrative Biol.
7, 193–202.

[35] Blank, L.M., Kuepfer, L. and Sauer, U. (2005) Large-scale 13C-flux analysis
reveals mechanistic principles of metabolic network robustness to null
mutations in yeast. Genome Biol. 6, R49.

[36] Nookaew, I., Jewett, M.C., Meecha, A., Thammarongtham, C., Laoteng, K.,
Cheevadhanarak, S., Nielsen, J. and Bhumiratana, S. (2008) The genome-scale
metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a
scaffold to query lipid metabolism. BMC Syst. Biol. 2, 71.

[37] Herrgård, M.J. et al. (2008) A consensus yeast metabolic network obtained
from a community approach to systems biology. Nat. Biotechnol. 26, 1155–
1160.

[38] Gibbons, G.F. (2003) Regulation of fatty acid and cholesterol synthesis: co-
operation or competition? Prog. Lip. Res. 42, 479–497.

[39] Vik, Å. and Rine, J. (2001) Upc2p and Ecm22p, dual regulators of sterol
biosynthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 6395–6405.

[40] Marie, C., Leyde, S. and White, T.C. (2008) Cytoplasmic localization of sterol
transcription factors Upc2p and Ecm22p in S. cerevisiae. Funct. Genet. Biol. 45,
1430–1438.

[41] Flury, I., Garza, R., Shearer, A., Rosen, J., Cronin, S. and Hampton, R.Y. (2005)
INSIG: a broadly conserved transmembrane chaperone for sterol-sensing
domain proteins. EMBO J. 24, 3917–3926.

[42] Asadollahi, M., Maury, J., Møller, K., Nielsen, K.F., Schalk, M., Clark, A. and
Nielsen, J. (2008) Production of plant sesquiterpenes in Saccharomyces
cerevisiae: Effect of ERG9 repression on sesquiterpene biosynthesis.
Biotechnol. Bioeng. 99, 666–677.

[43] Asadollahi, M.A., Maury, J., Patil, K.R., Schalk, M., Clark, A. and Nielsen, J. (2009)
Enhancing sesquiterpene production in Saccharomyces cerevisiae through in
silico driven metabolic engineering. Met. Eng. 11, 328–334.

[44] Shirra, M.K., Patton-Vogt, J., Ulrich, A., Liuta-Tehlivets, O., Kohlwein, S.D.,
Henry, S.A. and Arndt, K.M. (2001) Inhibition of acetyl coenzyme A
carboxylase activity restores expression of the INO1 gene in a snf1 mutant. J.
Biol. Chem. 21, 5710–5722.

[45] Chellappa, R., Kandasamy, P., Oh, C.-S., Jiang, Y., Vemula, M. and Martin, C.E.
(2001) The membrane proteins Spt23p and Mga2p play distinct roles in the
activation of Saccharomyces cerevisiae OLE1 gene expression. J. Biol. Chem. 276,
43548–43556.

[46] Horton, J.D., Shah, N.A., Warrington, J.A., Anderson, N.N., Park, S.W., Brown,
M.S. and Goldstein, J.L. (2003) Combined analysis of oligonucleotide
microarray data from transgenic and knockout mice identifies direct SREBP
target genes. Proc. Nat. Acad. Sci. USA 100, 12027–12032.

http://www.unicellsys.eu
http://www.sysbio.se/sysinbio


J. Nielsen / FEBS Letters 583 (2009) 3905–3913 3913
[47] Karpichev, I.V. and Small, G.M. (1998) Global regulatory functions of Oaf1 and
Pip2 (Oaf2), transcription factors that regulate genes encoding peroxisomal
proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 6560–6570.

[48] Hiltunen, J.K., Mursula, A.M., Rottensteiner, H., Wierenga, R.K., Kastaniotis, A.J.
and Guvitz, A. (2003) The biochemistry of peroxisomal b-oxidation in the
yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 27, 35–64.

[49] Salazar, M., Vongsangnak, W., Panagiotou, G., Andersen, M.R., Nielsen, J. (in
press) Uncovering transcriptional regulation of glycerol metabolism in
Aspergilli through genome-wide gene expression data analysis. Mol. Genet.
Genom.

[50] Das, H.K. and Baez, M.L. (2008) ADR1 interacts with a down-stream positive
element to activate PS1 transcription. Front. Biosci. 13, 3439–3447.

[51] Hardie, D.G. (2007) AMP-activated/Snf1 protein kinases: conserved guardians
of cellular energy. Nat. Rev. Mol. Cell. Biol. 8, 774–785.

[52] Ambroziak, J. and Henry, S. (1994) INO2 and INO4 gene products, positive
regulators of phospholipid biosynthesis in Saccharomyces cerevisiae, form a
complex that binds to the INO1 promoter. J. Biol. Chem. 269, 15344–
15349.

[53] Wagner, C., Dietz, M., Wittmann, J., Albrecht, A. and Schüller, H.-J. (2001) The
negative regulator Opi1 of phospholipid biosynthesis in yeast contracts the
pleiotropic repressor Sin3 and the transcriptional activator. Mol. Microbiol. 41,
155–166.
[54] Ejsing, C.S., Sampalo, J.L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm,
R.W., Simons, K. and Shevchenko, A. (2009) Global analysis of the yeast
lipidome by quantitative shotgun mass spectrometry. Proc. Nat. Acad. Sci. USA
106, 2136–2141.

[55] Usaite, R., Wohlschlegel, J., Venable, J.D., Park, S.K., Nielsen, J., Olsson, L. and
Yates III, J.R. (2008) Characterization of global yeast quantitative proteome
data generated from the wild type and glucose repression Saccharomyces
cerevisiae strains: the comparison of two quantitative algorithms. J. Proteome
Res. 7, 266–275.

[56] Usaite, R., Jewett, M.C., Oliveira, A.P., Yates, J.R., Olsson, L., Nielsen, J. (in press)
Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a
global energy regulator. Mol. Sys. Biol.

[57] Schuller, H.J. (2003) Transcriptional control of nonfermentative metabolism in
the yeast Saccharomyces cerevisiae. Curr. Genet. 43, 139–160.

[58] Young, E.T., Dombek, K.M., Tachibana, C. and Ideker, T. (2003) Multiple
pathways are co-regulated by the protein kinase Snf1 and the transcription
factors Adr1 and Cat8. J. Biol. Chem. 278, 26146–26150.

[59] Zanghellini, J., Natter, K., Jungreuthmayer, C., Thalhammer, A., Kurat, C.F.,
Gogg-Fassolter, G., Kohlwein, S.D. and von Grünberg, H.-H. (2008)
Quantitative modeling of triacylglycerol homeostasis in yeast-metabolic
requirement for lipolysis to promote membrane lipid synthesis and cellular
growth. FEBS J. 275, 5552–5563.


	Systems biology of lipid metabolism: From yeast to human
	Introduction
	Yeast as a model organism
	Genome-scale metabolic modeling of yeast
	Comparative analysis of lipid metabolism
	Systems biology of lipid metabolism
	Acknowledgements
	References


