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The total number of subsets of { 1,2, 3, ,.., rz} without q-separation is expressed in 
terms of binomial products of Fibonacci numbers. Several new combinatorial 
identities are derived. % 1991 Academic Press, Inc. 

1. INTRODUCTION 

Kaplansky [2] proved that the number of k-subsets of ( 1,2, 3, . . . . n) not 
containing a pair of consecutive integers (i.e., i and i + 1) is 

Konvalina [3] proved that the number of k-subsets of { 1,2,3, . . . . n} not 
containing a pair of uniseparate integers (i.e., i and i + 2) is 

[k/21 

c( 

n + I _ k - 2i 

i=O k-2i > 
if n>2(k- 1) 

0 if n<2(k- 1). 

Prodinger [S] and Hwang, Korner, and Wei [l] generalized Konvalina’s 
result and determined explicit formulae for the number of k-subsets of 
{ 1, 2, 3, -.., n > without q-separation. Two integers are called q-separate 
(q >, 1) if their difference is q. In this paper we consider the total number 
of subsets of { 1,2, 3, . . . . n} without q-separation and prove the unexpected 
result that this number can be concisely expressed in terms of the product 
of powers of Fibonacci numbers arising from the binomial theorem. 
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The Fibonacci numbers have a well-known combinatorial interpretation 
in terms of subsets of { 1, 2, 3, . . . . rz} not containing a pair of consecutive 
integers. Specifically, let F,, denote the n th Fibonacci number determined 
by the recurrence relation 

F, = 1 

F2 = 1 

F II+2 =Fn+l +Fn (n2 1). 

The total number of subsets of (1,2, 3, . . . . rr} not containing a pair of 
consecutive integers is F, + 2. 

Recently, Konvalina and Liu [4] showed that the total number of 
subsets { 1, 2, 3, ,.., rz} without unit separation (q= 2) can be expressed in 
terms of the Fibonacci numbers. Specifically, let T,, denote the total 
number of subsets of (1,2,3, . . . . rz> without unit separation; then the 
following identities hold: 

Gn=F;+z 

T 2,1+1 =Fn+zFn+x. 

In this paper we will generalize the result to q-separation. Let T(n, q) 
denote the total number of subsets of { 1,2, 3, . . . . n} without q-separation. 
We will show that if n is written in the form n=mq+r, where O<r <q, 
then T(n, q) is a binomial product (arising from the binomial theorem) of 
Fibonacci numbers: 

T(n, q) = F:;;F;+,. 

The result by Konvalina and Liu is the special case q = 2. The classical 
result is the special case q = 1. Several corollaries, including some 
interesting combinatorial identities, are derived. 

2. THE MAIN RESULT 

THEOREM. Let T(n, q) denote the number of subsets of { 1, 2,3, . . . . n} 
without q-separation. If n = mq + r, where 0 < r < q, then 

Th q)=Fi;r2Fk+,. 

Proof: Partition the set { 1, 2, 3, . . . . n} into the q disjoint subsets 
s, 9 s,, . . . . S, defined as follows: 

si= 
(i, i+q,i+2q ,..., i+mq} if l<i<r 

{i,i+q,i+2q ,..., i+(m-1)q) if r<i<q 
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Let lSiJ denote the cardinality of Si. Then we have 

lsil= ;+l 1 
if l<iQr 
r<i<q. 

The total number of subsets of { 1,2, 3, . . . . rz} without q-separation is 
equal to the product of the number of subsets of each Si not containing a 
pair of consecutive elements. Thus we have reduced the problem to the 
classical case (q = 1). 

If 1 < i < r, then the number of subsets of Sj not containing a pair of 
consecutive elements is F,,, + 3, since 1 Si( = m + 1. If i > r, then this number 
is E;n+2, since lSil = m. 

Finally, forming the product with r subsets of cardinality m + 1 and q - r 
subsets of cardinality m, we obtain the result: 

TM, q) = FL;r2Fk+ 3. 

COROLLARY 1. 

Prooj If q = 1, the theorem reduces to the classical result. If we sum 
over all k-subsets and apply Kaplansky’s result we obtain the well-known 
combinatorial identity (1). 

COROLLARY 2. 

C ‘~‘(n+:I:_2i)=~2~r~p:+1. 
k>O i=O 

(2) 

ProoJ If q = 2, we obtain the result by Konvalina and Liu [4], 
and summing over all k-subsets without unit separation we obtain the 
identity (2). 

COROLLARY 3. Let f,(n, k) denote the number of k-subsets of 
{ 1, 2, 3, . . . . n} without q-separation. Then 
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where the second summation is over all li such that 1, > 0,1, > 0, 0 6 1, < r, 
O<&<q-r, and J,+A2+&(m+3)+I14(m+2)=k, ifO<k<(n+q)/2; 
otherwise, f&n, k) = 0. 

Proof The explicit formula forf,(n, k) was obtained by Prodinger [S]. 
Summing over all k-subsets without q-separation we obtain the com- 
binatorial identity (3). 

COROLLARY 4. Let f&n,, n2, . . . . n,, k) denote the number of ways of 
selecting k objects from q lines of lengths n,, n2, . . . . n4 without two selected 
objects being consecutive. Also, let n, = n2 = . . . = n, = m + 1 and n,, 1 = 
n r+2 = ... =n,=m. Then, for Odkidni (1 <iQq), 

kFOfq(n,, n2, . . . . nq, k)=FZLr2K,+, 

and 

(4) 
kp0 kl+k2+ +k,=k i=l 

Proof: f,h, n2, . . . . nq, k) was explicitly determined by Hwang, Korner, 
and Wei [l]. Identity (4) follows from the theorem and Kaplansky’s result 
after summing over all k-subsets not containing two consecutive integers. 

T(n, q) can also be determined by computing the number of binary (0, 1) 
sequences of length n without q-separation (i.e., no two ones are separated 
by q - 1 bits). We state without proof the following result: 

T(n, q) = T(mq + r, q) = i ._o(:,)~~(q~io)...q~~~'(q-~-l). (5) 

Combining this result with Corollary 4 we obtain the following com- 
binatorial identity: 
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COROLLARY 5. If n,=n,= ... =n,=m+l and n,+l= ..’ =ny=m, 
then for O<k,<n, (1 <i<q), 

T(n, q) can also be expressed in terms of a recurrence relation. Using an 
inductive argument it can be shown that if n = mq + r, where 1 < r < q, then 
T(n, q) satisfies the recurrence relation: 

Whq)= i : 0 T(n-r-i, q), 
i=O ’ 

with the boundary conditions T(n, q) = 2” = F; for 0 <n < q. 
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