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Under certain conditions, a filtration on an augmented alge-
bra A admits a related filtration on the Yoneda algebra E(A) :=
ExtA(K,K). We show that there exists a bigraded algebra mono-
morphism gr E(A) ↪→ EGr(gr A), where EGr(gr A) is the graded
Yoneda algebra of gr A. This monomorphism can be applied in the
case where A is connected graded to determine that A has the K2
property recently introduced by Cassidy and Shelton.
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1. Introduction

In this paper, we use filtrations to study certain homological properties of augmented algebras.
We generalize a similar recently-studied homological property of graded algebras. Throughout, if a
K-algebra A (where K is a field) is graded by a monoid M with identity element e, we denote by
ExtGr the derived functor of the M-graded Hom functor

HomGr(M, N) :=
⊕
α∈M

HomGr(M, N)α,

where HomGr(M, N)α = homA(M(α), N), M(α)β := Mαβ , and homA(M, N) is the set of A-module
homomorphisms M → N which preserve the degree of homogeneous elements. A connected-graded
algebra A is called Koszul if its (graded) Yoneda algebra EGr(A) := ExtGr(K,K) is generated as a
K-algebra by E1

Gr(A). (Throughout, we assume connected-graded algebras are finitely generated and
finitely related.) Our goal is to study a generalization of Koszul introduced by Cassidy and Shelton [1]:
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Definition 1.1. A connected-graded algebra A is K2 if E1
Gr(A) and E2

Gr(A) generate EGr(A) as a
K-algebra.

The Koszul algebras are exactly the quadratic K2 algebras. More generally, an algebra A is in the
class of N-Koszul algebras introduced by Berger [2] if and only if A is K2 and has only degree-
N relations [3, Theorem 4.1], [1, Corollary 4.6]. (Unfortunately, the term N-Koszul has obtained two
incompatible meanings. The meaning used here is different than that found in [4].) However, K2
algebras can have relations of several different degrees.

Our goal is to generalize further to augmented algebras and to relate the graded case to the aug-
mented case via filtrations. Throughout, we suppose that A is an augmented algebra over a field K,
i.e., A = A+ ⊕ K · 1 for A+ � A. (The augmentation is then ε : A � K.) Throughout M will be an
ordered monoid (with identity element e) such that we have an injective mapping M ↪→ Z which
preserves the ordering (but not necessarily the monoid structure). We will denote by s(α, r) the
monomial appearing r steps after α. Suppose M filters A so that

1.
⋃

α Fα A = A;
2. Fα A = K ⊕ Fα A+ , where Fα A+ := Fα A ∩ A+;
3. Fe A = K and Fα A+ �= 0 when α > e; and
4. dim Fα A/Fs(α,−1) A < ∞ for all α > e.

We use E(A) to denote the Yoneda algebra ExtA(K,K), the cohomology of the cobar complex
Cob(A) := HomK(A⊗•+ ,K), where Hom is the functor yielding all A-module homomorphisms. The
complex Cob(A) has an M-filtration Fα Cob(A) (see Definition 2.1) which induces a filtration FαEn(A)

and associated graded algebra grF E(A). Also, the filtration on A yields the associated graded algebra
grF A (graded by M); we set (grF A)+ := ⊕

α>e(grF A)α . The algebra grF A is augmented by grF A =
K ⊕ (grF A)+ .

Theorem 1.2. There is a bigraded (with respect to the cohomological and M gradings) algebra monomorphism

Λ : grF E(A) ↪→ EGr
(
grF A

)
.

We make the following generalization of K2 to this broader category of algebras:

Definition 1.3. An augmented algebra A is K2 if E1(A) and E2(A) generate E(A) as a K-algebra.

We can then connect the theory of connected-graded (finitely-related) algebras and ungraded al-
gebras with the following, to be proved in Section 3:

Lemma 1.4. For a connected-graded algebra A, Em(A) = Em
Gr(A) if an only if dim Em

Gr(A) < ∞. Consequently,
a connected-graded algebra A is K2 in the sense of Definition 1.3 if and only if A is K2 in the sense of Defini-
tion 1.1.

Our primary goal was to develop a technique for transferring the K2 property from grF A to A. As
we will see, it is often much easier to prove that grF A is K2.

Theorem 1.5. If E1
Gr(grF A) and E2

Gr(grF A) are finite-dimensional and generate EGr(grF A), and Λ1 and Λ2

are surjective, then A is K2 .

This theorem captures a more specific situation involving connected-graded algebras. Every
connected-graded algebra A with n generators is a factor of the free algebra K〈x1, . . . , xn〉. Thus,
the monomials in x1, . . . , xn form a totally-ordered (noncommutative) monomial (under the degree-
lexicographical order), and so provide a filtration F on A. The following is well known (see, for
example, [4, Theorem IV.3.1]):
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Theorem 1.6. If A is a connected-graded quadratic algebra and grF A is also quadratic, then A is Koszul.

An algebra A which meets the hypotheses of Theorem 1.6 is called a Poincaré–Birkhoff–Witt algebra.
Setting I := ker(K〈x1, . . . , xn〉 � A), we say a Gröbner basis G for I is essential if its elements generate
I in a certain minimal manner (see Definition 3.5). The following K2 analogue of Theorem 1.6 was
the original goal of this research.

Theorem 1.7. If I has an essential Gröbner basis and grF A is K2 , then A is K2 as well.

The algebra grF A will be a monomial connected-graded algebra. Cassidy and Shelton have pro-
vided an algorithm that determines whether a monomial connected-graded algebra is K2 [1, Theo-
rem 5.3].

In Section 2, we prove Theorems 1.2 and 1.5, which involves relating the cobar complexes Cob(A)

and Cob(grF A), and constructing the map Λ. In Section 3, we consider the case where A is a
connected-graded algebra, and connect the existence of an essential Gröbner basis to the surjectivity
of Λ2, proving Theorem 1.7. (The surjectivity of Λ1 is automatic in the connected-graded case.) We
connect surjectivity of Λ2 with the existence of a special Gröbner basis for ker(K < x1, . . . , xn〉 � A).
In Section 4, we use the results from Section 3 to prove that some anticommutative analogues of face
rings are K2.

2. Bigraded algebra monomorphism Λ : grF E(A) ↪→ EGr(grF A)

In this section, A denotes an augmented algebra filtered by an ordered monoid M as specified
above. (Note that M need not be commutative.) Recall that for α ∈ M, s(α, r) is the element r steps
after α. We prove Theorems 1.2 and 1.5.

We begin by setting detailed notation for the cobar complex and its associated filtration.

Definition 2.1. Let d : A⊗n+ → A⊗n−1+ via

d(a1 ⊗ · · · ⊗ an) :=
n−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an.

This makes A⊗•+ into a chain complex. We filter this complex by setting

Fα A⊗n+ :=
∑

α1···αn<α
αi>e

Fα1 A+ ⊗ · · · ⊗ Fαn A+.

The cobar complex is the co-chain complex dual to A•+ , defined via

Cobn(A) := HomK

(
A⊗n+ ,K

)
with the dual differential, which we denote ∂ .

We put a decreasing filtration on Cob(A) by setting

Fα Cobn(A) := {
f : A⊗n+ → K

∣∣ Fs(α,−1) A⊗n+ ⊂ ker f
}
.

If B is an algebra graded by a totally-ordered monoid M with identity element e, we similarly
define CobGr(B) := HomGr(B⊗•+ ,K), where B+ = ∑

α>e Bα .
The cup product multiplication in a cobar complex, graded cobar complex, or Yoneda algebra will

be denoted by �.
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Remark 2.2. We have E(A) = H∗(Cob•(A)). We are using the natural isomorphism HomA(A ⊗−,K) �
HomK(−,K).

Throughout, we will denote HomK(V ,K) =: V ∨ . We first relate Cob•
Gr(grF A) to the cobar complex

of A.

Proposition 2.3. There is a differential-graded algebra isomorphism

grF Cob•(A) � Cob•
Gr

(
grF A

)
.

The proof of Proposition 2.3 will follow after two lemmas. Let us fix a K-basis R = ∐
α∈M Rα for

A such that:

1.
⋃

β�α Rβ is a basis for Fα A.
2. Rα ⊂ Fα A+ for α > e.

Then {r + Fs(α,−1) A+: r ∈ Rα} is a basis for Fα A+/Fs(α,−1) A+ .
For readability, we set (((grF A)+)⊗n)α =: (grF A)⊗n+,α .

Lemma 2.4. The map

ϕ : (grF A
)⊗n
+,α

→ Fα A⊗n+
Fs(α,−1) A⊗n+

via

ϕ
((

a1 + Fs(α1,−1) A
) ⊗ · · · ⊗ (

an + Fs(αn,−1) A
)) := a1 ⊗ · · · ⊗ an + Fs(α,−1) A⊗n+

is a chain isomorphism.

Proof. First, if ai − a′
i ∈ Fs(αi ,−1) A for some 1 � i � n and α1 · · ·αn = α, then

a1 ⊗ · · · ⊗ (ai − a′
i) ⊗ · · · ⊗ an ∈ Fs(α,−1) A⊗n+ .

Hence, ϕ is well-defined.
To show that ϕ is a chain map, suppose ai ∈ Fαi A and α1 · · ·αn = α. We compute

(d ◦ ϕ)
(
(a1 + Fs(α1,−1) A) ⊗ · · · (an + Fs(αn,−1) A)

)
= d

(
a1 ⊗ · · · ⊗ an + Fs(α,−1) A⊗n+

)
=

n−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an + Fs(α,−1) A⊗n+

= ϕ

(
n−1∑
i=1

(−1)i(a1 + Fs(α1,−1) A) ⊗ · · ·

⊗ (
aiai+1 + Fs(αiαi+1,−1) A

) ⊗ · · · ⊗ (an + Fs(αn,−1) A)

)

= (ϕ ◦ d)
(
(a1 + Fs(α1,−1) A) ⊗ · · · ⊗ (an + Fs(αn,−1) A)

)
.
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Now, to show that ϕ is an isomorphism, note that the set

B1 := {
(a1 + Fs(α1,−1) A) ⊗ · · · ⊗ (an + Fs(αn,−1) A)

∣∣ ai ∈ Rαi ,αi �= e,α1 · · ·αn = α
}

is a basis for (grF A)⊗n+,α , while

B2 := {
a1 ⊗ · · · ⊗ an + Fs(α,−1) A⊗n+

∣∣ ai ∈ Rαi ,αi �= e,α1 · · ·αn = α
}

is a basis for Fα A⊗n+ /Fs(α,−1) A⊗n+ . Since ϕ gives a bijection between these bases, ϕ is an isomor-
phism. �

Now, because of condition (4) on the filtration, we have a chain isomorphism

ϕ∨ :
(

Fα A⊗n+
Fs(α,−1) A⊗n+

)∨
∼−→ Cobn,α

Gr

(
grF A

)
.

The restriction map

(
A⊗n+

)∨ → (
Fα A⊗n+

)∨

induces an injective map

ρ : Fα Cobn(A)

Fs(α,1) Cobn(A)
↪→

(
Fα A⊗n+

Fs(α,−1) A⊗n+

)∨
.

It is straightforward to check the following:

Lemma 2.5. The map ρ is a chain isomorphism.

We now know that

ϕ∨ ◦ ρ : grF Cob•(A) → Cob•
Gr

(
grF A

)
is a chain isomorphism, graded by M.

Proof of Proposition 2.3. It suffices to show that ϕ∨ ◦ ρ is a differential-graded algebra homomor-
phism. Let f ∈ Fα Cobn(A), g ∈ Fβ Cobm(A), ai ∈ Fαi A, bi ∈ Fβi A, α1 · · ·αn = α, and β1 · · ·βm = β .

Then,

(
ϕ∨ ◦ ρ

)(
f + Fs(α,1) Cobn(A)

)
�

(
g + Fs(β,1) Cobm(A)

)(
(a1 + Fs(α1,−1) A) ⊗ · · · ⊗ (an + Fs(αn,−1) A)

⊗ (b1 + Fs(β1,−1) A) ⊗ · · · ⊗ (bm + Fs(βm,−1) A)
)

= ρ
((

f + Fs(α,1) Cobn(A)
)
�

(
g + Fs(β,1) Cobm(A)

))
· ((a1 ⊗ · · · ⊗ an + Fs(α,−1) A⊗n+

) ⊗ (
b1 ⊗ · · · ⊗ bm + Fs(β,−1) A⊗m+

))
= ρ

(
f � g + Fs(αβ,1) Cobn+m(A)

)(
a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm + Fs(αβ,−1) A⊗n+m+

)
= f (a1 ⊗ · · · ⊗ an)g(b1 ⊗ · · · ⊗ bm).
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Likewise,

((
ϕ∨ ◦ ρ

)(
f + Fs(α,1) Cobn(A)

)
�

(
ϕ∨ ◦ ρ

)(
g + Fs(β,1) Cobm(A)

))
· ((a1 + Fs(α1,−1) A) ⊗ · · · ⊗ (an + Fs(αn,−1) A)

⊗ (b1 + Fs(β1,−1) A) ⊗ · · · ⊗ (bm + Fs(βm,−1) A)
)

= ρ
(

f + Fs(α,1) Cobn(A)
)(

a1 ⊗ · · · ⊗ an + Fs(α,−1) A⊗n+
)

· ρ(
g + Fs(β,1) Cobm(A)

)(
b1 ⊗ · · · ⊗ bm + Fs(β,−1) A⊗m+

)
= f (a1 ⊗ · · · ⊗ an)g(b1 ⊗ · · · ⊗ bm),

as desired. �
Recall that we give E(A) a filtration FαE(A) induced by the filtration Fα Cob•(A).

Definition 2.6. Define a surjective map η∞ : Fα Cobn(A) ∩ ker∂ � (grF E(A))n,α to be the composition

Fα Cobn(A) ∩ ker ∂ � FαEn(A) � FαEn(A)

Fs(α,1)En(A)
.

Define a map η1 : Fα Cobn(A) ∩ ker ∂ → En,α
Gr (grF A) to be the composition

Fα Cobn(A) ∩ ker∂ → Fα Cobn(A) ∩ ker∂ + Fs(α,1) Cobn(A)

Fs(α,1) Cobn(A)

→ Fα Cobn(A)

Fs(α,1) Cobn(A)
∩ ker

(
grF ∂

)
ϕ∨◦ρ|−−−−→ Cobn,α

Gr

(
grF A

) ∩ ker∂

� En,α
Gr

(
grF A

)
.

(Recall that ϕ∨ ◦ ρ : grF Cob•(A) → Cob•
Gr(grF A) is a differential-graded algebra isomorphism by

Proposition 2.3.)

The maps η1 and η∞ appear in the construction of a spectral sequence obtained from the filtra-
tion F on Cob(A). See, for example, [5, Theorem 2.6] and its proof. (We will not need this spectral
sequence.)

Lemma 2.7. kerη1 = kerη∞ .

Proof. Suppose f ∈ kerη1, meaning

(
ϕ∨ ◦ ρ

)(
f + Fs(α,1) Cobn(A)

) ∈ Cobn,α
Gr

(
grF A

) ∩ im ∂.

As ϕ∨ ◦ ρ is a differential-graded algebra isomorphism,

f + Fs(α,1) Cobn(A) ∈ Fα Cobn(A)

F Cobn(A)
∩ im ∂;
s(α,1)
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that is, there exists g ∈ Fα Cobn−1(A) such that

∂(g) + Fs(α,1) Cobn(A) = f + Fs(α,1) Cobn(A).

However, f − ∂(g) + im ∂ ∈ Fs(α,1)En(A). Thus, η∞( f ) = 0.
Now, suppose f ∈ kerη∞ , meaning f + im∂ ∈ Fs(α,1)En(A). So, f + ∂(g) ∈ Fs(α,1) Cobn(A) for some

g ∈ Cobn(A). Since f , f + ∂(g) ∈ Fα Cobn(A), ∂(g) ∈ Fα Cobn(A) as well, and

f + Fs(α,1) Cobn(A) = ∂(g) + Fs(α,1) Cobn(A).

Thus,

(
ϕ∨ ◦ ρ

)(
f + Fs(α,1) Cobn(A)

) ∈ Cobn,α
Gr

(
grF A

) ∩ im ∂

and so η1( f ) = 0. �
Definition 2.8. Since η∞ is surjective, Lemma 2.7 tells us we may define a unique injective map Λn,α

such that the diagram

Fα Cobn(A) ∩ ker ∂

η∞ η1

(grF E(A))n,α
Λn,α

En,α
Gr (grF A)

commutes. Set Λ := ⊕
n,α Λn,α .

We may now prove Theorem 1.2, which we restate:

Theorem 2.9. The map

Λ : grF E(A) ↪→ EGr
(
grF A

)
is an algebra monomorphism.

Proof. It remains only to prove Λ is an algebra homomorphism. Let f ∈ (grF E(A))n,α and g ∈
(grF E(A))m,β . Choose preimages (under η1)

f̃ ∈ Fα Cobn(A) ∩ ker ∂ and g̃ ∈ Fβ Cobm(A) ∩ ker∂

for f and g , respectively. We have

f̃ ⊗ g̃ ∈ Fαβ Cobn+m(A) ∩ ker∂.

Now, we compute
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η∞( f̃ ⊗ g̃) = (
( f̃ ⊗ g̃) + im∂

) + Fs(αβ,1)E
n+m(A)

= (
( f̃ + im ∂) � (g̃ + im ∂)

) + Fs(αβ,1)E
n+m(A)

= (
( f̃ + im ∂) + Fs(α,1)E

n(A)
)
�

(
(g̃ + im ∂) + Fs(β,1)E

m(A)
)

= η∞( f̃ ) � η∞(g̃)

= f � g. �
Before proving Theorem 1.5, we prove a general fact about filtered algebras:

Lemma 2.10. Let R = ⊕
i Ri be a graded algebra with a decreasing filtration F by an ordered monoid M

meeting the conditions in the introduction. Put Fα Ri = Fα R ∩ Ri and assume Fα R = ⊕
i Fα Ri for all i. Let

R ′ be the subalgebra of R generated by R1, . . . , Rm. Suppose, for each i, Fα Ri ⊂ R ′ for α sufficiently large. If
(grF R)1, . . . , (grF R)m generate grF R, then R1, . . . , Rm generate R.

Proof. Suppose that Fs(α,1)Ri ⊂ R ′ . Let a ∈ Fα Ri \ Fs(α,1)Ri . As grF R is generated by (grF R)1, . . . ,

(grF R)n , there exists a′ ∈ R ′ ∩ Fα Ri such that

a − a′ ∈ Fs(α,1)Ri ⊂ R ′.

As a′ ∈ R ′ , we know a ∈ R ′ . Thus, Fα R ⊂ R ′ . By (decreasing) induction on α, R = R ′ . �
Lemma 2.11. If dim grF En(A) < ∞ then FαEn(A) = 0 for some α, and consequently, dim grF En(A) =
dim En(A)

Proof. Let {ξ + Fs(αi ,1)En(A): 1 � i � m} be a basis for grF En(A), and choose α > αi for all 1 � i � m.
For β � α, FβEn(A)/Fs(β,1)En(A) = 0, meaning FβEn(A) = FαEn(A).

Now, choose any ξ ∈ FαEn(A). For β � α, there exists fβ ∈ Fβ Cobn(A) and f ′
β ∈ Cobn−1(A) such

that fβ + im d = ξ and fβ = f s(β,1) + d( f ′
β).

Then, for β � α,

fα = f s(α,1) + d
(

f ′
α

)
= f s(α,2) + d

(
f ′

s(α,1)

) + d
(

f ′
α

)
.
.
.

= fβ +
∑

α�γ <β

d
(

f ′
γ

)
.

So, for x ∈ Fβ A⊗n+ and γ > β ,

fα(x) = fγ (x) +
∑

α�δ<γ

d
(

f ′
γ

)
(x)

=
∑

α�δ<γ

(
f ′
δ ◦ ∂

)
(x).

Thus, there exists f ′ : A⊗n−1+ → K such that fα = f ′ ◦ ∂ . Therefore, ξ = 0. �
We may now prove Theorem 1.5, which we restate:
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Theorem 2.12. If E1
Gr(grF A) and E2

Gr(grF A) are finite-dimensional and generate EGr(grF A), and Λ1 and Λ2

are surjective, then A is K2 .

Proof. The map Λ is an algebra isomorphism. Apply Lemma 2.10 when m = 2 and R = E(A). �
Example 2.13. Let

A = K[x, y]
〈x3 − p〉 ,

where p is a homogeneous quadratic polynomial. Define ε : A � K via ε(x) := 0 and ε(y) := 0.
The standard N-grading on K〈x, y〉 induces a filtration F on A which satisfies the conditions in

the introduction. Then,

grF A � K[x, y]
〈x3〉 .

Note that grF A is a complete intersection, and therefore is K2 by [1, Corollary 9.2].
One can easily compute dim E1(grF A) = dim E2(grF A) = 2. Furthermore, using Cob•(A), one can

find the necessary linearly-independent cohomology classes to show dim E1(A) = dim E2(A) = 2, im-
plying that Λ1 and Λ2 are surjective. Hence A is K2.

3. Connected-graded algebras with monomial filtrations

By a connected-graded algebra, we mean an algebra A such that there is a graded algebra epimor-
phism

π : T(V ) � A

where V = span{x1, . . . , xn} and I := kerπ ⊂ ∑
n�2 V ⊗n is finitely-generated and homogeneous. Under

these circumstances, E1(A) and E2(A) are finite-dimensional. The following lemma shows that the two
definitions of K2 from the introduction are compatible for connected-graded algebras.

Lemma 3.1. For a connected-graded algebra A, Em(A) = Em
Gr(A) if and only if dim Em

Gr(A) < ∞. Conse-
quently,a connected-graded algebra A is K2 in the sense of Definition 1.3 if and only if A is K2 in the sense of
Definition 1.1.

Proof. Projective modules in the category Gr-A of graded A-modules are graded-free [2, Proposi-
tion 2.1]. So, there exists a projective resolution (in both the category of graded A-modules and of all
A-modules)

· · · → A ⊗ V m ∂m−−→ · · · → A ⊗ V 1 → A ⊗ V 0 → A →A K → 0

such that each V i is a graded vector space and ∂ i(A ⊗ V i) ⊆ A+ ⊗ V i−1. So, for any A-module ho-
momorphism f : A ⊗ V i−1 → K, f ◦ ∂ i = 0. Thus, all the differentials in both Hom(A ⊗ V •, AK) and
HomGr(A ⊗ V •, AK) are zero. So,

Em(A) = Hom
(

A ⊗ V m, AK
)

while Em
Gr(A) = HomGr

(
A ⊗ V m, AK

)
. �

For a graded algebra A, we use notation established by [1], setting
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A
(
n j1

1 ,n j2
2 , . . . ,n jt

t

) :=
⊕

i

A(ni)
⊕ ji .

Example 3.2. Consider the algebra

A = K〈w, x, y, z〉
〈yz, zx − xz, zw〉

introduced in [6, Example 5.2]. A minimal projective resolution for AK is

0 → A(−3,−4,−5, . . .) → A
(−23) → A

(−14) → A → K → 0.

Thus, the dimension of E3
Gr(A) is countably infinite, while the dimension of E3(A) is uncountable.

In light of Lemma 3.1, we will write E1(A) for E1
Gr(A) and E2(A) for E2

Gr(A).
The monomials of T(V ) (with respect to the basis {x1, . . . , xn} for V ) form a monoid M which is

totally-ordered by degree-lexicographical order. For α ∈ M, we set Fα A := span{π(β): β � α}. As M
is itself N-graded, we may put an N-grading on EGr(grF A) by setting

Ei, j
Gr

(
grF A

) :=
⊕
|α|= j

Ei,α
Gr

(
grF A

)
.

The algebra E(A) inherits the grading on A, and so does grF E(A). Indeed, it is clear that

(
grF E(A)

)i, j =
⊕
|α|= j

(
grF Ei(A)

)α
.

Furthermore, the monomorphism

Λ : grF E(A) ↪→ EGr
(
grF A

)
defined in Theorem 1.2 is homogeneous with respect to this internal N-grading.

The goal of this section is to apply Theorem 1.5 to connected-graded algebras, using this monomial
filtration. Note that Λ1 is always surjective, so to apply Theorem 1.5, we need only check:

1. grF A is K2, and
2. Λ2 : grF E2(A) ↪→ E2(grF A) is surjective.

Fortunately, the first condition is very easy to check since, as we will see, grF A is a monomial
algebra.

Definition 3.3.

1. We can write any element x ∈ T(V ) uniquely as cαα + ∑
β<α cββ where cα �= 0. Let τ (x) := cαα,

which we call the leading monomial of x.
2. Define π̂ : T(V ) → grF A via π̂ (α) = π(α) + Fs(α,−1) A.

We shall omit the proof of the following lemma.

Lemma 3.4. (See [7, Theorem 1.1].) ker(π̂ ) = 〈τ (x): x ∈ I〉.
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From this, we see that grF A is a monomial algebra. Cassidy and Shelton provide an algorithm that
determines exactly when a monomial algebra is K2 [1, Theorem 5.3].

Now, we turn our attention to the second condition, the surjectivity of Λ2 : grF E2(A) ↪→ E2(grF A).
Let I ′ = V ⊗ I + I ⊗ V .

Definition 3.5.

1. An element x ∈ I is an essential relation for A if x is homogeneous and x /∈ I ′ .
2. A generating set Be for I is an essential generating set for I if Be comprises only essential relations

and no subset of Be generates I .
3. A generating set G for I is a Gröbner basis for I if

〈
τ (x): x ∈ I

〉 = 〈
τ (x): x ∈ G

〉
.

4. A Gröbner basis G for I is an essential Gröbner basis for I if it is an essential generating set.

The definition of an essential relation first appeared in [1]. Gröbner bases are studied extensively
in [7,8].

Note that a generating set Be for I is essential if and only if |Be| = dim I/I ′ = dim E2(A). We will
show later that the existence of an essential Gröbner basis is equivalent to the surjectivity of Λ2. At
the same time, it is desirable to know when an essential generating set is a Gröbner basis.

Example 3.6. Consider the ideal I := 〈x3, y2〉 in K〈x, y〉. Under the order x < y, the set Be := {y2, x3 −
y2x} is an essential generating set for I . However Be is not a Gröbner basis. On the other hand, the
slightly modified set G := {y2, x3} is an essential Gröbner basis. The failure of I to be a Gröbner basis
was due to the needless redundancy of leading monomials.

The following lemma is easy.

Lemma 3.7. Let Be be an essential generating set for I . Then the following are equivalent:

1. τ (Be) is an essential generating set for 〈τ (Be)〉.
2. For every r, r′ ∈ Be and α′,α′′ ∈ M, τ (r) /∈ Kα′τ (r′)α′′ .
3. For every r, r′ ∈ Be and α′,α′′ ∈ M, τ (r) /∈ Kτ (α′r′α′′).

Definition 3.8. If an essential generating set Be meets the equivalent conditions of Lemma 3.7, we say
Be has the leading monomial property.

In Example 3.6, the set Be failed to be a Gröbner basis because it failed to have the leading
monomial property.

Lemma 3.9. Essential Gröbner bases have the leading monomial property.

Proof. Suppose that G is an essential Gröbner basis. As we have an injective map Λ2 : grF E2(A) ↪→
E2

Gr(grF A),

|G| = dim E2(A) � dim E2
Gr

(
grF A

)
.

On the other hand, if τ (r) ∈ Kτ (α′r′α′′) for some α′,α′′ ∈ M and r, r′ ∈ Be , then

〈
τ (G)

〉 = 〈
τ (G) \ {

τ (r)
}〉

and so dim E2
Gr(grF A) < dim E2(A), which is absurd. �
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Theorem 3.10. There exist homogeneous bases B for I and B′ for I ′ such that B′ ⊂ B, and the essential
generating set Be := B \ B′ has the leading monomial property.

The proof of this theorem will follow after two technical lemmas.

Lemma 3.11. For W ⊂ I and α ∈ M, define

Aα
m(W ) := {

r ∈ Im: r /∈ span W , τ (r) /∈ Kτ (s) for any s ∈ W with τ (s) � α
}
.

If Axm+1
1

m (W ) �= ∅, then Axm
1

m (W ) �= ∅; that is, there exists r ∈ Im such that τ (r) /∈ Kα′τ (s)α′′ for any
α′,α′′ ∈ M and s ∈ W .

Proof. Need only show that Aα
m(W ) �= ∅ implies that As(α,−1)

m (W ) �= ∅. Let r ∈ Aα
m(W ). Suppose

τ (r) = τ (s) for some s ∈ W . Then r − s ∈ Im but r − s /∈ span W . Also, τ (r − s) < τ(s) < α, so
r − s ∈ As(α,−1)

m (W ). �
We will use the following lemma to build our basis degree-by-degree:

Lemma 3.12. Suppose B is a homogeneous basis for
⊕m−1

i=0 Ii and B′ ⊂ B is a basis for
⊕m−1

i=0 I ′i . Then there
exist B′′ ⊂ Im and r1, . . . , r� ∈ Im such that:

1. B′′ is a basis for I ′m.
2. ri /∈ Kα′τ (r)α′′ for any i = 1, . . . , �, α′,α′′ ∈ M, and r ∈ B.
3. B′′ ∪ {r1, . . . , r�} is a basis of Im.

Proof. Set

B(0) = {α′r′α′′ ∈ Im: α′,α′′ ∈ M, r′ ∈ B}.

Let B′′ ⊂ B(0) such that B′
m is linearly independent. Since B(0) spans I ′m , B′′ is a basis for I ′m .

Now, suppose we have constructed B( j) = B( j−1) ∪ {r j} for 1 � j � i such that (B(i) \ B(0)) ∪ B′′ is
linearly independent and τ (r j) /∈ Kτ (s) for any s ∈ B(i−1) .

If B(i) spans Im , then B′′ ∪ {r1, . . . , ri} also spans Im , and the claim is proved. Otherwise,

Axm+1
1

m (B( j)) �= ∅, and so by Lemma 3.11, there exists ri+1 ∈ Im such that τ (ri+1) /∈ Kτ (s) for any
s ∈ B(i) . Set B(i+1) = B(i) ∪ {ri+1}. �
Proof of Theorem 3.10. Set Bm = B′

m = Be
m = ∅ for m � 1. Apply Lemma 3.12 and induction on m. �

We are now ready to prove Theorem 1.7, which we restate:

Theorem 3.13. The following are equivalent:

1. Every essential generating set for I with the leading monomial property is a Gröbner basis.
2. There is an essential Gröbner basis for I .
3. dim E2(A) = dim E2(grF A).
4. The injective map Λ2 : grF E2(A) ↪→ E2(grF A) defined in Theorem 1.2 is surjective.

Therefore, if I has an essential Gröbner basis and grF A is K2 , then A is K2 as well.
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Proof. We set J = ker(π̂ : T(V ) � grF A) and J ′ = J ⊗ V + V ⊗ J .
In light of Theorem 3.10, it is clear that condition (1) implies condition (2).
Suppose G is an essential Gröbner basis for I . Then |G| = dim I/I ′ . Also, since G has the leading

monomial property, |G| = |τ (G)| = dim J/ J ′ . So, condition (2) implies condition (3).
Clearly, condition (3) and condition (4) are equivalent.
Finally, assume (4). Suppose Be is an essential generating set for I with the leading monomial

property. Let Be
J be an essential generating set of J such that

{
τ (x): x ∈ Be} ⊂ Be

J .

Then, |Be| = dim I/I ′ = dim J/ J ′ = |Be
J |. So, Be is a Gröbner basis. Thus, condition (4) implies condi-

tion (1). �
Example 3.14. Consider

A := K〈x, y〉
〈xy − x2, yx, y3〉

with a monomial order induced by x < y. We know from [1, Example 4.5] that A is not a K2 al-
gebra. The Hilbert series of A is H A(t) = 1 + 2t + 2t2. Since π(x3) = 0, we see that π̂ (x3) = 0, and
grF A � K〈x, y〉/〈xy, yx, x3, y3〉. We may apply [1, Theorem 5.3] to see that grF A is K2. The essential
generating set {xy − x2, yx, y3} is not a Gröbner basis for kerπ . The behavior is similar under y < x
(although grF A is a different K2 algebra).

Example 3.15. Consider

A := K〈x, y, z〉
〈x2 y − x3, yz2 − yx2, x3z − x4〉

with the monomial order induced by x < y < z. We may use the diamond lemma [9, Theorem 1.2] to
show that

grF A � B := K〈x, y, z〉
〈x2 y, yz2, x3z〉 .

Thus, {x2 y − x3, yz2 − yx2, x3z − x4} is an essential Gröbner basis for kerπ . However, application of
[1, Theorem 5.3] shows that B is not K2. By inspection,

0 → B(−5)
(0 x2 0)−−−−−→ B

(−32,−4
)

⎛
⎝0 x2 0

0 0 yz

0 0 x3

⎞
⎠

−−−−−−−→ B
(−13)

( x
y
z

)
−−−→ B → K → 0

is a minimal projective resolution for BK. By Theorem 1.2, dim Ei, j(A) � dim Ei, j(B). So, the chain
complex of projective A-modules

0 → A(−5)
(0 x2 −x)−−−−−−→ A

(−32,−4
)

⎛
⎝ x2 −x2 0

y2 0 −yx

x3 0 −x3

⎞
⎠

−−−−−−−−−−→ A
(−13)

( x
y
z

)
−−−→ A → K → 0

is a minimal projective resolution for AK. Applying [1, Theorem 4.4], we see that A is K2. Hence, the
converse of the last implication of Theorem 3.13 is false.
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Example 3.16. Let

A := K〈x, y〉
〈yx − xy, y3 + x2 y〉 .

Then under the order x < y, the essential generating set {yx − xy, y3 + x2 y} is a Gröbner basis for
kerπ , and

grF A = K〈x, y〉
〈yx, y3〉 .

We may use [1, Theorem 5.3] to show that grF A is K2. Thus, by Theorem 3.13, A is K2. (This can
also be verified directly using [1, Corollary 9.2].)

Theorem 3.13 is a generalization of the classical theory of Poincaré–Birkhoff–Witt algebras, which
we can also prove:

Theorem 3.17. (See [4, Theorem IV.3.1].) If A is a quadratic algebra, and grF A is also quadratic, then A is
Koszul.

Proof. Quadratic monomial algebras are Koszul [4, Corollary II.4.3]. The theorem follows directly from
Theorem 1.5. �
4. Anticommutative analogues to face rings

In this section, use the results from Section 3 to show some anticommutative analogues to face
rings are K2. Suppose X := {x1, . . . , xn} is a finite set and Δ is a simplicial complex on X—that is,
Δ ⊂ 2X such that {xi} ∈ Δ for 1 � i � n and if Y ∈ Δ, then 2Y ⊂ Δ. We define an algebra

A[Δ] :=
∧
K

(x1, . . . , xn)/
〈
xi1 · · · xir

∣∣ i1 < i2 < · · · < ir, {xi1 , . . . , xir } /∈ Δ
〉
,

where
∧

K
(x1, . . . , xn) is the exterior algebra with generators x1, . . . , xn . So, A[Δ] is an anticommuta-

tive analogue of the face ring of Δ. (Face rings are studied in detail in [10].)

Definition 4.1. If Y ⊂ X , Y /∈ Δ, but 2Y \ {Y } ⊂ Δ, then we say Y is a minimally missing face of Δ.

Theorem 4.2. Suppose Δ is a simplicial complex on X := {x1, . . . , xn}. Under the order x1 < · · · < xn,
kerπA[Δ] has an essential Gröbner basis if and only if every minimally missing face Y := {xi1 , . . . , xim } ⊂ X
(where i1 < i2 < · · · < im) satisfies the following property:

If u /∈ Y and i1 < u < im, then
(
Y \ {xi1}

) ∪ {xu} /∈ Δ or
(
Y \ {xim }) ∪ {xu} /∈ Δ. (1)

Proof. An essential generating set with the leading monomial property for

I := ker
(
π : K〈x1, . . . , xn〉 → A[Δ])

is

Be = {x j xi + xi x j | i < j} ∪ {
x2

i

∣∣ i = 1 . . .n
}

∪ {
xi1 · · · xim

∣∣ i1 < · · · < im, {xi1 , . . . , xim } is a minimally missing face
}
.
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If Y is a minimally missing face which fails (1) for some u /∈ Y , then

xi1 · · · xit xu xit+1 · · · xm

is an essential relation of grF A for some t , meaning that Be is not a Gröbner basis.
On the other hand, suppose Be is not a Gröbner basis. Then grF A has some new essential relation

r such that r �= τ (x) for x ∈ Be . Pick such r minimally. Then

r = xi1 · · · xim xu mod〈xi x j + x j xi〉

for some minimally missing face Y = {xi1 , . . . , xim }. So Y fails (1). �
Here is a particularly nice example:

Theorem 4.3. The algebra

∧
K
(x1, . . . , xn)

(x1 · · · xn)

is K2 .

Proof. Let X := {x1, . . . , xn} and Δ = 2X \ {X}. Then by Theorem 4.2, ker(π : K〈x1, . . . , xn〉 → A[Δ])
has an essential Gröbner basis.

So, applying [1, Theorem 5.3] to

grF A = K〈x1, . . . , xn〉/〈x1 · · · xn, x j xi: 1 � i � j � n〉,

we see that grF A is K2, and hence A is K2. �
Not every simplicial complex Δ on a set X has an ordering of X which yields an essential Gröbner

basis for kerπA[Δ] .

Example 4.4. Set X := {t, u, w, x, y, z} and

Δ := (
2{u,x,y,z} ∪ 2{t,u,x,z} ∪ 2{u,w,x,z}) \ {{u, x, y, z}, {t, u, x, z}, {u, w, x, z}, {x, y, z}, {t, u, z}, {u, w, x}}.

Suppose we have an order < of X under which kerπA[Δ] has an essential Gröbner basis.
Note that {x, y, z} is a minimally missing face, but {u, x, y}, {u, y, z}, {u, x, z} ∈ Δ. So either u <

x, y, z or u > x, y, z. Without loss of generality, u < x, y, z.
Also, {t, u, z} is a minimally missing face, but {u, x, z}, {t, x, z}, {t, u, x} ∈ Δ. So as u < x, x > t, u, z.
Finally, {u, w, x} is a minimally missing face, but {u, x, z}, {u, w, z}, {w, x, z} ∈ Δ. However, as x > z,

we cannot have z > x, u, w . However, as u < z, we cannot have z < x, u, w either.
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