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a b s t r a c t

Reconstructing the evolutionary history of a set of species is a fundamental problem in
biology and methods for solving this problem are gaged based on two characteristics:
accuracy and efficiency. Neighbor Joining (NJ) is a so-called distance-based method that,
thanks to its good accuracy and speed, has been embraced by the phylogeny community. It
takes the distances between n taxa and produces in Θ(n3) time a phylogenetic tree, i.e., a
tree which aims to describe the evolutionary history of the taxa. In addition to performing
well in practice, the NJ algorithm has optimal reconstruction radius.
The contribution of this paper is twofold: (1) we present an algorithm called Fast

Neighbor Joining (FNJ)with optimal reconstruction radius andoptimal run time complexity
O(n2) and (2) we present a greatly simplified proof for the correctness of NJ. Initial
experiments show that FNJ in practice has almost the same accuracy as NJ, indicating
that the property of optimal reconstruction radius has great importance to their good
performance. Moreover, we show how improved running time can be achieved for
computing the so-called correction formulas.

© 2009 Published by Elsevier B.V.

1. Introduction

The evolutionary history of a set of species is a central concept in biology that is commonly described by a phylogenetic
tree. Frequently it is the case that the phylogenetic tree is unknown and the only information available are the genetic
sequences from the extant species, i.e., currently living species. It is therefore a fundamental problem to reconstruct the
phylogenetic tree given some genetic sequences. Several reconstruction methods have been suggested, and it is natural to
compare these based on how accurate they are in reconstructing the correct phylogeny. Unfortunately, of these methods
the more accurate are much too slow to be used in studies that involve reconstructing large or many phylogenies. The focus
of this paper is to build an algorithm that is accurate and has quadratic running time in the number of species.
As more genetic information is collected it becomes possible to answer more complex questions. An obvious question

that involves reconstructing a large phylogeny is to relate all living species in the tree of life. Another very central question
is to relate large sets of genes and from such phylogenies draw conclusion about their function and origin. However, recon-
struction of large phylogenies is not the only case in which efficient reconstruction is necessary. There are other cases that
involvemany reconstructions, e.g., studieswhere phylogenies are built for each gene shared by a set of species. The common
technique of bootstrapping also requires many reconstructions in order to obtain significance values for a single phylogeny.
Throughout the paper, phylogenetic trees are leaf-labeled binary trees with edge lengths. Thus each phylogenetic tree

T naturally induces an additive leaf-to-leaf distance function DT . The reconstruction methods for which most complexity
results have been shown are the so-called distance methods. These algorithms take as input an estimated distance function

I A preliminary version of this work has appeared in the proceedings of ICALP 2005 [I. Elias, J. Lagergren, Fast neighbor joining, in: Proc. of the 32nd
International Colloquium on Automata, Languages and Programming, ICALP’05, in: Lecture Notes in Computer Science, vol. 3580, Springer-Verlag, 2005,
pp. 1263–1274].
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D (normally computed from the genomic sequences) and construct a phylogeny whose additive distance function is close
to D. The problem of finding the closest additive distance function under the infinity norm is known to be NP-hard [1].
The Neighbor Joining (NJ) algorithm is a distancemethod introduced by Saitou and Nei in [18]. As shown in [10], when NJ

is given an additive distance function DT , it reconstructs the unique tree T . However, as Atteson [2] proved NJ reconstructs
the closest tree for even more cases. A distance function D is nearly additive if there is an additive distance function DT
such that

|D− DT |∞ < µ(T )/2, (1)

whereµ(T ) is theminimumedge length in T . All the additive distance functions forwhich Eq. (1) holds have the same topol-
ogy, i.e., disregarding the edge lengths, T is the unique tree for which the equation holds. The NJ algorithm has optimal recon-
struction radius in the sense that: (a) given a nearly additive distance function it reconstructs the unique tree T and (b) there
can be more than one tree for which |D− DT | < δ holds if δ ≥ µ(T )/2. In practice most distances are far from being nearly
additive. Thus, although important, optimal reconstruction radius is not sufficient for an algorithm to be useful in practice.
The estimated distances that are given as input to distancemethods are normally deduced from genomic sequences and a

probabilisticmodel. There are variousMarkovmodels of sequence evolutionwhich describe how sites evolve independently
and identically from the root down toward the leafs. Many of these models have an associated closed correction formula for
inverting the model and giving an estimated evolutionary distance for a pair of sequences. These formulas are consistent
in the sense that the estimated distance approaches the underlying additive distance as the sequence length approaches
infinity. As a result, the NJ algorithm is a consistent method for recovering the correct phylogeny, i.e., NJ reconstructs the
correct phylogeny given some infinitely long sequences.
An interesting line of research is to design fast-converging algorithms, i.e., algorithms that reconstruct the correct

phylogeny from sequences whose length is polynomial in the number of sequences [9,11,14,5]. However, except from the
Disc-Covering Method (DCM) [11,14] these algorithms have had little or no practical impact. The only variation of DCM that
is fast-converging and of practical interest uses NJ to construct small sub-phylogenies that are later patched together into
one larger phylogeny, i.e., NJ is used as a subroutine.
Although the NJ algorithm is not fast-converging, it has been shown to perform very well in experimental studies [16].

Moreover, with O(n3) as the worst case running time it has become the reconstruction algorithm that is most frequently
used in practice. Heuristic implementations of NJ have been given which, without leading to better worst case analysis of
the time complexity, in practice show improved running time [3,20].
There are two major contributions in this paper [8]: (1) we present an algorithm called Fast Neighbor Joining (FNJ) with

optimal reconstruction radius and optimal run time complexity O(n2) and (2) we present a greatly simplified proof for the
correctness of the NJ algorithm. Initial experiments show that the FNJ algorithm in practice has almost the same accuracy
as the NJ algorithm; this indicates that it is the optimal reconstruction radius and other similarities with NJ that give FNJ its
good performance. We also describe how a better running time for computing the correction formulas can be achieved, in
theory, through matrix multiplication and, in practice, through table lookups.
The FNJ algorithm is useful in its own right. But it is also important to note that FNJ together with the proof of optimal

reconstruction radius presents a good foundation for building reconstruction algorithms that are both practically useful and
fast-converging. For example the running time of DCM can be improved by a factor O(n) by simply replacing NJ with FNJ. It
will be interesting to see how the running time of extensions of NJ, such as Weighbor and BioNJ, can be improved using our
ideas.
Since the publication of the preliminary version of this paper there has been two papers improving on the results of

this paper. In [15], a relation between NJ and FNJ, on the one hand, and quartet methods, on the other hand, is given. This
relation is used to prove that both NJ and FNJ have edge reconstruction radius 1/4. That is, if the maximal error in the
estimated distances is< ε/4 then all edges of length ≥ ε are reconstructed correctly by both NJ and FNJ. Moreover, in [7],
an advanced bit-fiddling algorithm for computing correction formulas is provided which in practice is a factor 400 faster
than other available software.
The paper is organized as follows. The next section contains some basic definitions and a description of the NJ algorithm.

In Section 3, the FNJ algorithm is introduced. Subsequentlywe give the proof of the FNJ algorithmand also amore economical
and intuitively appealing proof of Atteson’s theorem. Finally, in Section 7, we approach the practical problem of computing
the correction formulas and also show that the FNJ algorithm in practice performs almost exactly as good as theNJ algorithm.
Except for Lemma 2 below, which in [2] (Lemma 12) is proved by straightforward algebraic verification, the present paper
is self-contained.

2. Definitions and the neighbor joining algorithm

A n × n distance function D, for a set of taxa N (D), is a function N (D)2 → R+, where |N (D)| = n, which is symmetric
and satisfies D(x, x) = 0 for every x ∈ N (D). For two distance functions D1 and D2 such that N (D1) = N (D2) = N , their
distance is defined as maxx,y∈N |D1(x, y)− D2(x, y)| and denoted |D1 − D2|∞. By a phylogenetic treewemean a tree T given
together with an edge length function lT : E(T )→ R+. For a phylogenetic tree T ,µ(T ) denotes the minimum edge length of
T , i.e., mine∈E(T ) l(e). The unique path in a tree T between two of its vertices u and v is denoted PT (u, v). Every phylogenetic
tree T induces a distance function for the leafs in the tree, i.e., DT : L(T )2 → R+ where DT (a, b) ,

∑
e∈PT (a,b)

l(e).
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A distance function D is additive if there is a phylogenetic tree T such that D = DT ; the tree is said to realize D, it is unique,
and it is denoted T (D). A distance functionD is nearly additive if there is a phylogenetic tree T such that |D−DT |∞ < µ(T )/2;
again, the tree is said to realize D, it is unique, and it is denoted T (D) [2]. The parent of a leaf a in a tree T is the unique neighbor
of a in T . A pair of leaves of a tree T are siblings if they have the same parent in T (note only leaf-siblings).
The NJ algorithm builds a tree by iteratively combining pairs of taxa. It takes as input a distance function D for n taxa and

attempts to identify two siblings by selecting the pair of taxa (a, b) that minimizes the NJ function, defined by

SD(x, y) ,
(
|N (D)| − 2

)
· D(x, y)−

∑
z∈N (D)

(
D(z, x)+ D(z, y)

)
. (2)

Thereafter the pair (a, b) is reduced to a new node c , representing the parent, which gives a new distance function D′ with
N (D′) = (N (D) \ {a, b}) ∪ {c} defined by

D′(x, y) ,
{
D(x, y), if c /∈ {x, y}
D(z,a)+D(z,b)

2 , otherwise z ∈ {x, y} \ {c}. (3)

Finally the algorithm is applied iteratively on the new distance function D′. A formal description of the NJ algorithm is given

Algorithm NJ(D1)

(1) For each i← 1 to n− 3 do
(a) (ai, bi)← argminx6=y∈N (Di)SDi(x, y)
(b) Reduce ai and bi to a new node ci and let Di+1 be the new distance function given by the reduction in Eq. (3).
(c) Connect ai and bi to ci by adding edges (ai, ci) and (bi, ci).

(2) Connect the three nodes ofN (Dn−3) in a star and return the resulting tree.

Theorem 1 (Atteson’s Theorem). Given a nearly additive distance function D NJ outputs T (D). Moreover, in each iteration i, Di
is nearly additive and T (Di) = T (Di−1) \ {ai−1, bi−1}.
In Section 3, we will show the analogous theorem for the FNJ algorithm, by showing that for nearly additive distance

functions it gives exactly the same output as NJ. In Section 5, we give a proof of Atteson’s theorem above.

3. The fast neighbor joining algorithm

In Step 1a of the NJ algorithm and for i ≤ n/2, the minimum is taken overΩ(n2) pairs which implies a running time of
Ω(n3). In the FNJ algorithm an O(n2) running time is obtained by using two ideas. First, the minimum is taken over a set,
called the visible set, of cardinality O(n). Second, using the auxiliary function R, introduced below, the updated NJ function
can be computed in constant time. It should be noted that the resulting trees of NJ and FNJ are only guaranteed to be the
same if the input is nearly additive.
A pair (a, b) is visible from aw.r.t. a distance function D if
b = argmin

x∈N (D)\{a}
SD(a, x).

A pair (a, b) is visiblew.r.t. D if it is visible from either a or b. Hence the number of visible pairs is O(n). In the next section it
is shown that for each nearly additive distance function D, any sibling pair in T (D) is visible w.r.t. D.
To enable an overall O(n2) running time, the NJ function is computed using an auxiliary function R defined by RD(a) ,∑
x∈N (D) D(a, x), i.e., R is the row sums. It is straightforward to verify that for a D

′ defined as in Eq. (3),

RD′(x) = RD(x)−
D(x, a)+ D(x, b)

2
. (4)

Hence, given RD it is possible to compute the updated row sums RD′ in time O(n). Moreover, since SD(x, y) = (|N (D)| − 2) ·
D(x, y)− RD(x)− RD(y), the NJ function can be computed in constant time, for any given pair (x, y).
It should be clear, from the formal description below that the FNJ algorithm runs in time O(n2). Note that the input

actually has sizeΩ(n2).

Algorithm FNJ(D1)

(1) The first visible set V1 is initialized to the set of pairs visible w.r.t. D1.
(2) For each a ∈ N (D), RD1(a) is initialized to

∑
x∈N (D1)

D1(a, x).
(3) For each i← 1 to n− 3 do
(a) (ai, bi)← argmin(x,y)∈ViSDi(x, y)
(b) Reduce ai and bi to a new node ci and let Di+1 be the new distance function given by the reduction in Eq. (3).
(c) Connect ai and bi to ci by adding edges (ai, ci) and (bi, ci).
(d) Compute RDi+1 .
(e) Vi+1 ← (Vi \ {(x, y) : x = ai or x = bi}) ∪ {(ci, d)}where (ci, d) is the pair visible from ci w.r.t. Di+1.

(4) Connect the three nodes ofN (Dn−3) in a star and return the resulting tree.
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Fig. 1. To the left the figure for the Visibility lemma. To the right the figure for Lemma 5.

4. Correctness of FNJ

According to Theorem 1, given a nearly additive distance function D, NJ outputs T (D), i.e., it outputs the unique tree that
is close to D. Here we prove that FNJ has the same property. Since NJ constructs the correct tree, we know that in each
iteration the minimum pair over the NJ function is a sibling pair in T (Di). Hence, to prove the correctness of FNJ, it suffices
to show that in each iteration the minimum pair is in the visible set, Vi. The proof is in two steps; first the Visibility lemma
is presented. According to this, if a has a sibling b in T (D), then (a, b) is in the visible set. Second, in Theorem 4, the Visibility
lemma together with the correctness of NJ is used to prove the correctness of FNJ.
Before we proceed to prove the Visibility lemma, we state an observation and a lemma which in Atteson [2] are proved

through straightforward algebraic verification. For any tree T , edge e of T , and leaf a of T , letLT (a, e) denote the set of leaves
of T belonging to the same connected component of T \ {e} as a.

Observation 1 (Atteson). If DT is an additive distance function, then,

SDT (a, b) =
∑
e∈E(T )

we(a, b) l(e), where

we(a, b) =
{
−2 if e ∈ E(PT (a, b))
−2|L(T ) \LT (a, e)| otherwise.

Lemma 2 (Atteson, Lemma 12). Let DT andD be two n-domain distance functions such that DT is additive andD is nearly additive
w.r.t. DT . For any a, b, x, y ∈ N (D), the value of SD(a, b)− SDT (a, b)+ SDT (x, y)− SD(x, y) is

>

{
−3(n− 4)µ(T ) if {a, b} ∩ {x, y} = ∅
−2(n− 3)µ(T ) if |{a, b} ∩ {x, y}| = 1.

Lemma 3 (The Visibility Lemma). Let DT and D be two n-domain distance functions such that DT is additive and D is nearly
additive w.r.t. DT . If a has a sibling b in T , then (a, b) is visible from a w.r.t. D, i.e.,

b = argmin
x∈N (D)\{a}

SD(a, x).

Proof. As in Fig. 1, let c ∈ N (D)\{a, b} and let ea, eb, and ec be the edges of T incidentwith a, b, and c , respectively.Moreover,
let e be the edge incident with the parent of a and b which is not incident with either a or b. Consider DT , by definition of
the weights in Observation 1 the following is true
(i) wf (a, b) = −2 = wf (a, c) for any f ∈ {ea, eb, ec},
(ii) wf (a, b) ≤ −3 < wf (a, c) for any f ∈ E(PT (a, c)) \ {ea, ec},
(iii) wf (a, b) = wf (a, c) for any f ∈ E(T ) \ E(PT (a, c)).

Moreover, sincewe(a, b) = −2(n− 2) andwe(a, c) = −2, it follows that SDT (a, c)− SDT (a, b) ≥ 2(n− 3)µ(T ). Finally, by
Lemma 2,

SD(a, c)− SD(a, b) = SD(a, c)− SDT (a, c)+ SDT (a, b)− SD(a, b)︸ ︷︷ ︸
>−2(n−3)µ(T )

+ SDT (a, c)− SDT (a, b)︸ ︷︷ ︸
≥2(n−3)µ(T )

> 0. �

We are now ready to prove that given a nearly additive distance function D, FNJ in each iteration selects the same sibling
pair as NJ, i.e., FNJ outputs T (D). By Atteson’s theorem NJ outputs T (D) in each iteration by reducing a pair of siblings such
that T (Di) = T (Di−1) \ {ai−1, bi−1}. Since FNJ uses the same reduction as NJ it is sufficient to show that all sibling pairs are
in the visible set. In the next section, we give a short and intuitively appealing proof of Atteson’s theorem, which together
with the Visibility lemma gives a direct proof of the theorem below.

Theorem 4. Given a nearly additive distance function D, FNJ outputs T (D).

Proof. We prove by induction that, for each i = 1, . . . , n − 3, Vi contains all sibling pairs of T (Di) (here D1 = D). By the
Visibility lemma it is clear that the statement is true for i = 1. Assume that the statement holds for each i = 1, . . . , j.
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By the correctness of NJ, if (aj, bj) is the minimum over the NJ function, then (aj, bj) is a sibling pair T (Dj). Therefore, by
the induction assumption, (aj, bj) is in Vj. Consequently, since the minimum over the NJ function is a sibling pair, FNJ and
NJ select the same sibling pair in iteration j.
After reducing (aj, bj) to cj, by the Visibility lemma, if cj has a sibling d in T (Dj+1), then in Step 3e (cj, d) is added to Vj+1.

Moreover, by the assumption, all other sibling pairs of T (Dj+1) are in Vj and therefore also in Vj+1. Hence, by induction and
the correctness of NJ, FNJ outputs T (D). �

5. Atteson’s theorem — correctness of NJ

The proof of Atteson’s theorem is in two steps. The first step consists of the key technical lemma below, of which we give
a much more concise and direct proof. The central idea in this proof, is to show that for any additive distance function the
difference is large between the value of NJ function applied to a sibling pair, and applied to a pair of leaves which are not
siblings. In fact, the difference is so large that evenwhen the distance function is nearly additive the NJ function isminimized
by a sibling pair. The final step in proving Atteson’s theorem consists of showing that the distance function, after a reduction,
remains nearly additive.
Lemma 5. If D is a nearly additive distance function, a, b ∈ N (D), and SD(a, b) = minx6=y∈N (D) SD(x, y), then (a, b) is a sibling
pair in T = T (D).
Proof. According to the Visibility lemma, if a has a sibling b then SD(a, b) < SD(a, x) for any x 6= b. Hence, the lemma follows
if for any two leaves, x and y, ofwhich none has a sibling in T , there exists a sibling pair (a, b), such that SD(x, y)−SD(a, b) > 0.
Let DT be an additive distance function such that |D− DT | < µ(T )/2. Notice that

SD(x, y)− SD(a, b) = SD(x, y)− SDT (x, y)+ SDT (a, b)− SD(a, b)+ SDT (x, y)− SDT (a, b)
> −3(n− 4)µ(T )+ SDT (x, y)− SDT (a, b),

where the inequality follows by Lemma 2. We proceed by showing that SDT (x, y)− SDT (a, b) > 3(n− 4)µ(T ).
In T let x′ and y′ be the unique neighbors of x and y, respectively (see Fig. 1). Further, let T x and T y be the subtrees of

T \ PT (x′, y′) containing x and y, respectively. W.l.o.g., assume that |L(T x)| ≤ |L(T y)|, and hence that |L(T x)| ≤ n/2. Let e be
the edge of PT (x′, y′) incident to x′. Since neither x nor y has a sibling, both T x and T y contain a sibling pair of T . Let a and b
be siblings in T x, and let f be the edge incident with their parent but not a and not b.
First note thatwg(a, b) ≤ wg(x, y) for any g ∈ E(T )\{e, f }. The only edges forwhich the latter inequality is non-trivial are

those of PT (a, x′); for those the inequality follows from the assumption that |L(T x)| ≤ n/2. Using the definition of weights,
it is straightforward to verify thatwe(a, b) = −2|L(T ) \ L(T x)| ≥ −nwhilewe(x, y) = −2, and thatwf (a, b) = −2(n− 2)
whilewf (x, y) = −4. It follows that

SDT (x, y)− SDT (a, b) ≥
(
− 2− 4+ n+ 2(n− 2)

)
µ(T )

= (3n− 10)µ(T )
> 3(n− 4)µ(T ). �

Proof of Theorem 1. The proof is by induction. First note that the theorem holds when |N (D)| = 3. Assume that the
theorem holds when |N (D)| = n− 1. We now prove that it holds for |N (D)| = n.
Since D is nearly additive, by the lemma above, NJ in the first iteration reduces a pair (a, b) that are siblings in T = T (D)

to a new node c , representing their parent. Denote the distance function after the reduction by D′. We need to prove that D′
is nearly additive and that T (D′) = T \ {a, b}.
Let S be the tree T \ {a, b}with the edge length function defined as follows:
lS(u, v) , lT (u, v)

for all u, v ∈ V (S) \ {c}, and

lS(c, c ′) , lT (c, c ′)+
lT (c, a)+ lT (c, b)

2
for the unique neighbor c ′ of c in S. It should be clear that µ(T ) ≤ µ(S).
We now show that |D′ − DS | < µ(S)/2, i.e., that T (D′) = S = T \ {a, b}. From this, the theorem follows immediately.

For u, v ∈ L(S) \ {c},

|D′(u, v)− DS(u, v)| = |D(u, v)− DT (u, v))| <
µ(T )
2
≤
µ(S)
2
.

For all u ∈ L(S),∣∣D′(u, c)− DS(u, c)∣∣ = ∣∣∣∣D(u, a)+ D(u, b)2
− DS(u, c ′)− lS(c ′, c)

∣∣∣∣
=

∣∣∣∣D(u, a)+ D(u, b)2
− DT (u, c ′)− lT (c ′, c)−

lT (c, a)+ lT (c, b)
2

∣∣∣∣
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≤

∣∣∣∣D(u, a)− DT (u, a)2
+
D(u, b)− DT (u, b)

2

∣∣∣∣
≤

∣∣∣∣D(u, a)− DT (u, a)2

∣∣∣∣+ ∣∣∣∣D(u, b)− DT (u, b)2

∣∣∣∣
<
µ(T )
4
+
µ(T )
4
=
µ(T )
2
≤
µ(S)
2
. �

6. Improved computations of correction formulas

As was mentioned in the introduction, the real input to a reconstruction problem is usually n sequences of length l. The
assumption is that these sequences have evolved from an original ancestor sequence down the branches of the phylogeny,
according to a model of sequence evolution. The distance method approach, to the reconstruction problem, is to first use
the sequences to estimate the actual distances between every pair of leaves, and thereafter find a phylogeny that fits the
estimated distances. That is, from the n sequences of length l, an n× n distance function is computed through a correction
formula. This formula is dependent on the model assumed to have generated the sequences; the most common models are
Jukes–Cantor (JC) [12] and Kimura 2-parameter (K2P) [13].Most correction formulas are in a sense functions of the hamming
distance, e.g., the JC correction formula is given by

JC(s1, s2) , −
3
4
· log

(
1−

4 · H(s1, s2)
3l

)
,

whereH is the hamming distance. Clearly, the straightforwardway of computing this function takesO(l) time, and as a result
the overall running time of computing all estimated distances is O(ln2). Since l typically is larger than n, the computation of
the correction formula is the bottleneck in fast reconstruction algorithms.
Computing all n2 pairwise hamming distances for n strings is a special case of matrix multiplication, and can therefore

be done in O(ln1.376) time [4]. The reduction for strings from the alphabet {A, C,G, T }, is by representing each string by a
row in thematrixM , and code each symbol by the unary code, e.g., by letting A = 1000. Thereby, the elements in thematrix
MMT are l−H(si, sj). It should be noted that the general belief is that matrix multiplication can be done in O(ln) time, which
would imply that the correction formulas can be computed in optimal time. Unfortunately, all existingmatrixmultiplication
algorithms are slow in practice.
Below we present an algorithm that improved the computations of the correction formula by more than a factor of 3,

compared to the straightforward approach. The idea is to first represent each symbol by 2 bits, and then use a precomputed
table with 22k entries to look up the distance for k symbols at a time. In our tests, k = 7 resulted in the best running time.

(1) Code the symbols of the sequences as follows: A = 00, C = 01, G = 10, T = 11.
(2) For each pair of compacted strings ci and cj
(a) Compute the xor Xij = ci

⊕
cj.

(b) Read 2k bits of Xij at a time and use the table to look up the distance for the associated k symbols.

7. Experiments

In this paper it has been shown that both NJ and FNJ have optimal reconstruction radius. However, there are many
distance matrices that are not nearly additive and for which both algorithms reconstruct the closest tree. And for yet more
matrices the algorithms fail to reconstruct the tree, but they do not fail by much. Therefore, it is of major interest to know
how well the two algorithms perform in practice.
Several studies have been made on the accuracy of different reconstruction algorithms, the most notable work being

that by Nakhleh et al. [16]. In that paper, four different methods are examined: NJ, DCM-NJ + MP, Weighbor, and Greedy
Parsimony. And it is noted that the NJ algorithm, because of its speed, is the method of choice when the input data are
accurate, i.e., when the sequence length is large and the corrected distances are close to additive. In this section, we replicate
some of the experiments and show that although the NJ algorithm perform slightly better than the FNJ algorithm, when the
input data are accurate the performance is in fact close to the same.
The test data were produced in the same way as in [16]. First, the model trees were generated through a random birth–

death process using the r8s [19] software package. These trees where then made non-ultrametric, i.e., root to leaf paths
where made to vary in length, by multiplying the edge lengths with a random number in different intervals.1 Subsequently,
sequence data was generated according to the JC model using the Seq-Gen [17] program. The JC correction formula was
then applied to get the distances, and for saturated data a fix factor of 1 was used.

1 Following [16] we used ultrametric deviation 4 and generated sequences with diameter factors 0.05, 0.10, 0.25, and 0.5. E.g. diameter factor 0.25 yields
the interval [1/16, 1].
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Fig. 2. Comparing the accuracy of NJ vs. FNJ for trees with 400 taxa and varying sequence length.

Table 1
Comparing the running time and
accuracy of NJ, FNJ, and GME, for
10 trees of 4000 taxa.

Algo. Time (min) Avg. RF (%)

FNJ 4 10.5
NJ 52 10.1
GME 26 14.1

To measure the accuracy we used the normalized Robinson–Foulds (RF) distance between the model tree and the tree
given by the method. To get statistically robust results we performed 20 runs on each test size, and computed the average
RF rate and standard deviation. In Fig. 2 we plot the average RF rate as a function of the sequence length for trees with
400 taxa. Notice that both methods converge to the true tree as the sequence length increases, and that for accurate data
the methods perform almost the same. For these experiments the standard deviation varied between 1%–4% except for
sequences of length 50. Many more experiments have been performed and the same pattern emerges there too but due to
space limitations these data have been omitted.

7.1. Comparison with GME

In Desper et al. [6], an O(n2) algorithm called GME is introduced that, although it does not have optimal reconstruction
radius, in practice it has acceptable accuracy. However, as is clearly shown in Table 1, for 10 trees of 4000 taxa each, FNJ
outperforms both GME and NJ. When accuracy is concerned the best algorithm is NJ, tightly followed by FNJ. In addition to
GME, Desper et al. present a clever nearest neighbor interchange (NNI) algorithm, that in many cases improves the accuracy
of reconstruction algorithms. It is therefore reasonable to believe that FNJ in conjunction with NNI would be a very fast and
accurate combination.
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