
File: DISTL2 157201 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 6741 Signs: 4787 . Length: 60 pic 11 pts, 257 mm

Journal of Computer and System Sciences � SS1572

Journal of Computer and System Sciences 56, 320�331 (1998)

Optimal Circular Arc Representations: Properties, Recognition,
and Construction*

Lin Chen

FRL, P.O. Box 18345, Los Angeles, California 90018

Received January 24, 1996; revised July 28, 1997

We investigate some properties of minimal interval and circular arc
representations and give several optimal sequential and parallel recogni-
tion and construction algorithms. We show that, among other things,
given an s_t interval or circular arc representation matrix,

v deciding if the representation is minimal can be done in O(log s)
time with O(st�log s) EREW PRAM processors, or in O(1) time with
O(st) common CRCW PRAM processors;

v constructing an equivalent minimum interval representation can
be done in O(log(st)) time with O(st�log(st)) EREW PRAM processors,
or in O(log t�log log t) time with O(st log log t�log t) common CRCW
PRAM processors, or in O(1) time with O(st) BSR processors;

v constructing an equivalent minimal circular arc representation can
be done in O(st) time.] 1998 Academic Press

1. INTRODUCTION

Circular arc graphs are well-known class of intersection
graphs and properly contain interval graphs. Benzer [7]
showed that overlap data involving fragments of a certain
gene could be modeled by a set of intervals. This finding
confirmed the hypothesis that DNA has a linear structure
within genes and helped him win a Nobel prize. Circular arc
graphs also find applications in some other areas such as
register allocation. The best way to allocate registers corre-
sponds to an optimal coloring of an interference graph
which is often a circular arc graph or even an interval graph
(see, e.g., [25]). Many algorithms on circular arc graphs
in the literature work on circular arc representations (see,
e.g., [4, 24, 29]) which can be constructed from circular arc
graphs (see, e.g., [12, 15, 30]). Each circular arc representa-
tion can be represented by a (0, 1)-matrix. For each circular
arc graph, there are infinitely many circular arc representa-
tions, among which minimized representations are the more
efficient ones with no loss of information. In this paper, we
study the properties of minimal interval and circular arc
representations and present some efficient sequential and
parallel recognition and construction algorithms.

In the next section, we will give some definitions and
briefly review some prior work which helps in establishing
the validity of our work. In Section 3, we investigate the
properties of minimal interval and circular arc representa-
tions. Based on these properties, we give efficient sequential
and parallel algorithms for deciding and constructing minimal
interval and circular arc representations in Section 4. Finally,
in Section 5, we conclude the paper with some discussion.

2. PRELIMINARIES

Given a finite family S of nonempty sets, the intersection
graph G has vertices corresponding to the sets of S and
two distinct vertices of S are adjacent if and only if the
corresponding sets of S intersect. S is called an intersection
representation for G. If S is a family of arcs on a circle, G is
called a circular arc graph. If S is a family of arcs on a circle
satisfying the Helly property (i.e., a family of arcs on a circle
such that if several arcs mutually intersect, then the inter-
section of these arcs is nonempty), then G is called a Helly
circular arc graph [23]. Helly circular arc graphs are also
known as 3 circular arc graphs [20].

In this paper, we often use a pair of the locations of two
endpoints of an arc in brackets to denote a closed arc, i.e.,
an arc that includes its two endpoints. If we move along an
arc in the clockwise direction, the last point on the arc is
called clockwise endpoint. The counterclockwise endpoint is
defined analogously. If we use [l0 , l1] to denote an arc, l0

indicates the location of the counterclockwise endpoint
whereas l1 indicates the location of the clockwise endpoint.
Endpoints and the location of endpoints are sometimes used
interchangeably if there is no confusion.

A graph is called an interval graph if it is an intersection
graph on a family of intervals on a real line. If we embed a
set of intervals on a circle which is large enough such that
the intervals do not cover the entire circle, then we have
a circular arc representation for a circular arc graph. It is
known (see, e.g., [12]) that interval graphs are a proper
subclass of 3 circular arc graphs, which are in turn a proper
subclass of circular arc graphs.

Article No. SS981572

3200022-0000�98 �25.00
Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.

* Portions of this paper appeared in preliminary form in ISCAS'89
Proceedings [9], ISAAC'94 Proceedings [13], and EuroPar'95 Proceedings
[14].

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82688774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

File: DISTL2 157202 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 5659 Signs: 4083 . Length: 56 pic 0 pts, 236 mm

The aforementioned classes of graphs can also be equiv-
alently defined as intersection graphs on some finite sets.
Take the circular arc graphs for example. Let D be a circularly
ordered finite set (such as points on a circle). A circular arc
of D is defined as any set of contiguous elements of D. Let
S be a set of circular arcs on D. The intersection graph G of
S is a circular arc graph and the pair (D, S) is a circular arc
representation. Two intersection representations (D1 , S1)
and (D2 , S2) are said to be equivalent if there exists a one-to-
one onto function f : S1 � S2 such that x and y in S1 intersect
if and only if f (x) and f (y) in S2 intersect. (In other words,
two intersection representations are equivalent if and only if
the two corresponding intersection graphs are isomorphic.)
An intersection representations (D, S) is said to be minimal
if there does not exist an element d in D such that (D$, S$)
is an equivalent intersection representation, where D$=
D&[d] and S$ is the corresponding set. An intersection
representation (D, S) is said to be minimum if, for any other
equivalent intersection representation (D$, S$), |D$|�|D|.
We call |D| the size of the intersection representation (D, S).
An element, say d, in D is called an intersection point if there
exist two elements (not necessarily distinct), say s1 and s2 ,
in S such that s1 & s2=[d]. An intersection representation,
say (D, S), is often denoted by a |S|_|D| (0, 1)-matrix. A row,
say R, of the matrix corresponds to an element in S. R(i)=1
if and only if the ith element of D is contained in the element
of S. We will simply refer to the matrix as an intersection
representation if no confusion arises.

A (0, 1)-matrix is said to satisfy the consecutive 1's property
(for rows) if its columns can be permuted in such a way that
the resulting matrix has consecutive 1's in each of its rows.
A (0, 1)-matrix is said to satisfy the circular 1's property (for
rows) if its columns can be permuted in such a way that the
resulting matrix has circularly consecutive 1's in each of its
rows. By definition, an interval representation matrix satisfies
the consecutive 1's property and a circular arc representa-
tion matrix satisfies the circular 1's property.

Suppose D1=[^, � , � ,�], and S1=[[^, �], [� , �],
[� , �], [�]]. The corresponding matrix is

M1=_
1
0
0
0

1
1
0
0

0
1
1
0

0
0
1
1& .

Let D2=[Jack, Queen, King, Ace], and S1=[[Jack],
[Jack, Queen, King], [Queen, King, Ace], [Ace]]. Then
the corresponding matrix is

M2=_
1
1
0
0

0
1
1
0

0
1
1
0

0
0
1
1& .

It is easy to verify that these two interval representations are
equivalent. An equivalent minimal interval representation is

M3=_
1
1
0
0

0
1
1
0

0
0
1
1& ,

which can be obtained by deleting the first column of M1 ,
or by deleting the second or the third column of M2 . Let us
consider a circular arc representation

M4=_
1
1
0
1

0
1
1
0

0
1
1
1

1
0
1
1& .

Deleting the second or the third column yields an equivalent
minimal circular arc representation

M5=_
1
1
0
1

0
1
1
0

1
0
1
1& .

The minimum circular arc representation is

M6=_
1
1
1
1& .

In fact, the intersection graph is also an interval graph and
M6 is the minimum interval representation.

The computation models employed in this paper are
more or less standard. One model used is the well known
parallel random access machine (PRAM) (see, e.g., [3]).
Some of our algorithms are implemented on exclusive read
exclusive write (EREW) PRAM, in which case no concurrent
access is allowed. Some other algorithms are designed for
the common concurrent read concurrent write (CRCW)
PRAM, for which concurrent access is allowed but the
processors must write the same value into a memory loca-
tion in the event of concurrent writes. Also mentioned is a
stronger submodel of CRCW PRAM called priority CRCW
PRAM, for which the processor with the highest priority
succeeds in writing in case of concurrent writes.

It is straightforward to show that if a problem can be
solved in O(T) time with O(P) processors on a PRAM, then
the problem can also be solved in O(PT) time on a RAM.
A PRAM algorithm is said to be work-optimal if its work
bound matches the lower time bound of the sequential

321OPTIMAL CIRCULAR ARC REPRESENTATIONS

File: DISTL2 157203 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 6221 Signs: 5068 . Length: 56 pic 0 pts, 236 mm

algorithm. We say an algorithm, whether sequential or
parallel, is time-optimal if its time bound matches the lower
bound on the corresponding model.

Another model used in this paper is a relatively new one
called broadcasting with selective reduction (BSR) intro-
duced in Akl and Guenther [5]. It can be viewed as a
CRCW PRAM with one extension: the BROADCAST
instruction, which allows all processors to gain access to all
memory locations simultaneously for the purpose of writing.
The BROADCAST instruction is denoted by xj :=Rti _lh

di ,
for 1� j�m and 1�i�n. The ranges of the variables i and
j are sometimes omitted if they are understood. In the instruc-
tion, di is the datum broadcast by processor pi , ti is the
associated tag, _ is one of the section operations in [<, �,
=, �, >, {], and R is one of the binary associative reduction
operations in [� , > , 7, 6, �, &, _], denoting, respec-
tively, Sum, Product, And, Or, Exclusive Or, Maximum,
and Minimum.

The BROADCAST instruction is carried out as follows.
For each memory location xj (with an associated limit
value lj), the proposition (ti_lj) is tested over all broadcast
pairs (ti , di). In every case for which ti satisfies the proposition,
di is accepted by location xj . The set of all data accepted by
xj is reduced to one value based on the specified binary
associative operation R, and stored in xj . If no data are
accepted by a memory location, then there is no change in
the value of the corresponding variable.

In designing PRAM algorithms, we often use the follow-
ing result, usually attributed to Brent [8], to obtain the best
time and processor bounds.

Theorem 1. If a problem can be solved in O(T) time with
O(W) work on a PRAM, then the problem can also be solved
in O(T+W�P) time with P processors on the same PRAM.

Cook, Dwork, and Reischuk [17] established the following
lower bound.

Theorem 2. Computing the OR of n bits requires at least
0(log n) time on machines without simultaneous writes.

However, on CRCW PRAM, the OR of n bits can be
trivially obtained in O(1) time with n processors. The
following lower bound on CRCW PRAM has been given in
Beame and Hastad [6].

Theorem 3. Checking parity for n bits requires at least
0(log n�log log n) time on priority CRCW PRAM if a
polynomially bounded number of processors are used.

We say a problem is in NC if there is an algorithm for
it that runs in polylogarithmic time with a polynomially
bounded number of processors. Such an algorithm is called

an NC algorithm. So Theorem 3 tells us that any NC
algorithm for the parity checking problem requires at least
0(log n�log log n) time on a priority CRCW PRAM. In this
paper, we restrict our discussion of parallel algorithms to
NC algorithms. So any parallel algorithm mentioned in the
paper is meant to be an NC algorithm.

As is known, checking parity for n bits is actually comput-
ing the XOR (Exclusive Or) of n bits. On the BSR model,
it can be done in one step by a single BROADCAST
instruction; pj :=�1=1 a i for 0<i�n and j=1. Therefore,
BSR is in a sense strictly more powerful than priority CRCW
PRAM.

One very useful procedure in parallel computing is the
prefix sum computation. It is not hard to see that the above
PRAM lower bounds apply to the prefix sum computation.
It is known that all prefix sums for an array of n elements
can be obtained in O(log n) time using O(n�log n) EREW
PRAM processors [27], or in O(log n�log log n) time using
O(n log log n�log n) common CRCW PRAM processors
[16], or in O(1) time using O(n) BSR processors [28].

One problem mentioned in Chen [11] is the subarray
computation. Given an array, say a[1 : n], composed of
two types of elements, the problem is to obtain a subarray
b[1 : k] of a[1 : n] such that b[j] is the j th element in a of
type 1, for 0< j�k, where k is the number of elements in a
of type 1. The problem can be solved using the procedure for
computing the prefix sums. It is now easy to conclude the
following.

Theorem 4. The subarray computation can be done in
O(log n) time with O(n�log n) EREW PRAM processors, or
in O(log n�log log n) time with O(n log log n�log n) common
CRCW PRAM processors. Both procedures are work-optimal.
On the BSR model, the problem can be solved in O(1) time with
O(n) processors. The algorithms are all time-optimal.

These results are used frequently in designing other parallel
algorithms. We may not make explicit reference to these
results every time we use them later in this paper. In this
paper, the minimal intersection representation matrices are
obtained through column deletion. So the lower bound for
subarray computation also applies to computing minimal
representations, just as the 0(n log n) sorting lower bound
is valid if the sorting is done by comparison (see, e.g., [2]).

3. PROPERTIES

In this section, we investigate some properties of minimal
interval and circular arc representations.

Lemma 1. Suppose (D, I) is an interval representation.
An element d # D is an intersection point if and only if there
exist intervals Ii and Ij # I (I i and Ij may be the same interval)
such that d is the left endpoint of Ii and the right endpoint
of Ij .

322 LIN CHEN

File: DISTL2 157204 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 6127 Signs: 4891 . Length: 56 pic 0 pts, 236 mm

Proof. (O) By definition.

(o) If d is the left endpoint of Ii and also the right
endpoint of Ij , then the intersection of Ii and Ij is [d]. It
follows from the definition that d is an intersection point. K

Lemma 2. Suppose (D, I) is an interval representation,
and M is the corresponding matrix. An element of D is an
intersection point if and only if the corresponding column of
M is not contained in any other column.

Proof. Without loss of generality, assume |D|�2.

(O) Suppose an element d in D is an intersection point.
Then there exist two intervals Ii and Ij such that their inter-
section is [d]. Consider column Ys of M corresponding to
the element d. Let Yt be an arbitrary column of M other
than Ys . Since d is an intersection point, one of the two
entries Yt(i) and Yt(j) must be 0. So Ys is not contained
in Yt .

(o) Suppose column Ys is not contained in any other
column of M, and suppose d is the corresponding element
in D. Let us consider three cases one by one.

Case 1. Ys is the first column. Then there exists an i such
that Y1(i)=1 and Y2(i)=0. Recall that the 1's in each row
(including row i) of M are consecutive. It follows that the
ith row of M begins with a 1 followed by a sequence of 0's.
So the intersection of I i and I i equals [d]. Therefore, d is an
intersection point.

Case 2. Ys is the last column. Analogous to Case 1.

Case 3. Ys is neither the first column nor the last column.
Since Ys is not contained in any other column, there exists
an integer i such that Ys(i)=1 and Ys&1(i)=0. Likewise,
there exists an integer j such that Ys(j)=1 and Ys+1(j)=0.
Then the intersection of I i and Ij equals [d]. So d is an inter-
section point. K

Theorem 5. Suppose (D, I) is an interval representation
and M is the corresponding matrix. The following four
assertions are equivalent:

1. (D, I) is a minimum interval representation.

2. (D, I) is a minimal interval representation.

3. Every element of D is an intersection point.

4. No column of M contains another.

Proof. (1 O 2) Any minimum interval representation
is a minimal one, by definition.

(2 O 3) Suppose an element d in D is not an intersection
point. Let Yk be the corresponding column of M. Delete Yk

from M. Denote by M$ the resulting matrix. It is easy to see
that any two rows, say the i th and the j th rows, of M inter-
sect if and only if the i th and the j th rows of M$ intersect.
So M$ is an interval representation matrix for the same

graph as M, which contradicts the assumption that (D, I)
is a minimal interval representation. It follows that every
element of D is an intersection point.

(3 O 4) Immediate from Lemma 2.
(4 O 1) Suppose G is the interval graph corresponding

to M. Note that any column of M corresponds to a maximal
clique of G since the column is not contained in any other
column of M. So for any interval representation matrix M$,
there exists a permutation matrix P such that every column
of M appears in PM$; otherwise, M$ would not be an
interval representation matrix for G. It follows that M
corresponds to a minimum interval representation. K

It is already known that a graph is an interval graph if and
only if the vertex versus maximal clique incidence matrix
satisfies the consecutive 1's property [19, 21]. Gilmore and
Hoffman [21] showed that a vertex versus maximal clique
incidence matrix with consecutive 1's in each row corresponds
to a minimum interval representation. The minimality can
be easily established by Theorem 5.

Theorem 6. If M is a vertex versus maximal clique
incidence matrix of an n-vertex interval graph G with con-
secutive 1's in each of its rows, then M corresponds to a mini-
mal (minimum) interval representation of G. In addition, the
size of a minimal (minimum) interval representation of an
interval graph G equals the number of the maximal cliques of
G and is at most n.

Proof. Since each column of M is distinct and corresponds
to a maximal clique of G, it follows that no column of M
contains another. By Theorem 5, M corresponds to a minimal
(minimum) interval representation of G. So the size of a
minimal (minimum) interval representation of an interval
graph G equals the number of the maximal cliques of G.
Since M has n rows, there can be at most n intersection
points. It then follows from Theorem 5 that the size of a
minimal (minimum) interval representation is at most n. K

It is interesting to note that the analogous statement of
Theorem 5 is not valid for circular arc representation. Take
a look at M5 in Section 2. M5 is a minimal circular arc
representation, but it is not a minimum circular arc represen-
tation. In fact, the analogous statements of Lemma 1 and
Lemma 2 for circular arc representation are not valid either.
Consider matrix

M7=_
1
1
0
1

1
0
1
1

1
1
1
0

0
1
1
1& .

The first column corresponds to the counterclockwise
endpoint of the first circular arc (row) and the clockwise
endpoint of the second circular arc (row). However, it does

323OPTIMAL CIRCULAR ARC REPRESENTATIONS

File: DISTL2 157205 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 5939 Signs: 4522 . Length: 56 pic 0 pts, 236 mm

not correspond to any intersection point. In the matrix, no
column is contained in another, but the intersection of any
two circular arcs contains two points. So there are no inter-
section points. We will instead give the following results for
the circular arc representation.

Lemma 3. Suppose (D, A) is a circular arc representa-
tion, and M is the corresponding matrix. A column of M is not
contained in any other column if the corresponding element of
D is an intersection point.

Proof. Analogous to the ``only if'' part of the proof of
Lemma 2. K

Theorem 7. Suppose (D, A) is a circular arc representa-
tion and M is the corresponding matrix. For the following
four assertions, one implies the next:

1. (D, A) is a minimum circular arc representation.

2. (D, A) is a minimal circular arc representation.

3. Every element of D is an intersection point.

4. No column of M contains another.

Proof. (1 O 2) By definition.
(2 O 3) Analogous to the corresponding part of the proof

of Theorem 5.
(3 O 4) Immediate from Lemma 3. K

We have shownabovethatAssertion4 in Theorem7 doesnot
implyAssertion3 andAssertion2 doesnot implyAssertion1, an
interested reader will ask if Assertion 3 implies Assertion 2. The
answer is ``yes.'' The following theorem gives a necessary and
sufficient condition for the minimal circular arc representation.

Theorem 8. Suppose (D, A) is a circular arc representa-
tion. The representation is minimal if and only if every element
of D is an intersection point.

Proof. (O) By Theorem 7.
(o) Let G be the circular arc graph corresponding to the

circular arc representation (D, A). Assume every element of
D is an intersection point, but the representation is not min-
imal. Then there exists an element, say d, in D such that the
intersection graph (denoted by G$) of (D$, A$) is isomorphic
to G, where D$=D&[d] and A$ is the corresponding set of
circular arcs. Recall that every element (including d) of D is
an intersection point. It follows that G$ contains fewer edges
than G. Consequently, G and G$ are not isomorphic. Thus
a contradiction is derived. This completes the proof. K

For circular arc representation satisfying the Helly property,
we have the following properties.

Theorem 9. Suppose (D, A) is a 3 circular arc represen-
tation and M is the corresponding matrix. The following three
assertions are equivalent:

1. (D, A) is a minimum 3 circular arc representation.

2. (D, A) is a minimal 3 circular arc representation.

3. No column of M contains another.

Proof. (1 O 2) By definition.
(2 O 3) Assume M corresponds to a minimal 3 circular

arc representation, and M contains two distinct columns,
say Yi and Yj , such that Yi is contained in Yj . Delete Y i

from M and denote by M$ the resulting matrix. It is easy to
see that M$ corresponds to a 3 circular arc representation
for the same graph as M does, which contradicts the
assumption that M corresponds to a minimal 3 circular arc
representation.

(3 O 1) Suppose G is the 3 circular arc graph correspond-
ing to M. Observe that each column of M corresponds to
a maximal clique. For any 3 circular arc representation
matrix M$, there exists a permutation matrix P such that
every column of M appears in PM$; otherwise, M$ would
not be a 3 circular arc representation matrix for G. It
follows that M corresponds to a minimum 3 circular arc
representation. K

Note that a minimal 3 circular arc representation is not
necessarily a minimal circular arc representation. Let us
take a look at the following example:

M8=_
1 1 1 0

& .

0 1 1 1

1 0 1 1

0 0 0 1

1 0 0 0

0 1 0 0

M8 corresponds to a minimal 3 circular arc representation
but not a minimal circular arc representation since the deletion
of column 3 yields an equivalent circular arc representation.

Gavril [20] characterized 3 circular arc graphs as graphs
whose vertex versus maximal clique incidence matrices satisfy
the circular 1's property, and showed that a vertex versus
maximal clique incidence matrix with circular 1's in each
row corresponds to a 3 circular arc representation. It now
follows easily from Theorem 9 that vertex versus maximal
clique incidence matrices with circular 1's in each row actually
correspond to minimum 3 circular arc representations.

4. PROCEDURES

In this section we will give concrete computational proce-
dures for the recognition and construction of minimum
interval and circular arc representations. We will also study
the optimality of the procedures.

We begin with the problem of testing for minimum
interval representations. We note that if an s_t matrix is a
minimum interval representation matrix, then s�t. The

324 LIN CHEN

File: DISTL2 157206 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 6362 Signs: 4985 . Length: 56 pic 0 pts, 236 mm

reason is that if the matrix is a minimum interval represen-
tation matrix, then all columns of the matrix correspond to
intersection points by Theorem 5. Thus, the number of left
endpoints and therefore the number of rows will be at least t.
Consequently, if s<t, we can conclude immediately that
the representation is not minimum. Suppose we have an
interval representation matrix with size s_t (s�t). We first
check which columns correspond to the intersection points.
Obtaining the intersection points is easy. By Lemma 1, a
column corresponds to an intersection point if and only if it
corresponds to the left endpoint of an interval and also the
right endpoint of an interval. For each row (interval), we
can decide its two endpoints in O(1) time with t EREW
PRAM processors. It then follows easily that all the inter-
section points can be identified in O(1) time with O(st)
common CRCW PRAM processors. For instance, we can
decide which of the t columns correspond to intersection
points in the following way:

0 for i :=1 to t codo l[i] :=0 odoc;
1 for i :=1 to s codo l[b[i]] :=1 odoc

In the above code b[i] gives the location where interval
i begins. After the execution of the above code, column i is
the left endpoint of an interval if and only if l[i]=1.

On the EREW PRAM model, the problem cannot be
solved in O(1) time. In fact, we have established a lower
bound stated in the following theorem.

Theorem 10. Deciding if an s_t interval representation
matrix is minimum requires at least 0(log s) time on a
CREW PRAM, for s�t.

Proof. We prove the theorem by a reduction from
computing the OR. Let b[1], b[2], ..., b[n] be n bits. We
construct an n_n matrix M as

1, if b[i]=1 7 0< j�n,

M[i, j]={0, if b[i]=0 7 i{ j 7 0< j�n,

1, if b[i]=0 7 i= j.

Obviously, M can be constructed in constant time with
O(n2) processors. According to the construction, column i
is not contained in any other column and corresponds to an
intersection point if and only if b[i]=0, for any i. There-
fore, no column of M contains another and all columns of
M correspond to intersection points if and only if the OR of
the n bits is 0. By Theorem 5, no column of M contains
another and all columns of M correspond to intersection
points if and only if M is a minimum interval representation.
So, if deciding whether an interval representation with s
intervals is minimum can be done in o(log s) on a CREW
PRAM then the OR of n bits can also be computed in o(log n)
time on a CREW PRAM, which contradicts Theorem 2.
This completes the proof. K

In fact, the reduction in the proof of the above theorem
can also be used to obtain the 0(log s) time lower bound
for deciding if an s_t circular arc representation matrix
is minimal (recall from Theorem 8 that all columns of M
correspond to intersection points if and only if M is a minimal
circular arc representation) and deciding if an s_t 3 circular
arc representation matrix is minimum (recall from Theorem 9
that no column of M contains another if and only if M is a
minimum 3 circular arc representation matrix) for s�t, on
a CREW PRAM. We list the result as the following theorem.

Theorem 11. At least 0(log s) time is required for deciding
if an s_t circular arc representation matrix is minimal and if
an s_t 3 circular arc representation matrix is minimum, on
a CREW PRAM, for s�t.

Below we will show that deciding if an interval represen-
tation is minimum can be done in O(log s) time by an optimal
EREW PRAM procedure. To implement the algorithm on
EREW PRAM, we will use additional arrays to avoid
concurrent access. To decide which columns correspond to
left endpoints, another s_t array ml is used:

0 for i :=1 to t codo l[i] :=0 odoc; [initialize l]
1 for i :=1 to s codo [initialize ml]
2 for j :=1 to t codo
3 ml[i, j]=0;
4 odoc;
5 odoc;
6 for i :=1 to s codo ml[i, b[i]] :=1 odoc;

[row i of ml contains the first 1 of row i of the
input matrix]

7 for i :=1 to t codo l[i] :=�s
j=1 ml[j, i] odoc;

After executing the above code, l[i]=1 if and only if
column i corresponds to a left endpoint. The only step that
requires more than constant time is line 7, which can be
done in O(log s) time on an EREW PRAM. All steps can be
done optimally. In an analogous way, we can also decide
which columns correspond to right endpoints. Then we know
immediatelywhich columns correspondto intersectionpoints.
Now, deciding if all columns correspond to intersection points
can be done in O(T) time with O(t�T) EREW PRAM
processors for any T, log t�T�t. Recall that the inter-
section points are computed only when t�s. Therefore, we
can conclude the following.

Theorem 12. Given an s_t interval representationmatrix,
deciding if the representation is minimum can be done in
O(log s) time with O(st�log s) EREW PRAM processors, or
in O(1) time with O(st) common CRCW PRAM processors.
Both algorithms are time-and-work-optimal.

If an interval representation matrix is not minimum, we
can obtain an equivalent minimum one by deleting some
columns. However, we cannot obtain such a matrix by simply

325OPTIMAL CIRCULAR ARC REPRESENTATIONS

File: DISTL2 157207 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 6433 Signs: 5419 . Length: 56 pic 0 pts, 236 mm

deleting all columns that do not correspond to intersection
points initially, since deleting one column may change the
status of a neighboring column and make it correspond to
an intersection point. Below we describe a sequential procedure
for obtaining an equivalent minimum interval representation.

First compute l[i] and r[i] for 0<i�t. Then perform
the following task:

0 for i :=1 to t do m[i] :=l[i] 7 r[i] od;
1 i :=1;
2 while i<=t do
3 if l[i]=1 7 r[i]=0 then
4 while r[i]=0 do i :=i+1 od;
5 m[i] :=1;
6 fi;
7 i :=i+1;
8 od;

Line 0 sets m[i] to 1 if and only if column i corresponds
to an intersection point. Then we scan the columns from left
to right (lines 2�8). If a column corresponds to a left endpoint
but not a right endpoint, we will repeatedly remove columns
(keep m[i] as 0) until we have reached a column that
corresponds to a right endpoint (line 4). Then the column
corresponds to an intersection point and will remain (set
m[i] to 1 at line 5), regardless of whether or not the column
corresponds to an intersection point initially. When the
above procedure terminates, the columns that correspond
to intersectionpoints (m[i]=1) form an equivalentminimum
interval representation.

The parallel procedure can work as follows. First, set
m[i]'s as line 0. Then, for each left endpoint that does not
correspond to an intersection point, find the closest right
endpoint, say k, to its right, and set m[k] to 1. It has been
shown that finding the first 1 in a (0, 1)-array can be done
in O(1) time with O(n) common CRCW PRAM processors
[18]. So we can also set m[k] in constant time on common
CRCW PRAM. On the EREW PRAM, finding the closest
right endpoint takes O(log t) time. Once we have identified
all the columns corresponding to maximal cliques, we
simply apply subarray computation on all the rows. Note
that on EREW PRAM, computing an equivalent minimum
interval representation by column deletion requires at least
0(log t) time (see Theorem 4) and at least 0(log s) time (see
Theorem 10) and therefore at least 0(log s+log t) time. It
is now easy to conclude the following.

Theorem 13. Given an s_t interval representationmatrix,
an equivalent minimum interval representation can be obtained
in O(log(st)) time with O(st�log(st)) processors by a time-and-
work-optimal EREW PRAM algorithm, or in O(log t�log log t)
time with O(st log log t�log t) processors by a time-and-
work-optimal common CRCW PRAM algorithm, or in O(1)
time with O(st) processors by a time-optimal BSR algorithm.

As is mentioned above, each column of a minimum interval
representation matrix corresponds to a maximal clique and
the matrix gives the set of all maximal cliques.

Next we will consider the problem of deciding if a circular
arc representation is minimal. It follows from Theorem 8
that the problem can be solved by checking if each column
of the circular arc representation matrix corresponds to an
intersection point. For the same reason as above, if the
input matrix is of size s_t and s<t, then we can conclude
immediately that the representation is not minimal. So we
only need to consider the case s�t. For circular arc represen-
tations, we cannot use exactly the same method in recognizing
intersection points since a point is not necessarily an intersec-
tion point even if it is both the clockwise endpoint and the
counterclockwise endpoint of two arcs.

The procedure works as follows. We first locate all the
clockwise endpoints and counterclockwise endpoints. Then
for each column, say i, perform the following task. If the
column corresponds to a clockwise endpoint and a counter-
clockwise endpoint, then find the shortest arcs, say a and b,
whose clockwise and counterclockwise endpoints are i,
respectively. Then i is an intersection point if and only if the
size of intersection between a and b is 1. Both a and b can
be found using a variation of the procedure for finding the
first 1 in a (0, 1)-array, which takes O(1) time and O(t)
common CRCW PRAM processors [18], or O(log t) time
and O(t�log t) EREW PRAM processors. It is now easy to
conclude the following.

Theorem 14. Given an s_t circular arc representation
matrix, deciding if the representation is minimal can be done
in O(log s) time with O(st�log s) EREW PRAM processors,
or in O(1) time with O(st) common CRCW PRAM processors.
Both algorithms are time-and-work-optimal.

However, obtaining an equivalent circular arc represen-
tation from an arbitrary circular arc representation can not
be done in an analogous way and requires additional work.
Next we will consider how to construct an equivalent
minimal circular arc representation from a circular arc
representation. The method is sketched as follows. For the
same reason as before, we only need to consider the case
when s�t. First we obtain all the clockwise endpoints e[i]'s
and counterclockwise endpoints b[i]'s of all the circular
arcs. Then starting from the first column and ending at the
last column, we perform the following task for each column:
Check, based on the values of b[i]'s and e[i]'s, if the
current column, say c, corresponds to an intersection point.
If so, set m[c] to 1. Otherwise, delete the column (keep
m[c] as 0) and update b[i]'s and e[i]'s if applicable. At the
end of the iteration, each remaining column corresponds to
an intersection point, and all the remaining columns form a
minimal circular arc representation, by Theorem 8. Since we
delete only columns that do not correspond to intersection

326 LIN CHEN

File: DISTL2 157208 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 5686 Signs: 4047 . Length: 56 pic 0 pts, 236 mm

points, the resulting circular arc representation is an equiv-
alent minimal one.

We are now going to present an efficient implementation
of the algorithm. For the convenience of the description, we
assume, in the following, that the indices of the first row and
the first column are both 0. We will also assume that the
input matrix does not contain an all-1 row. From Theorem 8
we can easily show the following property: M corresponds
to a minimal circular arc representation if and only if [1

M]
corresponds to a minimal circular arc representation, where
1 is an all-1 row. So the preceding assumption has no loss
of generality.

0 for i :=0 to s&1 do [compute b and e]
1 for j :=0 to t&1 do
2 if M[i, j]=1 7 M[i, (j+1) mod t]=0

then e[i] := j fi;
3 if M[i, j]=1 7 M[i, (j+t&1) mod t]=0

then b[i] :=j fi;
4 od;
5 od;
6 for i :=0 to t&1 do m[i] :=0 od; [initialize m]
7 for i :=0 to t&1
8 find shortest arc, say j, whose clockwise endpoint
8 is i;
9 find shortest arc, say k, whose counterclockwise

endpoint is i;
10 if both j and k exist and size of their intersection

is 1 then m[i] :=1 fi;
11 if m[i]=0 then [delete column i]
12 for j :=0 to s&1 do [update b and e, if

applicable]
13 if b[j]=i then b[j] :=(i+1) mod s fi;
14 if e[j]=i then e[j] :=(i&1+s) mod s

fi;
15 od;
16 fi;
17 od;

Computing the b[i]'s and e[i]'s (lines 0�5) is straight-
forward and takes O(st) time. Lines 8�9 can be easily done
in O(t) time. If both j and k exist, then we have two arcs
[b[j], i] and [i, e[k]]. The size of the intersection between
the two arcs is 1 if and only if b[j]�i�e[k] or i�e[k]<
b[j] or e[k]<b[j]�i, which can be decided in constant
time.

It is now easy to see that we can obtain an equivalent
minimal circular arc representation in O(st) time. We can
now easily conclude the following.

Theorem 15. Given an s_t circular arc representation
matrix, an equivalent minimal circular arc representation can
be obtained in O(st) time. The algorithm is optimal.

Consider the following sample circular arc representation
matrix:

M9=_
1 1 1 0 0 1

& .

0 1 1 1 0 0

0 0 1 1 1 1

0 1 1 1 1 0

1 1 1 1 0 0

1 1 1 1 1 0

None of the columns correspond to any intersection point.
When columns 0 and 1 have been deleted, column 2 corre-
sponds to an intersection point. So column 2 is not removed,
according to the above procedure. Then the rest of the
columns are all deleted. So the equivalent minimal circular
arc representation matrix is a column that consists of six 1's
only.

The above procedure works in a sequential fashion and
can not be parallelized directly. However, some observa-
tions will help us in obtaining a good parallel algorithm.
It is not hard to see that deleting a column that does not
correspond to an intersection point yields an equivalent
circular arc representation. Moreover, being an intersection
point is not affected by deleting some columns. Nevertheless,
a column can become to correspond to an intersection point
as a result of deleting another column, even though the two
columns are not next to each other. If we delete a column,
the two neighboring columns may change status and become
to correspond to intersection points. Some other columns
may change status, too. Suppose we have two arcs [i, j]
and [j, i]. If column i is deleted, then column j becomes to
correspond to an intersection point and cannot be deleted.
We say two arcs embrace if they intersect at both endpoints
but neither is contained in the other. If we delete a column,
the two neighboring columns and any embracing columns
may change status and become to correspond to intersection
points. It should be obvious that several columns can be
deleted simultaneously if the deletion of one column does
not affect the status of another column. So, if we can identify
those columns efficiently, we can also obtain a more compact
circular arc representation efficiently:

0 for i :=0 to s&1 codo [compute b and e]
1 for i :=0 to t&1 codo
2 if M[i, j]=1 7 M[i, (j+1) mod t]=0

then e[i] :=j fi;
3 if M[i, j]=1 7 M[i, (j+t&1) mod t]=0

then b[i] :=j fi;
4 odoc;
5 odoc;
6 for i :=0 to t&1 codo [initialize left and right]
7 left[i] :=(i+t&1) mod t; [left points to the left

neighbor]

327OPTIMAL CIRCULAR ARC REPRESENTATIONS

File: DISTL2 157209 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 6359 Signs: 4798 . Length: 56 pic 0 pts, 236 mm

8 right[i] :=(i+1) mod t; [right points to the right
neighbor]

9 odoc;
10 for i :=0 to t&1 codo m[i] :=0 odoc;

[initialize m]
11 for z :=0 to wlog2(t&1)x do
12 for i :=0 to t&1 codo [initialize lend and rend]
13 for j :=0 to t&1 codo
14 lend[i, j] :=0; rend[i, j] :=0;
15 odoc;
16 odoc;
17 for i :=0 to s&1 codo [compute lend and

rend]
18 lend[b[i], e[i]] :=1; [lend[i, j]=1 means

[i, j] is an arc]
19 rend[e[i], b[i]] :=1; [rend[i, j]=1 means

[j, i] is an arc]
20 odoc;
21 for i :=0 to t&1 codo if i is an intersection

point then m[i] :=1 fi odoc;
22 construct Gz=(Vz , Ez), where Vz=[vi | m[i]=0

7 0<i<t 7 i mod 2z=07 i mod 2z+1{0]
23 and Ez=[(vi , vj) | lend[i, j]=rend[i, j]=1

7 vi # Vz 7 vj # Vz];
24 find a maximal independent set V$z of Gz ;
25 m[i] :=1 for all vi # Vz&V$z ; [keep columns

in Vz&V$z]
26 for i :=0 to s&1 codo [update b and e]
27 if b[i] mod 2z=0 7 b[i] mod 2z+1{0 7

m[b[i]]=0 then b[i] :=right[b[i]] fi;
28 if e[i] mod 2z=0 7 b[i] mod 2z+1{0 7

m[e[i]]=0 then e[i] :=left[e[i]] fi
29 odoc;
30 for each vi # V$z codo [update left and right]
31 right[left[i]] :=right[i]; left[right[i]] :=

left[i];
32 odoc; [columns in V$z have been conceptually

deleted]
33 od;
34 if column 0 now corresponds to an intersection

point then m[0] :=1 fi;
35 remove column i of M if m[i]=0, for 0�i<t.

Computing the clockwise endpoints e[i]'s and counter-
clockwise endpoints b[i]'s (lines 0�5) is straightforward. In
order to achieve a polylogarithmic time bound, we must
identify columns that can be deleted simultaneously. As
observed earlier in this paper, deleting one column may
make a neighboring column correspond to an intersection
point. So in our algorithm, we only delete (conceptually)
nonneighboring columns simultaneously. This is done by
the for loop (lines 11�33). The loop iterates wlog2(t&1)x+1
times, and processes G0 , G1 , ..., Gwlog2 (t&1)x , successively. It
is easy to see that these graphs have disjoint vertex sets and

�wlog2 (t&1)x
z=0

Vz �[vi | 0<i<t]. Since each vertex corre-
sponds to a column of M, we often find it convenient to use
the two terms interchangeably. To show the correctness of
the algorithm, we first give the following result.

Lemma 4. For each z, Gz does not contain neighboring
columns.

Proof. If Gz has at most one vertex, then it is trivially
true that Gz does not contain neighboring columns.
Suppose Gz has at least two vertices. Then it is necessary
that z<wlog2(t&1)x, since at most one vertex can be in
Gwlog2 (t&1)x by the construction of Gz (see line 22). Suppose
columns i and j are two arbitrary columns in Gz and i< j.
Then there exist two odd integers n1 and n2 such that
i=n12z and j=n2 2z. Let n3 be an even number between n1

and n2 . By definition, column n32z is not in Gs , for 0�s�z.
So when GZ is constructed, column n32z cannot have been
deleted and lies to the right of column i and to the left of
column j. Also note that column 0 lies on the other circular
arc between columns i and j. Therefore, we can conclude
that columns i and j are not neighbors. This completes the
proof of the lemma. K

However, we may not delete several columns simulta-
neously even if no two of them are neighbors, since there
may be some embracing arcs. To resolve this problem, we
construct Gz (lines 22�23) as follows. Associate a column
(and endpoint) with a vertex. If two arcs embrace and the
size of their intersection is 2, then link the two vertices
corresponding to the two endpoints. So, if two vertices are
connected by an edge in the resulting graph, only one of the
two columns can be deleted. If several vertices are mutually
independent (i.e., no two of them are connected by an edge),
then all of the columns can be deleted simultaneously. There-
fore, we compute a maximal independent set of a graph
(line 24). Columns correspondingto the maximal independent
set can be deleted simultaneously. Because of the maximality,
any vertex not in the independent set is connected to a vertex
in the independent set. Consequently, the columns associated
with the vertices outside the independent set will correspond
to intersection points when the columns associated with the
vertices inside the independent set have been deleted. At lines
25�32, we conceptually delete the columns associated with the
vertices of Gz inside the independent set and keep the columns
associated with the vertices of Gz outside the independent set
(by setting m value to 1) and also update b, e, left, and right.

When the for loop (lines 11�33) terminates, all columns
except column 0 have been considered. So we then check if
column 0 can be deleted to obtain an equivalent circular arc
representation. No columns are physically deleted until the
end of the procedure. Since we make sure in the procedure
that column deletion does not affect intersection relation
and at the end of the procedure all columns correspond to
intersection points, we can now conclude from Theorem 8

328 LIN CHEN

File: DISTL2 157210 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 6738 Signs: 5884 . Length: 56 pic 0 pts, 236 mm

that the procedure correctly constructs an equivalent minimal
circular arc representation.

If the procedure runs on M9 , lines 0�5 obtain the follow-
ing result in the form of i[b[i], e[i]]: 0[5, 2], 1[1, 3],
2[2, 5], 3[1, 4], 4[0, 3], 5[0, 4]. During the first iteration
of the for loop (lines 11�33), lines 22�23 construct a graph
G0 with three vertices corresponding to columns 1, 3, and 5,
respectively. The graph does not contain any edge. So all
three columns are conceptually deleted. Lines 26�29 update
b and e, and we obtain the following result: 0[0, 2], 1[2, 2],
2[2, 4], 3[2, 4], 4[0, 2], 5[0, 4].

G1 is empty, so the second iteration of the for loop does
nothing. G2 constructed during the third iteration of the
for loop has only one vertex corresponding to column 4.
The column is conceptually deleted and the circular arcs
after update at lines 26�29 will be: 0[0, 2], 1[2, 2], 2[2, 2],
3[2, 2], 4[0, 2], 5[0, 2]. After three iterations of the for
loop, the control goes to line 34 and checks if column 0
corresponds to an intersection point now. Since column 0
does not correspond to an intersection point, its m value
remains 0. Finally, the procedure physically deletes all
columns that have been conceptually deleted (i.e., columns
whose m value is 0). The resulting matrix contains only
column 2 with six 1's.

Before deriving some efficient resource bounds for construct-
ing equivalent minimal circular arc representations, we will
make some additional assumptions. The first assumption is
that s�t(t&1)�2=O(t2). If this is not true, the input matrix
contains some identical rows. In this case, we can simply
remove and make row duplicates at the beginning and at the
end, respectively. We claim that this processing can be done
within O(log(st)) time and O(st) work. Obviously, any row,
say i, can be represented by a pair, (b[i], e[i]), where 0�i<s
and 0�b[i], e[i]<t. First we sort the rows using radix
sort. Then we can identify row duplication in constant time
with O(s) EREW PRAM processors. We sort e[i]'s by
actually sorting e$[i]'s, where e$[i]=se[i]+i. So each
e$[i] is distinct and is in the range [0, st&1]. Such numbers
can be sorted in O(log(st)) time with O(st�log(st)) EREW
PRAM processors [10]. Then b[i]'s can be sorted using
the same method. Now, the validity of the claim follows
immediately.

The next assumption is that t�s=O(s). If this is not
true, the input matrix contains at least one column that
corresponds to at most one endpoint. In this case, we will
remove some columns without affecting the circular arc
representation so that in the resulting matrix each column
corresponds to at least two endpoints (possibly for one arc).
This can be done as follows (in a way similar to constructing
an equivalent minimal interval representation discussed
earlier in this section). Initialize the value of m[i] as 0, for
all i, 0�i<t. For each counterclockwise endpoint i, check
if point i corresponds to at least two endpoints. If so, set
m[i] to 1. Otherwise, find the next clockwise endpoint,

say j, in clockwise order, and set m[j] to 1. Then, delete
column i if m[i]=0 for all i. All this can be done in O(log(st))
time and O(st) work on an EREW PRAM.

With the above assumptions, let us now consider the
resource requirements of the procedure. It is easy to see that
the most expensive part is the for loop (lines 11�33).
Deciding if i is an intersection point (line 21) can be done by
checking the size of the intersection between the shortest arc
of type [i, j] and the shortest arc of type [k, i]. Since we
have s arcs [b[i], e[i]], 0�i<s, and t columns, this step
(line 21) takes O(log s) time and O(st) work on an EREW
PRAM. Constructing Gz (lines 22�23) is straightforward
and can be easily done within the same resource bounds.
One challenging process is to find a maximal independent
set (line 24). Karp and Wigderson [26] discovered the first
NC algorithm for the problem. It was later shown that the
problem can be solved in O(log3 v) time with O((v+e) log2 v)
work on an EREW PRAM [22], where v and e denote,
respectively, the number of the vertices and the edges in a
graph. In our case, v�t�2=O(t). Since each edge corresponds
to two embracing arcs (rows), we have e�s�2=O(s). There-
fore, line 24 takes O(log3 t) time with O((s+t) log2 t) work on
an EREW PRAM. The total work of the loop body (lines
12�32) is O(st+(s+t) log2 t) = O(st+t log2 t) = O(st)
since t�s. The total time of the loop body is O(log s+log3 t).
By Assumption 1, log s=O(log t). So the loop body takes
O(log3 t) time. Since the loop iterates O(log t) times, the
loop takes O(log4 t) time and O(st log t) work.

Note that the preprocessing that makes the assumptions
valid takes O(log(st)) time and O(st) work. It follows that
computing an equivalent minimal circular arc representa-
tion matrix takes O(log s+log4 t) time and O(st log t)
work on an EREW PRAM. Therefore, we have the following
theorem.

Theorem 16. Given an s_t circular arc representation
matrix, an equivalent minimal circular arc representation
can be obtained in O(log s+log4 t) time with O(st log t�
(log s+log4 t)) processors on an EREW PRAM.

The lower time bound we have obtained on the EREW
PRAM is 0(log(st)) and does not match the above upper
bound. We conjecture that the algorithm is not time-optimal.
The algorithm is work-optimal within a factor of O(log t).

If the input is a 3 circular arc representation matrix and
we need to obtain an equivalent minimum 3 circular arc
representation, then the problem can be solved faster as
follows.

First, we eliminate all column duplication. Then, we check,
for each column, if it is contained in another column. If so,
delete it. According to the procedure, no column contains
another in the resulting matrix. So the resulting matrix gives
an equivalent minimum 3 circular arc representation by
Theorem 9. Deciding whether column i contains column j

329OPTIMAL CIRCULAR ARC REPRESENTATIONS

File: DISTL2 157211 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 12242 Signs: 5964 . Length: 56 pic 0 pts, 236 mm

takes constant time with O(s) common CRCW PRAM
processors. There are O(t2) pairs of columns. So all the inter-
section points can be identified in constant time with O(st2)
common CRCW PRAM processors. On the EREW PRAM,
this can be done in O(log(st)) time with O(st2) work. Once
all the intersection points are identified, we can obtain the
matrix corresponding to an equivalent minimum 3 circular
arc representation by applying subarray computation on all
the rows. Now, it is easy to conclude the following.

Theorem 17. Given an s_t 3 circular arc representation
matrix, an equivalent minimum 3 circular arc representation can
beobtainedinO(log(st)) timewithO(st2�log(st)) EREWPRAM
processors, or in O(log t�log log t) time with O(st2 log log t�
log t) common CRCW PRAM processors, or in O(1) time
with O(st2) BSR processors. All algorithms are time-optimal.

5. DISCUSSION

In this paper, we have studied the properties of minimal
interval and circular arc representations and have given
some efficient sequential and parallel algorithms for the
recognition and construction of such representations. All
the recognition algorithms are optimal. The algorithms for
constructing equivalent minimum interval representations
are also optimal. However, for the problem of constructing
equivalent minimal circular arcs, only the sequential
algorithm is optimal; none of the parallel algorithms can be
proved to be time-and-work-optimal. It is tempting to ask
if we can obtain optimal parallel algorithms for this problem.

The models of parallel computation used in this paper
include EREW PRAM, CRCW PRAM, and BSR. We have
presented algorithms for each of these models and they are
of independent interest. One might ask the following
questions: Which model is the best? Is it sufficient to design
algorithms on only one of the models? It is often debatable
whether one model is better than another. There is no
universal agreement on the answer. It seems premature to
tell at this point. There is an interesting project on building
PRAM-type computers (see, e.g., [1]). BSR is a relatively
new model; the analogous project is not known currently
but it is technically feasible (see, e.g., [28]). The power and
the limitation of BSR are not as well understood and there
is much room for further investigation. It is well known that
the multiplication of two integers can be realized by a short
program with repeated additions. However, multipliers are
implemented in the VLSI chips of most of today's computers.
We do not know for sure whether it is advantageous to include
mechanism in parallel machines that supports broadcasting.
As in the way of deciding Gordon Bell Prize winners, possibly
a good way to compare between PRAM and BSR is to run
sample programs on both types of machines, in which case
efficient algorithms on both PRAM and BSR are needed.

Perhaps someday, the algorithms in this paper will also be
used for this purpose.

ACKNOWLEDGMENT

We thank an anonymous referee for bringing matrix M8 to our attention.

REFERENCES

1. F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul, and D. Scheerer,
On the physical design of PRAMs, Comput. J. 36(8) (1993), 756�
762.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, ``The Design and Analysis
of Computer Algorithms,'' Addison�Wesley, Reading, MA, 1974.

3. S. G. Akl, ``The Design and Analysis of Parallel Algorithms,''
Prentice�Hall, Englewood Cliffs, NJ, 1989.

4. S. G. Akl and L. Chen, Efficient parallel algorithms on proper circular
arc graphs, IEICE Trans. Inform. Systems E79-D(8) (1996), 1015�
1020.

5. S. G. Akl and G. R. Guenther, Broadcasting with selective reduction,
in ``Proceedings, 11th IFIP World Computer Congress'' (G. X. Ritter,
Ed.), pp. 515�520, North-Holland, Amsterdam, 1989.

6. P. W. Beame and J. Hastad, Optimal bounds for decision problems on
the CRCW PRAMs, J. Assoc. Comput. Mach. 36(3) (1989), 643�
670.

7. S. Benzer, On the topology of the genetic fine structure, Proc. Nat.
Acad. Sci. 45 (1959), 1607�1620.

8. R. P. Brent, The parallel evaluation of general arithmetic expressions,
J. Assoc. Comput. Mach. 21 (1974), 201�208.

9. L. Chen, Efficient parallel algorithms for several intersection graphs, in
``Proceedings, 22nd Int'l Symp. on Circuits and Systems,'' pp. 973�976,
IEEE Press, New York, 1989.

10. L. Chen, Efficient deterministic parallel algorithms for integer sorting,
in ``Proc. International Conference on Computing and Information,
Lecture Notes in Computer Science, Vol. 468,'' (S. G. Akl, F. Fiala,
and W. W. Koczkodaj, Eds.), pp. 433�442, Springer-Verlag, New York�
Berlin, 1990.

11. L. Chen, Optimal parallel time bounds for the maximum clique problem
on intervals, Inform. Process. Lett. 42(4) (1992), 197�201.

12. L. Chen, Efficient parallel recognition of some circular arc graphs, I,
Algorithmica 9(3) (1993), 217�238.

13. L. Chen, Revisiting circular arc graphs, in ``Proceedings, 5th Annual
International Symposium on Algorithms and Computation, Lecture
Notes in Computer Science, Vol. 834,'' (D.-Z. Du and X.-S. Zhang,
Eds.), pp. 559�566, Springer-Verlag, New York�Berlin, 1994.

14. L. Chen, Optimal circular arc representations, in ``Proceedings, Inter-
national Conference on Parallel Computing (EuroPar), Lecture Notes
in Computer Science, Vol. 966'' (S. Haridi, K. Ali, and P. Magnusson,
Eds.), pp. 255�266, Springer-Verlag, New York�Berlin, 1995.

15. L. Chen, Efficient parallel recognition of some circular arc graphs, II,
Algorithmica 17(3) (1997), 266�280.

16. R. Cole and U. Vishkin, Faster optimal parallel prefix sums and list
ranking, Inform. Comput. 81(3) (1989), 334�352.

17. S. A. Cook, C. Dwork, and R. Reischuk, Upper and lower time bounds
for parallel random access machines without simultaneous writes,
SIAM J. Comput. 15(1) (1986), 87�97.

18. F. E. Fich, P. L. Ragde, and A. Wigderson, Relations between
concurrent-write models of parallel computation, in ``Proc. 3rd ACM
Symp. on Principles of Distributed Computing,'' pp. 179�189, Assoc.
Comput. Mach., New York, 1984.

330 LIN CHEN

File: DISTL2 157212 . By:CV . Date:10:07:98 . Time:13:57 LOP8M. V8.B. Page 01:01
Codes: 5833 Signs: 1773 . Length: 56 pic 0 pts, 236 mm

19. D. R. Fulkerson and O. A. Gross, Incidence matrices and interval
graphs, Pacific. J. Math. 15 (1965), 835�855.

20. F. Gavril, Algorithms on circular-arc graphs, Networks 4 (1974),
357�369.

21. P. C. Gilmore and A. J. Hoffman, A characterization of comparability
graphs and of interval graphs, Canad. J. Math. 16 (1964), 539�548.

22. M. Goldberg and T. Spencer, Constructing a maximal independent set
in parallel, SIAM J. Discrete Math. 2(3) (1989), 322�328.

23. M. C. Golumbic, ``Algorithmic Graph Theory and Perfect Graphs,''
Computer Science and Applied Mathematics, Academic Press, New
York, 1980.

24. U. I. Gupta, D. T. Lee, and J. Y.-T. Leung, Efficient algorithms for
interval graphs and circular-arc graphs, Networks 12 (1982), 459�467.

25. J. L. Henessy and D. A. Patterson, ``Computer Architecture: A Quan-
titative Approach,'' Morgan Kaufmann, San Mateo, CAN, 1990.

26. R. M. Karp and A. Wigderson, A fast parallel algorithm for the
maximal independent set problem, J. Assoc. Comput. Mach. 32(4)
(1985), 762�773.

27. R. E. Ladner and M. J. Fischer, Parallel prefix computation, J. Assoc.
Comput. Mach. 27(4) (1980), 831�838.

28. L. F. Lindon and S. G. Akl, An optimal implementation of broadcast-
ing with selective reduction, IEEE Trans. Parallel Distrib. Systems 4(3)
(1993), 256�269.

29. M. V. Marathe, H. B. Hunt, III, and S. S. Ravi, Efficient approximation
algorithms for dogmatic partition and on-line coloring of circular arc
graphs, in ``Proceedings, 5th International Conference on Computing
and Information'' (O. Abou-Rabia, C. K. Chang, and W. W. Koczkodaj,
Eds.), pp. 26�30, IEEE Press, New York, 1993.

30. A. C. Tucker, An efficient test for circular-arc graphs, SIAM J. Comput.
9 (1980), 1�24.

� � � � � � � � � � � � � � � � � � � �

331OPTIMAL CIRCULAR ARC REPRESENTATIONS

