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Abstract

We develop the study of some spaces of currents of bidegrep). As an application we
construct the equilibrium measure for a large class of birational mam%koias intersection of
Green currents. We show that these currents are extremal and that the corresponding measure
is mixing.
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1. Introduction

In [17], the second author has introduced a class of polynomial automorphisms
of C*—regular automorphisms-and has constructed for such maps the equilibrium
measures as intersection of invariant positif closed curre@mseen currentgsee also
[16,8]). The measure is proved to be mixing whén= 2 or 3. Regular polyno-
mial automorphisms are Zariski dense in the space of polynomial automorphisms of
a given algebraic degree. In dimension 2, these maps are Hénon-type automorphisms
(see[1,2,12).

In this paper, we develop the theory of some spaces of currents and we construct
Green currents for a larger class of birational mapsPbf We show that the Green
currents are extremal and we obtain a mixing measure as intersection of these currents.
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Every small perturbation of regular polynomial automorphisms belongs to this class.
Our method can be extended to some rational non-invertible self-maf¥ @id to
random iteration.

For a Hénon automorphisri of C2, it was proved in[13] that the Green cur-
rent T, is the unique positive closedL, 1)-current of mass 1 supported di+ :=
{z, (f"(2))n>0 bounded. In particular, this current is extremal. The result was ex-
tended to regular automorphisms|iti7] and to weakly regular automorphisms|it6].

Here, we deal with(p, p)-currents,p > 1. The question is to prove their extremality
which implies the mixing of the equilibrium measure.

The problem was already solved for automorphisms of compact Kéhler manifolds
under the natural assumption that their dynamical degrees are distinct. We proved that
the Green currents are almost extremal, i.e. they belong to finite dimensional extremal
faces of the cone of positive closed currents. We then constructed a mixing measure
[10].

We use here the sammethod ofdd®-resolutionas in[7,9,10] to study the Green
current of some birational maps &¢. The cohomology space is simpler, but we have
to extend our calculus to deal with indeterminacy set (see[8l6§). Most of the paper
deals with the extension of the calculus to new spaces of currents.

Basically the problem is to give a meaning to the formula

(f(T), D) = (T, fu(D))

when f has indeterminacy points (see Proposition 3.5). We believe that this can be
applied in other contexts.

In [15] Guedj has independently proved, for weakly regular automorphisnis®pf
that the Green currents of the right degrees are extremal.

We describe now our situation. Let : P¥ — P* be a birational map of algebraic
degreed >2. Let I* be the indeterminacy set of*1.

Definition 1.1. We say thatff is regular if there exists an integes, 1<s<k — 1, and

open setsV*, U* such that

1.V AT =9, V' cUT andI* c V*.

2. There is a smooth positive closgt — s, k — s)-form @ supported inP* \V+,
strictly positive onU+, and a smooth positive closdd, s)-form @~ supported in
Pk \ V", strictly positive onU .

3. f mapsP*\ VT into Ut; f~1 mapsP*\ vV~ into U~.

Observe that ifP* \V+ (resp.P*\ V") is a union of analytic subsets of dimensisn
(resp.k — s) of P*, it carries a form@* (resp.©®™) as above.

If fis regular ands1, o2 are automorphisms d#* close to the identity, theato foa>
is regular. Whenf is a polynomial automorphism, this definition is equivalent to the
definition of [17], i.e. to the fact that " N1~ = ¢.

Consider a regular birational mdpof algebraic degred >2. Let § be the algebraic
degree off~1. We show that the dynamical degrédg of f is equal tod” for 1< p<s,
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the dynamical degreé, of f~! is equal tod? for 1<g<k —s and d* = ok=s
(Proposition 3.2).

We also prove thay*! arealgebraically stablei.e. no hypersurface is sent under an
iterate of f*1 to its indeterminacy set. Hence, we can constructffé6t Green currents
Ty of bidegree(1, 1) and of mass 1. The currefit. (resp.7-) has Holder continuous
local potentials inP* \VJr (resp.P¥ \ V") and satisfies the relatiofi*(7y) = dT;
(resp. fx(T_) = 6T_) in PX [17].

Let I be the indeterminacy set of*". Define U, := U,>of "(U™) \ I} and
UL :=Upzof"(U7)\ I, . Our main result is the following theorem.

Theorem 1.2. Let f : PK — P* be a regular birational map as above. Then for every

p, g such thatl< p<s and 1<q <k — s, the following holds.

1. If T is a closed positivép, p)-current onP* of massl which belongs tdPC,(VF),
then d~"? f"*(T) converge weakly iV} to Tf. If T is a closed positiveg, q)-
current on P¥ of mass1 which belongs taPC,(V ™), then o™ "I (f™).(T) converge
weakly inUy to T7.

2. The currentsTf and 77 are extremal in the following sense. For every positive
closed (p, p)-current S such thas <77 in P¥, we haveS = ¢T! in UL where
¢ := ||S|l. Analogously for7?.

3. The probability measurgu = T} A T*=5 is invariant mixing and supported in
utnu-.

The spaces PCwill be defined in Section 2. The operatg on positive closed
currents will be defined in Section 3. We use the method 6frddolution (se¢7,9,10)
in order to prove a convergence result, stronger than the weak convergence (point 1 of
Theorem 1.2). This will be done in Section 4. The method gives also a new construction
of Green currents and implies their extremality (point 2 of Theorem 1.2).

The mixing of u is a consequence of point 2 (s§E7,16,10]for the proof). The
spaces of currents we use ag[19,10] are probably of interest: they allow to consider
intersections of currents of bidegrég, p), p > 1 (see Remark 2.3).

In [5], the first author proved thal and T*=* are weakly laminar (se€2] for
Hénon maps). The Holder continuity of local potentialsTaf on U+ implies that the
measureu is PC. It has positive Hausdorff dimension and has no mass on pluripolar
sets (see for exampld.7]). This article replaces the first version of the same paper of
January 2004.

2. DSH and PC currents

We will introduce two classes of currents . Let V be an open set if**. The
class DSH(V) is the space of test current$or the bidegreg0, 0), these currents
are Differences of g.p.S.H. functions which are pluriharmonic in a neigbourhoatl of
Recall that an L function ¢ : P* — RU{—o0} is q.p.s.h.if it is upper semi-continuous
and if dfp> — cw, ¢ > 0, in the sense of currents.
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Here w is the standard Fubini-Study form d& that we normalize by/ of = 1.
A set E c P* is pluripolar if E c {¢p = —oc} for a g.p.s.h. functionp.

The class PQV) is the space of currents of zero order satisfying some regularity
property in* \ V. For example, such a positive closed current of bidegled) has
continuous local potentials if?* \ V (Proposition 2.2).

Let DSH?(V) denote the space of real-valugd— p, k — p)-currents® = @1 — &,
on P* such that
1. ¢; are negative®; |y are L, forms onV;,

2. df®; = QF — Q7 with @ positive closed currents supported fitf \ V.

The mass of a positive or negative curréhof bidegree(k — p, k — p) is given by

the formulal|S| := | / S A w”|. Observe thaf|Q;"|| = |Q; ||. Define

I@llosk := min {[|@1]| + [|@2] + 197 | + 193 ]l, @i, @ as abovg.

So, positive closed currents supportedfif\ V are elements of DSHV). If Sis such
a current andp is a g.p.s.h. function integrable with respect to the trace measure of
S then@S € DSH* (V).
A topology on DSH (V) is defined as follows®™ — & in DSH*(V) if we can
write @ = @Y — @Y", defd™ = Q" — Q™" as above and for = 1,2
1. o™ — @ weakly in PX.
2. (19" + 12" ), =1 is bounded.
3. The tI)}”)’s are locally uniformly bounded iv.

4. The Q}")i’s are supported in the same compact subsePof V.

It is a topology associated to an inductive limit. Observe that smooth forms in
DSHe* (V) are dense in this space. This can be checked by the standard regularization
using automorphisms of*. The following proposition allows to construct currents
in DSH*(V) as solutions of ddequation and shows that they can be used as quasi-
potentials of positive closed currents (see dl50]).

Proposition 2.1. Let ® be a smooth positive closééd— p+1, k— p+1)-form of massl
supported in a compact s& c P¥\V. Let Q be a positive closetk—p+1, k— p+1)-
current of mass m supported in K. Thehere exists aegative(k — p, k— p)-form @ €
C(P*\ K) NDSH—?(V) with L1 coefficientssuch thatdd°® = Q — m©@. Moreover
@ depends linearly and continuously ¢ We also have|®|| ) + | PllpsH< ckm
wherecg > 0 is a constant independent 63. The form@ is continuous where&? is
continuous.

Proof. The diagonald of P¥ x P* is cohomologous to the positive closed form

az,w) = 0@ AP w) + Y o () Aot w).
i#k—p+1
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Following [3, Proposition 6.2.3]sinceP* x P* is homogeneous, we can find a negative
kernel G(z, w) smooth outsided such that d&G = [4] — « and whose coefficients are,
in absolute value, smaller thatiz — w|1~%, ¢ > 0. Define the negative ILform @ by

D(z) == f G(z, w) A Qw).
wePk

If 71 andn, denote the projections d# x P* on its factors, we have = (111)(G A
m5(Q)) and dd® = (n1)(([4]— o) AT5(2)) = Q—mO. The properties oG imply that
@ is smooth onP* \ K, depends continuously of? and |@|lLo(vy + | PllpsSHS ckm.
It is clear that® is continuous where? is continuous. [

Let PG,(V) be the space of positive closég, p)-currentsT which can be extended
to a linear continuous form on DSH? (V). The value of this linear form o e
DSH—?(V) is denoted by(T, ®). Since smooth forms are dense in DSH(V) the
extension is unique. Of course, if @8 = 0, then(T, ®) = [[T] A [®] where [T]
and [@] are classes of and @ in HP-?(X,C) and H*—7:k=P (X, C). Indeed, we can
approach® by dd*-closed forms in DSK?(V) using automorphisms oP*. The
following proposition justifies our notations which suggest that currents in PC have
some continuity property. Lef_,1 denote the cone of positive closed curréhtof
bidegree(k — p 4+ 1, k — p + 1) supported inP* \ V. Define a topology orC;_p41 a@s
follows: Q, — Q in Ci_p,41 if the Q, are supported in the same compact subset of
P¥\V and Q, — Q weakly.

Proposition 2.2. Let T = o + dd°U be a positive closedp, p)-current whereo is a

continuous(p, p)-form and U is a(p — 1, p — 1)-current on P*.

1. If the mapQ — (U, Q), which is defined on smooth forn3 € C;_,,1, can be
extended to a continuous map 6p_ 1, thenT € PC,(V). In particular, if U is
a continuous form orP* \V, thenT e PC, (V).

2. |fkp = 1,thenT € PC(V) if and only if T has Continuous local Potentials in
P\ V.

Proof. 1. Consider a test currerd € DSH~?(V). Write df® = Q© — Q~ where
Q* € Cy_p+1. When @ and QF are smooth, we have

(T, ®) = (a, P) + (U, dd°®) = (a, ®) + (U, Q1) — (U, Q7).

It is clear that if the map? — (U, Q) is well defined and continuous ofy_ 41,
then (T, ®) can be extended to a continuous linear form on BSHV). HenceT <
PC, (V). Using Proposition 2.1, one can prove that the converse is also true. For this,
one has only to considev weakly (p — 1)-convex (see the definition below) since
otherwise the currents in DSH? (V) are dd-closed.

2. We write T = o+ dd°U with o continuous andJ a g.p.s.h. function. Le® be a
smooth positive(k, k)-form of mass 1 supported i\ V. Leta € P*\V and @, be
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the current satisfying d@®, = §, — @ given by Proposition 2.1. Wheit € PCy(V),
using a regularization of,, we get

(T, Dy) = (o0, Py) — (U, O) + U(a).

Since @, and (T, ¢,) depend continuously oa, U is continuous orP* \ V. O

Remark 2.3. The notion of PC regularity allows to consider the intersection of currents.
If T belongs to PG(V) and S be a positive closed current supportedRfi \ V, then

the positive closed current A S is well defined and depends continuously 8n
Indeed, ifp is a test real smooth formy A S belongs to DSH(V). So we can define
(TAS,p):=(T,oNS).

Assume now thatV satisfies some convexity property. We say thatis weakly
s-convexf there exists a non-zero positive closed curréhof bidegree(k — s, k — )
supported inP*\ V. By regularization, we can assume thtis smooth. Assume also
that |@| = 1. Observe that every positive closed current of bidedgsee) intersects
©. Hence, it cannot be supported i

Proposition 2.4. Assume that V is weakly s-convex as above.TLet PC,(V), 1<

p <s. There exists > 0 such that if® is a negative smootks — p, s — p)-form with
dd®@> — '~ P+ then (T, & A %) > — ¢(1 + ||®|). In particular, every g.p.s.h
function is integrable with respect to the trace measiirea =7 and T has no mass
on pluripolar sets.

Proof. By scaling, we can assume thgp|| <1. Hence,® A @ belongs to a compact set
of DSH—?(V). SinceT is in PC,(V), there exists’ > 0 independent off such that

(T, DAO)> —c'. On the other hand, i) is a smooth negativék—s —1, k—s—1)-form
such that dU = @ — w*—*, we have

—/T/\(D/\a)k_s—i—/T/\éb/\@

:/TAqudCU:/TAddC@AUg—/TAwS—P“AU.

We then deduce thatl’, ® A %) > — ¢ wherec > 0 |s independent ofb.
Now consider a g.p.s.h. functiap strictly negative orf** such that délp > —w. Let

¢, be a sequence of negative smooth functions decreasipgstech that déip, > — w.
The first part applied teP = ¢, w° ™7 gives

(T, 0, Py > —c(L+ @, IL1) = — c(L+ [[@llL2).

It follows that (T, c*~7)> — c(1+ ||| ). O
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The above proposition gives a version of Oka’s inequality (geB) in the sense
that T-integrability on the support 0® implies T-integrability.

Proposition 2.5. Let V be a weakly s-convex open set M and T ¢ PC,(V),

1< p<s—1. Let R andR; be positive closedl, 1)-currents. Assume tha&t = w+dd®v

and R; = w+dd°v; wherev andv; are g.p.s.h. and continuous cﬁ?’(‘\V. ThenRAT

is well defined and belongs 1®©C,1(V). In particular, Ry A --- A R, is well defined
and belongs tdPC, (V) for 1<n<s. If T; — T weakly inPC,(V) and v; — v locally

uniformly onP*\ V, then R; A T; — R A T weakly inPC,1(V).

Proof. We can assume that is negative. Proposition 2.4 permits to defiRen T :=
o AT +dd°(vT) (even without assuming that is continuous). It is easy to check by
approximation thaik A 7' is positive. If ® ¢ DSH?~1(V) is a smooth form, we have

(RAT,®) := (T, o A D)+ (T, vdd°®).

When® € DSH—7~1(V) is not smooth, the right-hand side is well defined and depends
continuously on® (see Remark 2.3 for the definition of the meastire. dd°®).

Hence, we can exten® A T to a linear continuous form on DSH/~1(V). It
follows that R A T € PC,,1(V). For the second part of Proposition 2.5, it follows
from Proposition 2.2 thaR; € PC (V). We then use an induction am

To prove the convergence result, we use the above formula:

(Ri ATi, @) := (Ti, 0 A ®) + (T}, v;dCD).

The convergence of the first term is clear fbre DSH—?~1(V). For the second term,
observe thaf; iddcdi are measures with bounded mass supported in the same compact
subset ofP¥ \ V. The convergence follows. [

Let V be as in Proposition 2.5 and &t be a compact analytic subset Bf \ V.
Define C the cone of negative L forms @ e CO(P* \ A) N DSH~7(V) such that
dd°® = QT — Q~ with Q% positive closed supported iR\ V, continuous orfP*\ A
and having no mass of. Here,CO(P* \ A) denotes the space of continuous forms on
Pk A.

We will use the following lemma in Section 4.

Lemma 2.6. Let R; be as in Propositior2.5. Let S be a positive closeg, p)-current,

1< p<s, such thatS< Ry A--- A Rp,. Then S can be extended to a continuous linear
form onC by

(S, @) := (S, D)k :=/ SA®.
P4 PA\A

The continuity is with respect to the topology @¥(P* \ A) N DSH—7 (V).
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Proof. DefineT; := R1A---AR;. Let @, € DSH?(V) be smooth negative forms on
P* such that®, — @ in CO(P*\ A) and in DSH~7(V). We show that linis, @,) =
(S, <D)Pk\A. This will prove the lemma. We have by Fatou’s lemma:

lim sup(S, @) < (S, P)pr, 4

and
limsup(T, — S, @n) <(Tp — S, Phpry 4-

Since, by Proposition 2.57,, ®,) — (T,, ®), we only need to prove thafl,, ®) =
(Tp, @>pk\A. Let u be a negative g.p.s.h. function such thatudgd — w, u = —oc0

on A and u is smooth onP* \ A. Let y be a smooth convex increasing function on
R™ U {—oo} such thaty(0) =1, |xllcc<4 andy =0 on [—oco, —1].

Define u, := y(u/n). These functions are smooth, equal to 0 in neigbourhoods of
A. We also have dd, > — 4n 1w andu, — 1 uniformly on compact sets dP* \ A.
It is sufficient to show that linT,, u, @) = (T,, ).

Let df® = Q" — @~ and defineQ := Qt — Q. We have

(Tp. @) = (0, Tp—1. Q) + (Ty—1. © A B).

This is true for smooth forms and hence férby approximation. On the other hand,
we have

(Tp, un®@) = (ddv), A Tp_1, un®@) + (Tp—1, ® A uy ).
Using an induction orp, we only need to prove that
|im(ddcvp ATy 1, uy @) = (vpT)_1, Q).

Let ¢ > 0, U€P*\ 'V be a neighbourhood &% M a constant such thaif > —inf vp,

and v;” = max(v,, —M). Sincev, is continuous or*\ vV and sinced is continuous
on PX\ A, ddv) AT, 1 A ® — ddv, AT, 1 AP onP*\ A when M — oo. The

measures d‘d)gl ANTp_1 A @ and ddv, A T,_1 A @ are equal inU. Sinceu, — 1

locally uniformly on Pk \ A, there existM andng such that ifn >ng we have

[(ddvy A Tp1, 1, @) — (dd0) AT 1, u, )| <.

Hence, if we replace, by v)/ + M, we can assume that, is positive. In particular,
vﬁ is g.p.s.h. Hence, ddv,Z,Tp_l) is a difference of positive closed currents. It follows
that v, and v, belong to 12(T,_1).
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We have

(ddcvp ATy 1, uy@)=(upvpTp_1, 2) — (du, A dcvp ATy 1, D)
+(duy A dvp A Tp_1, @) — (dduy AvpTp—1, D).

By induction hypothesis, the measuf®,_; A Q has no mass orA (see also
Remark 2.3). Hence, the first term tends (0,7,—1, Q). We show that the other
terms tend to O.

Since +dd%u, <ddu, + 82 1w and ddu, + 82 1w>0, we have

(dduy A v, Tyo1, B)| < —(dduy A Tp1 + 81 Lo A Tp_1, D)

< —(Tp-1, u, dd°®) — 80 H(T)_1, 0 A D).

~

It follows that (dd°u, A v,T,—1, ®) tends to 0. Indeed, since,dd°® — dd°@® in
DSH—P*1(V) and T,—1 € PC,_1(V), we have(T,_1, u,dd®) — (T,_1, dd°®) = 0.

For the other terms it is sufficient to use the Cauchy—-Schwarz inequality and the
property that d, A d°u, can be dominated by 8d + 100:~*w. The functionsu?
satisfy analogous inequalities as thg do. O

3. Regular birational maps

Let f : P* — P* be a dominating rational map of algebraic degege 2. In
homogeneous coordinatésy : --- : zx], we havef = [Py : --- : P;] where P; are
homogeneous polynomials of degréavithout common divisor. Lef” be the graph of
fin P* x P*, ; the canonical projections dP* x P* onto its factors. IfA is a subset
of P, define f(A) := ma(n;(A) N T) and f~1(A) := m1(n, (A) N T). The operators
fx = (m)«(myr)* and f* := (m1)«(mpr)* are well defined and continuous orf°L
forms (forms with 1> coefficients) with value in spaces oftlforms (forms with L}
coefficients). We define thdynamical degree of order pf f by

1/n
dp:=lim || f™(P)|Y" = lim (/kf”*(w”)/\a)k_p)
n—oo n—oo P
1/n
= lIm (/M@ P)7" = lim ( / k(f")*(wk—'f)m”) S ¢
n—oo n—o0 P

These limits always exigil1]. It is easy to see thal,,gdf. The last degred is
the topological degre®f f. It is equal to # ~1(z) for z generic.



T.-C. Dinh, N. Sibony/Journal of Functional Analysis 222 (2005) 202-216 211

Consider now, a birational mafp i.e. a map with topological degree 1. The gét
(resp.I™) of pointsz € P* such thatf (z) (resp.f~1(z)) is infinite is theindeterminacy
setof f (resp. f~1).

Hence fo f~1 = f~1o f = id out of an analytic set. Les denote the algebraic
degree and, the dynamical degree of orderassociated tof -1,

Definition 3.1. We say thaff is s-regular, 1<s <k — 1, if there exist two open setg,

U such that

1.VNU=¢,I1TcVandI~ CU.

2. There is a smooth positive closéd — s, k — s)-form @ supported inP* \ V and
strictly positive onU. We will assume that|@| = 1.

3. f mapsP* \ V into U.

Observe thal is weakly s-convex. IfH is a hypersurface oP*, thenH ¢ V. It
follows thatH cannot be sent by an iterate bfo /™. Hence,f is algebraically stable,
i.e. dedq ") =d" [17].

Proposition 3.2. Let f : PX — P¥ be an s-regular birational map as in Definitic1.
Let I be the indeterminacy set of*". Thenl, C V, I, Cc U, dim[ <k —s —1
and d, = d? for 1<p<s. We have(f")* = (f*)" on H?P(X,C) for 1< p<s.
If f is regular as in Definitionl.1, thendim/, <s — 1, 6, = 07 for 1<g <k —s and
d =8

Proof. Since f" is holomorphic on a neighbourhood & \ V, we havel,- C V.
Since =1 : P*\ U — V is holomorphic, we havd,” c U. If dim I, >k — s, then
the current of integration o intersects® which is cohomologous te**— (recall
dim H?-?(P*, C) = 1). This is impossible sincé,” C V and supp®) NV = @. Since
f is algebraically stablef"*(w) is a positive closedl, 1)-current of mass/” and
smooth onlP¥ \ I+. We have seen that diff <k —s — 1. The intersection theory
[4,14] implies that f™*(w) A --- A f™(w) (p times, p<s) is well defined and does
not charge algebraic sets. Its mass is equalth We deduce from (1) thai, = d”
and (f")* = (f*)" on HP-P(P*, C). Whenf is regular, we prove in the same way
that dimZ,” <s — 1 andd, = ¢7. We obtain from (1) that/; = ;. It follows that
=0 0O

Remark 3.3. The identity (f")* = (f*)" on HP-P(X, C) corresponds to an algebraic
stability of higher order. The notion can be introduced for meromorphic maps on a
compact Kahler manifold. Proposition 3.2 is valid in a more general case.

Let T be a positive closedp, p)-current onP*. The restriction fo of f to PX \
f~Y(I7)uUI* is an injective holomorphic map. We can defif(T) on PX\ f=1(1-)u
IT. By approximation, one can check that this is a positive closed current of finite
mass (see alsfll]). Let f*(T) denote the trivial extension ofj(7) on P*. By a
theorem of Skodd18], f*(T) is positive and closed.
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If 7, — T, we have f*(T,) — f*(T) on PK\ f=Y(I~) U I*. Moreover, f*(T) is
smaller than every limit value of the sequence™(7,). More precisely, the current
7 — f*(T) is positive closed and supported jiri(7-) U I,

Assume now that & p<s. Proposition 3.2 implies thafl f*(T)|| = d?|T| for
T smooth. Using a regularization of, we deduce from the above properties that
I F*(D)| <dP|IT|. When | f*(T)| = dP||T|, we define f*(T) := f*(T). We define
similarly f, and f, on positive closed currents.

Lemma 3.4. The operatorf* is continuousif f*(7,) and f*(T) are well defined in
the above sense and 7§, — T then f*(T,,) — f*(T). If f*(T) is well definedthen
so is f*(S) for every positive closed current S such thsaf T.

Proof. We have lim||7,|| = ||T|. It follows that lim| f*(T,)| = d”||T| = || f*(T)|.
On the other handf*(7,,) — f*(T) in P*\ f~Y(1-)uUIt and f*(T) does not charge
F~YI)uIt. Hence f*(T,) — f*(T) in P*,

We have | f*(SII<d?|ISIl, 1T = HI<dPIIT — S| and || f*(T)|| = dP|IT]|. It
follows that || f*(S)|| = d?|S||. Hence f*(S) is well defined. O

Proposition 3.5. The operatorsf, : DSH~?(V) — DSH?(V) and f* : PC,(V)
— PC,(V), 1<p<s, are well defined and are continuous. We hagg")* =
5" DN = dPIT| and (f*(T), @) = (T, fu(P)) for T € PC,(V) and @ ¢
DSH=7(V).

Proof. Let ® e DSH7(V). Using a partition of unity, we can writd = & + ¢
where @ is a L form with compact support iv and @ is a current with support
in P\ 1. By Definiton 3.1, f1 : PX\U — V and f : P*\ It — Pt are
holomorphic. Thenf.(#?) = (f~1H*(@P) and f.(#?) are well defined. The first
assertion follows, eve®™ and @ are not necessarily in DSH? (V).

Consider now a smooth positive closed fofne DSH (V). Recall that by Propo-
sition 2.4, if T is in PC,(V), thenT and f*(7T) do not charge analytic sets. We have

(f5(T), @) = (T, fu(P))pky ;- = /Pk T A fu(D).

\/

We next show thatT, f*(d?))pk\l, =T, fx(D)).

Let W be a form, smooth outsidé~, such that déW = f,(®) — mew*~? and letd
be a smooth function supported i, equal to 1 in a neighbourhood @f. Here,m
is the mass off,(®). Define ¥ := dd°(OW) + cw* P A @, ¢ > 0 big enough. Ther¥
is positive closed, supff) ¢ P\ V and ¥ — f.(®) is smooth. This form? belongs
to DSH?(V). We only need to show thaf, V)pry - = (T, P).

Let u, be as in Lemma 2.6 but we replageby /. We have

(T, P)pk, ;- = im(T, u, W) = (T, V)

U
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becausel’ € PC,(V) andu,¥ — ¥ in DSH =P (V). So (f*(T), @) = (T, f.(P)) for
@ € DSH?(V) smooth positive and closed. Fdr= o’~? A O, we get

(DI = (f*(T), @) = (T, fu(®@)) =d"|T].

The last equality follows from a regularization of the positive closed curigit)
and the properties] f(®)|| = d? and T € PC,(V). Hence f*(T) is well defined and
equal to f*(T).

Assume now thatb is a smooth positive form in DSH” (V) not necessarily closed.
Using a regularization off,(®) in DSH—7(V), we get

(FHT), ) = (T, (@), ;- (T, fu(®)).
On the other hand, if?’ > ® is a smooth closed form, we also have
(f(T), ' — ®) = (T, fo(P — €D)>pk\,7 T, fo(D' — D)).

The equality( f*(T), @) = (T, f.(®")) implies that( f*(T), ®) = (T, f.(P)). This also
holds for @ smooth non-positive because we can widteas a difference of positive
forms.

From the first assertion of the proposition, it follows that the right-hand side of the
last equality is well defined for everp ¢ DSH—?(V) and depends continuously on
@. This allows to extendf*(T) to a continuous linear form on DSH? (V). Hence
f*(T) € PC,(V). The continuity of /* and the equality f/")* = (f*)" are clear. [

4. Convergence toward the Green currents

Let f be ansregular birational map of algebraic degrée=2 as in Definition 3.1.
Recall that the Greeiil, 1)-current7, := limd~"(f")*(w) of f has continuous local
potentials in a neigbourhood @ \ V [17]. Proposition 2.5 shows thdff is well
defined for X p<s. It belongs to PG(V). Moreover, we have limd=" f"*(w?f) =
Tf in P\ V. The last property follows from a uniform convergence of potentials of
d=" f"™(w) (see[17]). This is also reproved in Theorem 4.1. We haV&T?!) = a?T?.

Let 7,7 be the indeterminacy set of”. Define Us := U,>o0f " (U) \ L. In this
section, we prove the following result which implies Theorem 1.2.

Theorem 4.1. Let f : P¥ — PK be an s-regular birational map as above. Then for
every p 1< p<s, the following holds
1. If T € PC,(V) is a positive closed current of mads thend=?" f"*(T) converge
weakly inUy, to Tf. Moreover every limit value of the sequenee™? f"*(T) is
in PC,(V). The convergence is also valid in the weak topologyGf, (V).
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2. If S is a positive closedp, p)-current such thats<7? in PX, then S = ¢T?! in
Uy Wherec :=||S].

Proof. 1. Let® be a(k—p, k— p)-current in DSH=P (V). Write dff® = Q = QT —Q~
where QF are positive closedk — p + 1, k — p + 1)-currents supported ik \ V.

Assume that|Q*|| = 1. Define @ := (f").(Q%) and Q, := Q" — Q for n>0.
They are supported it for n>1 and we have|QF | = 47—,

Let &£ be the solution of the equation @8- = QF — ¢(P=Dy=P+1 A @ given
in Proposition 2.1. Thel'),ﬂf’s are negativelk — p, k — p)-forms, smooth on/ and they
satisty [| ;5 [[Lv) + [ D5 llosnSd P~

Define @,, := dijf -, Yo:=P—-Dgand ¥, 1 := fi(Py) — Py41. The formsd,
are smooth oV, dd°®, = Q, and ||®, psh<d?~" for n>1.

By Proposition 3.5| %, |lpsp<d?~D".

Since dd¥, = 0, we can associate t#, a classh, in Hx—7*=r(P* C). We have
bnl| Sl 2 Sd P~

Since we assume thdt € PC,(V), Proposition 3.5 allows the following calculus:

(f"™(T), ®)=(f"*(T), Wo) + (f"*(T), Po)
=(f"(T), Yo) + (f""V*(D). fu(@0))
=(f"(T), o) + (£ DXT), W1) + (fOV5(T), B1)
=(f"™(T), Wo) + (f" V(). Y1) + (f"72%(T). fu(P1)).

Using the equalityfy(®,) = ¥,+1 + ®,+1 we obtain by induction that

(f™(T), ®Yy=(f"(T), Wo) + (f"~V*(T), ¥1)
+"'+(T» T,J-{-(T, ¢n> (2)

Since f*(T) is cohomologous tel?"w”, using a regularization of &eclosed cur-
rents ¥; in DSH7(V), we get

(d=P" f"™(T), &) = /[wp] ANbo+d Pbr+---+d P"by) +d T, ®p).

Recall that T € PC,(V) and | ®F|L~) + [|9F|psu<d P~ D", It follows that
limd—P"(T, @,) = 0. The relations||b, || <d?~1" imply that

lim({d=P" f"™(T), &) = [[wp] Acg Where cg:= Z d=P"b,. 3)

n>0
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Propositions 2.1 and 3.5 imply also that depends continuously o e
DSH~?(V). So, (3) implies that every limit value of the sequedce” f™*(T) belongs
to PG, (V).

Consider now a smooth real-valugk — p, k — p)-form @ supported inJ. Observe
that @ can be written as a differenc@; — @2 of negative forms supported id and
that df®; + c(w* Pt A ©) is positive fore > 0 big enough.

It follows that @ € DSH 7 (V). By (3), d~P" f™(T) converge onU to a current
which does not depend ofh. Hence, limd=?" f"*(T) = Tj_’ on U since this is true
for T = w” (and for T = T7).

The relation f"*(T) = a"?T! implies that limd =" f"*(T) = T? on Us.

2. Letc be the mass dband definesS,, := d"?(f").(S). We haves,, ng. By Lemma
3.4, f"*(S,) is well defined. From Proposition 2.zr,j_’ has no mass on analytic sets.
It follows that f*(S,,) = d"’S since this holds out of an analytic set. We also deduce
that ||S,|| = c.

Assume that® is smooth and supported id.

Proposition 2.1 shows thak; and ¥; belong to the space generated by the class
as in Lemma 2.6 forA = U; <, f'(I7).

Hence, we can apply Lemma 2.6 &) = T, and to(f"*~/)*(S,). We get

(TS0, @) = ((F"7)*(Sn), f2(@)))

since these integrals can be computed out of the singularitis @f and f.(®;).
The continuity in Lemma 2.6 and a regularization 8f using automorphisms dp*
imply that the integrak(/"~/)*(S,), ¥;) is cohomological. We can then apply (2) to
Sy —cT?!. SinceS, — ¢T! is cohomologous to 0, we get

d"(S — cTl, ®)=(f"(S, — cTT), ®) = (S, — cTL, Dy)
=(8Sy — cTL, & — @),

n

The relationss, gTJf and <D,?<0 imply that the last expression is dominated by a
combination ol 77, &;7) and of (T./, ®,). Hence, sincd{ e PC,(V) andd~ P~ D" @*
belong to a compact set in D$H (V), we have

d"P|(S — cT?E, ®)|<dP=Dm,

It follows that (S — ch, @) = 0 for every smooth formp supported inU.

Hence,S = ¢T! on U. In the same way, we show th&it = c7.7 on U. The relations
F*(Sy) =d™S and f*(T0) = d"PTY imply that S = ¢T.f on f~"(U)\ 1, for every
n>1. O

Remark 4.2. The convergence in Theorem 3.1 is uniform @ne PC,(V) such that
(T, ®)|<c(|PllL(v) + [ PllpshH), ¢ > O, for every® € DSH =7 (V).
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