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Abstract

We develop the study of some spaces of currents of bidegree(p, p). As an application we
construct the equilibrium measure for a large class of birational maps ofPk , as intersection of
Green currents. We show that these currents are extremal and that the corresponding measure
is mixing.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In [17], the second author has introduced a class of polynomial automorphisms
of Ck—regular automorphisms—and has constructed for such maps the equilibrium
measures as intersection of invariant positif closed currents—Green currents(see also
[16,8]). The measure is proved to be mixing whenk = 2 or 3. Regular polyno-
mial automorphisms are Zariski dense in the space of polynomial automorphisms of
a given algebraic degree. In dimension 2, these maps are Hénon-type automorphisms
(see[1,2,12]).
In this paper, we develop the theory of some spaces of currents and we construct

Green currents for a larger class of birational maps ofPk. We show that the Green
currents are extremal and we obtain a mixing measure as intersection of these currents.
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Every small perturbation of regular polynomial automorphisms belongs to this class.
Our method can be extended to some rational non-invertible self-maps ofPk and to
random iteration.
For a Hénon automorphismf of C2, it was proved in[13] that the Green cur-

rent T+ is the unique positive closed(1,1)-current of mass 1 supported onK+ :=
{z, (f n(z))n�0 bounded}. In particular, this current is extremal. The result was ex-
tended to regular automorphisms in[17] and to weakly regular automorphisms in[16].
Here, we deal with(p, p)-currents,p > 1. The question is to prove their extremality
which implies the mixing of the equilibrium measure.
The problem was already solved for automorphisms of compact Kähler manifolds

under the natural assumption that their dynamical degrees are distinct. We proved that
the Green currents are almost extremal, i.e. they belong to finite dimensional extremal
faces of the cone of positive closed currents. We then constructed a mixing measure
[10].
We use here the samemethod ofddc-resolution as in [7,9,10] to study the Green

current of some birational maps ofPk. The cohomology space is simpler, but we have
to extend our calculus to deal with indeterminacy set (see also[8,6]). Most of the paper
deals with the extension of the calculus to new spaces of currents.
Basically the problem is to give a meaning to the formula

〈f ∗(T ),�〉 = 〈T , f∗(�)〉

when f has indeterminacy points (see Proposition 3.5). We believe that this can be
applied in other contexts.
In [15] Guedj has independently proved, for weakly regular automorphisms ofCk,

that the Green currents of the right degrees are extremal.
We describe now our situation. Letf : Pk → Pk be a birational map of algebraic

degreed�2. Let I± be the indeterminacy set off±1.

Definition 1.1. We say thatf is regular if there exists an integers, 1�s�k − 1, and
open setsV ±, U± such that
1. V

± ∩ U
± = ∅, V ± ⊂ U∓ and I± ⊂ V ±.

2. There is a smooth positive closed(k − s, k − s)-form �+ supported inPk \ V +
,

strictly positive onU
+
, and a smooth positive closed(s, s)-form �− supported in

Pk \ V −
, strictly positive onU

−
.

3. f mapsPk \ V + into U+; f−1 mapsPk \ V − into U−.

Observe that ifPk \ V +
(resp.Pk \ V −

) is a union of analytic subsets of dimensions
(resp.k − s) of Pk, it carries a form�+ (resp.�−) as above.
If f is regular and�1, �2 are automorphisms ofPk close to the identity, then�1◦f ◦�2

is regular. Whenf is a polynomial automorphism, this definition is equivalent to the
definition of [17], i.e. to the fact thatI+ ∩ I− = ∅.
Consider a regular birational mapf of algebraic degreed�2. Let � be the algebraic

degree off−1. We show that the dynamical degreedp of f is equal todp for 1�p�s,
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the dynamical degree�q of f−1 is equal to�q for 1�q�k − s and ds = �k−s

(Proposition 3.2).
We also prove thatf±1 arealgebraically stable, i.e. no hypersurface is sent under an

iterate off±1 to its indeterminacy set. Hence, we can construct forf±1 Green currents
T± of bidegree(1,1) and of mass 1. The currentT+ (resp.T−) has Hölder continuous
local potentials inPk \ V +

(resp.Pk \ V −
) and satisfies the relationf ∗(T+) = dT+

(resp.f∗(T−) = �T−) in Pk [17].
Let I±

n be the indeterminacy set off±n. Define U+∞ := ∪n�0f
−n(U+) \ I+

n and
U−∞ := ∪n�0f

n(U−) \ I−
n . Our main result is the following theorem.

Theorem 1.2. Let f : Pk → Pk be a regular birational map as above. Then for every
p, q such that1�p�s and 1�q�k − s, the following holds.
1. If T is a closed positive(p, p)-current onPk of mass1 which belongs toPCp(V +),

then d−npf n∗(T ) converge weakly inU+∞ to T
p
+ . If T is a closed positive(q, q)-

current onPk of mass1 which belongs toPCq(V −), then �−nq(f n)∗(T ) converge
weakly inU−∞ to T

q
−.

2. The currentsT p
+ and T

q
− are extremal in the following sense. For every positive

closed (p, p)-current S such thatS�T
p
+ in Pk, we haveS = cT

p
+ in U+∞ where

c := ‖S‖. Analogously forT q
−.

3. The probability measure� = T s+ ∧ T k−s− is invariant, mixing and supported in
U+ ∩ U−.

The spaces PCp will be defined in Section 2. The operatorf ∗ on positive closed
currents will be defined in Section 3. We use the method of ddc-resolution (see[7,9,10])
in order to prove a convergence result, stronger than the weak convergence (point 1 of
Theorem 1.2). This will be done in Section 4. The method gives also a new construction
of Green currents and implies their extremality (point 2 of Theorem 1.2).
The mixing of � is a consequence of point 2 (see[17,16,10] for the proof). The

spaces of currents we use as in[7,9,10] are probably of interest: they allow to consider
intersections of currents of bidegree(p, p), p > 1 (see Remark 2.3).
In [5], the first author proved thatT s+ and T k−s− are weakly laminar (see[2] for

Hénon maps). The Hölder continuity of local potentials ofT± on U± implies that the
measure� is PC. It has positive Hausdorff dimension and has no mass on pluripolar
sets (see for example[17]). This article replaces the first version of the same paper of
January 2004.

2. DSH and PC currents

We will introduce two classes of currents inPk. Let V be an open set inPk. The
class DSH•(V ) is the space of test currents. For the bidegree(0,0), these currents
are Differences of q.p.S.H. functions which are pluriharmonic in a neigbourhood ofV .
Recall that an L1 function� : Pk → R∪{−∞} is q.p.s.h.if it is upper semi-continuous
and if ddc�� − c�, c > 0, in the sense of currents.
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Here� is the standard Fubini–Study form onPk that we normalize by
∫

�k = 1.
A set E ⊂ Pk is pluripolar if E ⊂ {� = −∞} for a q.p.s.h. function�.
The class PC•(V ) is the space of currents of zero order satisfying some regularity

property inPk \ V . For example, such a positive closed current of bidegree(1,1) has
continuous local potentials inPk \ V (Proposition 2.2).
Let DSHk−p(V ) denote the space of real-valued(k−p, k−p)-currents� = �1−�2

on Pk such that
1. �i are negative,�i|V are L∞loc forms onV;
2. ddc�i = �+

i − �−
i with �±

i positive closed currents supported inPk \ V .
The mass of a positive or negative currentS of bidegree(k − p, k − p) is given by

the formula‖S‖ := | ∫ S ∧ �p|. Observe that‖�+
i ‖ = ‖�−

i ‖. Define

‖�‖DSH := min
{‖�1‖ + ‖�2‖ + ‖�+

1 ‖ + ‖�+
2 ‖,�i , �±

i as above
}
.

So, positive closed currents supported inPk \V are elements of DSH•(V ). If S is such
a current and� is a q.p.s.h. function integrable with respect to the trace measure of
S, then�S ∈ DSH•(V ).
A topology on DSH•(V ) is defined as follows:�(n) → � in DSH•(V ) if we can

write �(n) = �(n)
1 − �(n)

2 , ddc�(n)
i = �(n)+

i − �(n)−
i as above and fori = 1,2

1. �(n) → � weakly in Pk.
2. (‖�(n)

i ‖ + ‖�(n)+
i ‖)n�1 is bounded.

3. The�(n)
i ’s are locally uniformly bounded inV.

4. The�(n)±
i ’s are supported in the same compact subset ofPk \ V .

It is a topology associated to an inductive limit. Observe that smooth forms in
DSH•(V ) are dense in this space. This can be checked by the standard regularization
using automorphisms ofPk. The following proposition allows to construct currents
in DSH•(V ) as solutions of ddc-equation and shows that they can be used as quasi-
potentials of positive closed currents (see also[10]).

Proposition 2.1. Let� be a smooth positive closed(k−p+1, k−p+1)-form of mass1
supported in a compact setK ⊂ Pk\V . Let� be a positive closed(k−p+1, k−p+1)-
current of mass m supported in K. Then, there exists anegative(k−p, k−p)-form � ∈
C∞(Pk \K)∩DSHk−p(V ) with L1 coefficients, such thatddc� = � −m�. Moreover,
� depends linearly and continuously on�. We also have‖�‖L∞(V ) + ‖�‖DSH�cKm

where cK > 0 is a constant independent of�. The form� is continuous where� is
continuous.

Proof. The diagonal	 of Pk × Pk is cohomologous to the positive closed form


(z, w) := �(z) ∧ �p−1(w) +
∑

i �=k−p+1

�i (z) ∧ �k−i (w).
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Following [3, Proposition 6.2.3], sincePk×Pk is homogeneous, we can find a negative
kernelG(z,w) smooth outside	 such that ddcG = [	]−
 and whose coefficients are,
in absolute value, smaller thanc|z−w|1−2k, c > 0. Define the negative L1 form � by

�(z) :=
∫
w∈Pk

G(z,w) ∧ �(w).

If �1 and�2 denote the projections ofPk × Pk on its factors, we have� = (�1)∗(G∧
�∗
2(�)) and ddc� = (�1)∗(([	]−
)∧�∗

2(�)) = �−m�. The properties ofG imply that
� is smooth onPk \K, depends continuously on� and ‖�‖L∞(V ) + ‖�‖DSH�cKm.
It is clear that� is continuous where� is continuous. �
Let PCp(V ) be the space of positive closed(p, p)-currentsT which can be extended

to a linear continuous form on DSHk−p(V ). The value of this linear form on� ∈
DSHk−p(V ) is denoted by〈T ,�〉. Since smooth forms are dense in DSHk−p(V ) the
extension is unique. Of course, if ddc� = 0, then 〈T ,�〉 = ∫ [T ] ∧ [�] where [T ]
and [�] are classes ofT and� in Hp,p(X,C) andHk−p,k−p(X,C). Indeed, we can
approach� by ddc-closed forms in DSHk−p(V ) using automorphisms ofPk. The
following proposition justifies our notations which suggest that currents in PC have
some continuity property. LetCk−p+1 denote the cone of positive closed current� of
bidegree(k − p + 1, k − p + 1) supported inPk \ V . Define a topology onCk−p+1 as
follows: �n → � in Ck−p+1 if the �n are supported in the same compact subset of
Pk \ V and�n → � weakly.

Proposition 2.2. Let T = 
 + ddcU be a positive closed(p, p)-current, where
 is a
continuous(p, p)-form and U is a(p − 1, p − 1)-current onPk.
1. If the map� �→ 〈U,�〉, which is defined on smooth forms� ∈ Ck−p+1, can be

extended to a continuous map onCk−p+1, then T ∈ PCp(V ). In particular, if U is
a continuous form onPk \ V , then T ∈ PCp(V ).

2. If p = 1, then T ∈ PC1(V ) if and only if T has Continuous local Potentials in
Pk \ V .

Proof. 1. Consider a test current� ∈ DSHk−p(V ). Write ddc� = �+ − �− where
�± ∈ Ck−p+1. When� and�± are smooth, we have

〈T ,�〉 = 〈
,�〉 + 〈U,ddc�〉 = 〈
,�〉 + 〈U,�+〉 − 〈U,�−〉.

It is clear that if the map� �→ 〈U,�〉 is well defined and continuous onCk−p+1,
then 〈T ,�〉 can be extended to a continuous linear form on DSHk−p(V ). HenceT ∈
PCp(V ). Using Proposition 2.1, one can prove that the converse is also true. For this,
one has only to considerV weakly (p − 1)-convex (see the definition below) since
otherwise the currents in DSHk−p(V ) are ddc-closed.
2. We writeT = 
 + ddcU with 
 continuous andU a q.p.s.h. function. Let� be a

smooth positive(k, k)-form of mass 1 supported inPk \V . Let a ∈ Pk \V and�a be
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the current satisfying ddc�a = �a − � given by Proposition 2.1. WhenT ∈ PC1(V ),
using a regularization of�a , we get

〈T ,�a〉 = 〈
,�a〉 − 〈U,�〉 + U(a).

Since�a and 〈T ,�a〉 depend continuously ona, U is continuous onPk \ V . �

Remark 2.3. The notion of PC regularity allows to consider the intersection of currents.
If T belongs to PCp(V ) andS be a positive closed current supported inPk \ V , then
the positive closed currentT ∧ S is well defined and depends continuously onS.
Indeed, if� is a test real smooth form,� ∧ S belongs to DSH•(V ). So we can define
〈T ∧ S,�〉 := 〈T ,� ∧ S〉.

Assume now thatV satisfies some convexity property. We say thatV is weakly
s-convexif there exists a non-zero positive closed current� of bidegree(k − s, k − s)

supported inPk \V . By regularization, we can assume that� is smooth. Assume also
that ‖�‖ = 1. Observe that every positive closed current of bidegree(s, s) intersects
�. Hence, it cannot be supported inV .

Proposition 2.4. Assume that V is weakly s-convex as above. LetT ∈ PCp(V ), 1�
p�s. There existsc > 0 such that if� is a negative smooth(s − p, s − p)-form with
ddc�� − �s−p+1, then 〈T ,� ∧ �k−s〉� − c(1 + ‖�‖). In particular, every q.p.s.h
function is integrable with respect to the trace measureT ∧ �k−p and T has no mass
on pluripolar sets.

Proof. By scaling, we can assume that‖�‖�1. Hence,�∧� belongs to a compact set
of DSHk−p(V ). SinceT is in PCp(V ), there existsc′ > 0 independent of� such that
〈T ,�∧�〉�−c′. On the other hand, ifU is a smooth negative(k−s−1, k−s−1)-form
such that ddcU = � − �k−s , we have

−
∫

T ∧ � ∧ �k−s +
∫

T ∧ � ∧ �

=
∫

T ∧ � ∧ ddcU =
∫

T ∧ ddc� ∧ U� −
∫

T ∧ �s−p+1 ∧ U.

We then deduce that〈T ,� ∧ �k−s〉� − c wherec > 0 is independent of�.
Now consider a q.p.s.h. function� strictly negative onPk such that ddc�� −�. Let

�n be a sequence of negative smooth functions decreasing to� such that ddc�n� −�.
The first part applied to� = �n�

s−p gives

〈T ,�n�
k−p〉� − c(1+ ‖�n‖L1)� − c(1+ ‖�‖L1).

It follows that 〈T ,��k−p〉� − c(1+ ‖�‖L1). �
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The above proposition gives a version of Oka’s inequality (see[14]) in the sense
that T-integrability on the support of� implies T-integrability.

Proposition 2.5. Let V be a weakly s-convex open set inPk and T ∈ PCp(V ),
1�p�s−1. Let R andRi be positive closed(1,1)-currents. Assume thatR = �+ddcv
andRi = �+ddcvi wherev and vi are q.p.s.h. and continuous onPk \V . ThenR∧T

is well defined and belongs toPCp+1(V ). In particular, R1 ∧ · · · ∧ Rn is well defined
and belongs toPCn(V ) for 1�n�s. If Ti → T weakly inPCp(V ) and vi → v locally
uniformly onPk \ V , thenRi ∧ Ti → R ∧ T weakly inPCp+1(V ).

Proof. We can assume thatv is negative. Proposition 2.4 permits to defineR ∧ T :=
� ∧ T + ddc(vT ) (even without assuming thatv is continuous). It is easy to check by
approximation thatR∧T is positive. If� ∈ DSHk−p−1(V ) is a smooth form, we have

〈R ∧ T ,�〉 := 〈T ,� ∧ �〉 + 〈T , vddc�〉.

When� ∈ DSHk−p−1(V ) is not smooth, the right-hand side is well defined and depends
continuously on� (see Remark 2.3 for the definition of the measureT ∧ ddc�).
Hence, we can extendR ∧ T to a linear continuous form on DSHk−p−1(V ). It

follows that R ∧ T ∈ PCp+1(V ). For the second part of Proposition 2.5, it follows
from Proposition 2.2 thatR1 ∈ PC1(V ). We then use an induction onn.
To prove the convergence result, we use the above formula:

〈Ri ∧ Ti,�〉 := 〈Ti,� ∧ �〉 + 〈Ti, viddc�〉.

The convergence of the first term is clear for� ∈ DSHk−p−1(V ). For the second term,
observe thatTi∧ddc� are measures with bounded mass supported in the same compact
subset ofPk \ V . The convergence follows. �
Let V be as in Proposition 2.5 and letA be a compact analytic subset ofPk \ V .

Define C the cone of negative L1 forms � ∈ C0(Pk \ A) ∩ DSHk−p(V ) such that
ddc� = �+ − �− with �± positive closed supported inPk \ V , continuous onPk \A
and having no mass onA. Here,C0(Pk \A) denotes the space of continuous forms on
Pk \ A.
We will use the following lemma in Section 4.

Lemma 2.6. Let Ri be as in Proposition2.5.Let S be a positive closed(p, p)-current,
1�p�s, such thatS�R1 ∧ · · · ∧Rp. Then S can be extended to a continuous linear
form on C by

〈S,�〉 := 〈S,�〉Pk\A :=
∫

Pk\A
S ∧ �.

The continuity is with respect to the topology ofC0(Pk \ A) ∩ DSHk−p(V ).
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Proof. DefineTi := R1∧· · ·∧Ri . Let �n ∈ DSHk−p(V ) be smooth negative forms on
Pk such that�n → � in C0(Pk \A) and in DSHk−p(V ). We show that lim〈S,�n〉 =
〈S,�〉Pk\A. This will prove the lemma. We have by Fatou’s lemma:

lim sup〈S,�n〉�〈S,�〉Pk\A

and

lim sup〈Tp − S,�n〉�〈Tp − S,�〉Pk\A.

Since, by Proposition 2.5,〈Tp,�n〉 → 〈Tp,�〉, we only need to prove that〈Tp,�〉 =
〈Tp,�〉Pk\A. Let u be a negative q.p.s.h. function such that ddcu� − �, u = −∞
on A and u is smooth onPk \ A. Let � be a smooth convex increasing function on
R− ∪ {−∞} such that�(0) = 1, ‖�‖C2 �4 and� = 0 on [−∞,−1].
Define un := �(u/n). These functions are smooth, equal to 0 in neigbourhoods of

A. We also have ddcun� − 4n−1� andun → 1 uniformly on compact sets ofPk \A.
It is sufficient to show that lim〈Tp, un�〉 = 〈Tp,�〉.
Let ddc� = �+ − �− and define� := �+ − �−. We have

〈Tp,�〉 = 〈vpTp−1,�〉 + 〈Tp−1,� ∧ �〉.

This is true for smooth forms and hence for� by approximation. On the other hand,
we have

〈Tp, un�〉 = 〈ddcvp ∧ Tp−1, un�〉 + 〈Tp−1,� ∧ un�〉.

Using an induction onp, we only need to prove that

lim〈ddcvp ∧ Tp−1, un�〉 = 〈vpTp−1,�〉.

Let  > 0, U�Pk \V be a neighbourhood ofA, M a constant such thatM� − infU vp,
andvMp := max(vp,−M). Sincevp is continuous onPk \V and since� is continuous

on Pk \ A, ddcvMp ∧ Tp−1 ∧ � → ddcvp ∧ Tp−1 ∧ � on Pk \ A whenM → ∞. The
measures ddcvMp ∧ Tp−1 ∧ � and ddcvp ∧ Tp−1 ∧ � are equal inU. Since un → 1

locally uniformly onPk \ A, there existM and n0 such that ifn�n0 we have

|〈ddcvp ∧ Tp−1, un�〉 − 〈ddcvMp ∧ Tp−1, un�〉|�.

Hence, if we replacevp by vMp +M, we can assume thatvp is positive. In particular,
v2p is q.p.s.h. Hence, ddc(v2pTp−1) is a difference of positive closed currents. It follows
that dvp and dcvp belong to L2(Tp−1).
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We have

〈ddcvp ∧ Tp−1, un�〉=〈unvpTp−1,�〉 − 〈dun ∧ dcvp ∧ Tp−1,�〉
+〈dcun ∧ dvp ∧ Tp−1,�〉 − 〈ddcun ∧ vpTp−1,�〉.

By induction hypothesis, the measureTp−1 ∧ � has no mass onA (see also
Remark 2.3). Hence, the first term tends to〈vpTp−1,�〉. We show that the other
terms tend to 0.
Since±ddcun�ddcun + 8n−1� and ddcun + 8n−1��0, we have

|〈ddcun ∧ vpTp−1,�〉| � −〈ddcun ∧ Tp−1 + 8n−1� ∧ Tp−1,�〉
� −〈Tp−1, undd

c�〉 − 8n−1〈Tp−1,� ∧ �〉.

It follows that 〈ddcun ∧ vpTp−1,�〉 tends to 0. Indeed, sinceunddc� → ddc� in
DSHk−p+1(V ) andTp−1 ∈ PCp−1(V ), we have〈Tp−1, unddc�〉 → 〈Tp−1,ddc�〉 = 0.
For the other terms it is sufficient to use the Cauchy–Schwarz inequality and the

property that dun ∧ dcun can be dominated by ddcu2n + 100n−1�. The functionsu2n
satisfy analogous inequalities as theun do. �

3. Regular birational maps

Let f : Pk → Pk be a dominating rational map of algebraic degreed�2. In
homogeneous coordinates[z0 : · · · : zk], we havef = [P0 : · · · : Pk] where Pi are
homogeneous polynomials of degreed without common divisor. Let� be the graph of
f in Pk × Pk, �i the canonical projections ofPk × Pk onto its factors. IfA is a subset
of Pk, definef (A) := �2(�

−1
1 (A)∩ �) andf−1(A) := �1(�

−1
2 (A)∩ �). The operators

f∗ := (�2)∗(�1|�)∗ and f ∗ := (�1)∗(�2|�)∗ are well defined and continuous on L∞
forms (forms with L∞ coefficients) with value in spaces of L1 forms (forms with L1

coefficients). We define thedynamical degree of order pof f by

dp:= lim
n→∞ ‖f n∗(�p)‖1/n = lim

n→∞

(∫
Pk

f n∗(�p) ∧ �k−p

)1/n

= lim
n→∞ ‖(f n)∗(�k−p)‖1/n = lim

n→∞

(∫
Pk
(f n)∗(�k−p) ∧ �p

)1/n

. (1)

These limits always exist[11]. It is easy to see thatdp�d
p
1 . The last degreedk is

the topological degreeof f. It is equal to #f−1(z) for z generic.
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Consider now, a birational mapf, i.e. a map with topological degree 1. The setI+
(resp.I−) of pointsz ∈ Pk such thatf (z) (resp.f−1(z)) is infinite is theindeterminacy
set of f (resp.f−1).
Hencef ◦ f−1 = f−1 ◦ f = id out of an analytic set. Let� denote the algebraic

degree and�q the dynamical degree of orderq associated tof−1.

Definition 3.1. We say thatf is s-regular, 1�s�k− 1, if there exist two open setsV,
U such that
1. V ∩ U = ∅, I+ ⊂ V and I− ⊂ U .
2. There is a smooth positive closed(k − s, k − s)-form � supported inPk \ V and

strictly positive onU . We will assume that‖�‖ = 1.
3. f mapsPk \ V into U.

Observe thatV is weakly s-convex. If H is a hypersurface ofPk, thenH /⊂ V . It
follows thatH cannot be sent by an iterate off to I+. Hence,f is algebraically stable,
i.e. deg(f n) = dn [17].

Proposition 3.2. Let f : Pk → Pk be an s-regular birational map as in Definition3.1.
Let I±

n be the indeterminacy set off±n. Then I+
n ⊂ V , I−

n ⊂ U , dimI+
n �k − s − 1

and dp = dp for 1�p�s. We have(f n)∗ = (f ∗)n on Hp,p(X,C) for 1�p�s.
If f is regular as in Definition1.1, then dim I−

n �s − 1, �q = �q for 1�q�k − s and
ds = �k−s .

Proof. Since f n is holomorphic on a neighbourhood ofPk \ V , we haveI+
n ⊂ V .

Since f−1 : Pk \ U → V is holomorphic, we haveI−
n ⊂ U . If dim I+

n �k − s, then
the current of integration onI+

n intersects� which is cohomologous to�k−s (recall
dimHp,p(Pk,C) = 1). This is impossible sinceI+

n ⊂ V and supp(�) ∩ V = ∅. Since
f is algebraically stable,f n∗(�) is a positive closed(1,1)-current of massdn and
smooth onPk \ I+

n . We have seen that dimI+
n �k − s − 1. The intersection theory

[4,14] implies thatf n∗(�) ∧ · · · ∧ f n∗(�) (p times, p�s) is well defined and does
not charge algebraic sets. Its mass is equal todnp. We deduce from (1) thatdp = dp

and (f n)∗ = (f ∗)n on Hp,p(Pk,C). When f is regular, we prove in the same way
that dimI−

n �s − 1 and �q = �q . We obtain from (1) thatds = �k−s . It follows that
ds = �k−s . �

Remark 3.3. The identity (f n)∗ = (f ∗)n on Hp,p(X,C) corresponds to an algebraic
stability of higher order. The notion can be introduced for meromorphic maps on a
compact Kähler manifold. Proposition 3.2 is valid in a more general case.

Let T be a positive closed(p, p)-current onPk. The restrictionf0 of f to Pk \
f−1(I−)∪I+ is an injective holomorphic map. We can definef ∗

0 (T ) onPk\f−1(I−)∪
I+. By approximation, one can check that this is a positive closed current of finite
mass (see also[11]). Let f $(T ) denote the trivial extension off ∗

0 (T ) on Pk. By a
theorem of Skoda[18], f $(T ) is positive and closed.
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If Tn → T , we havef $(Tn) → f $(T ) on Pk \ f−1(I−) ∪ I+. Moreover,f $(T ) is
smaller than every limit value� of the sequencef $(Tn). More precisely, the current
� − f $(T ) is positive closed and supported inf−1(I−) ∪ I+.
Assume now that 1�p�s. Proposition 3.2 implies that‖f ∗(T )‖ = dp‖T ‖ for

T smooth. Using a regularization ofT, we deduce from the above properties that
‖f $(T )‖�dp‖T ‖. When ‖f $(T )‖ = dp‖T ‖, we definef ∗(T ) := f $(T ). We define
similarly f$ and f∗ on positive closed currents.

Lemma 3.4. The operatorf ∗ is continuous: if f ∗(Tn) and f ∗(T ) are well defined in
the above sense and ifTn → T then f ∗(Tn) → f ∗(T ). If f ∗(T ) is well defined, then
so is f ∗(S) for every positive closed current S such thatS�T .

Proof. We have lim‖Tn‖ = ‖T ‖. It follows that lim‖f ∗(Tn)‖ = dp‖T ‖ = ‖f ∗(T )‖.
On the other hand,f ∗(Tn) → f ∗(T ) in Pk \f−1(I−)∪ I+ andf ∗(T ) does not charge
f−1(I−) ∪ I+. Hencef ∗(Tn) → f ∗(T ) in Pk.
We have‖f $(S)‖�dp‖S‖, ‖f $(T − S)‖�dp‖T − S‖ and ‖f $(T )‖ = dp‖T ‖. It

follows that ‖f $(S)‖ = dp‖S‖. Hencef ∗(S) is well defined. �

Proposition 3.5. The operatorsf∗ : DSHk−p(V ) → DSHk−p(V ) and f ∗ : PCp(V )
→ PCp(V ), 1�p�s, are well defined and are continuous. We have(f n)∗ =
(f ∗)n, ‖f ∗(T )‖ = dp‖T ‖ and 〈f ∗(T ),�〉 = 〈T , f∗(�)〉 for T ∈ PCp(V ) and � ∈
DSHk−p(V ).

Proof. Let � ∈ DSHk−p(V ). Using a partition of unity, we can write� = �(1) +�(2)

where�(1) is a L∞ form with compact support inV and�(2) is a current with support
in Pk \ I+. By Definition 3.1, f−1 : Pk \ U → V and f : Pk \ I+ → Pk are
holomorphic. Thenf∗(�(1)) = (f−1)∗(�(1)) and f∗(�(2)) are well defined. The first
assertion follows, even�(1) and�(2) are not necessarily in DSHk−p(V ).
Consider now a smooth positive closed form� ∈ DSHk−p(V ). Recall that by Propo-

sition 2.4, if T is in PCp(V ), thenT and f $(T ) do not charge analytic sets. We have

〈f $(T ),�〉 = 〈T , f∗(�)〉Pk\I− :=
∫

Pk\I−
T ∧ f∗(�).

We next show that〈T , f∗(�)〉Pk\I− = 〈T , f∗(�)〉.
Let W be a form, smooth outsideI−, such that ddcW = f∗(�) − m�k−p and let�

be a smooth function supported inU, equal to 1 in a neighbourhood ofI−. Here,m
is the mass off∗(�). Define� := ddc(�W)+ c�s−p ∧ �, c > 0 big enough. Then�
is positive closed, supp(�) ⊂ Pk \ V and� − f∗(�) is smooth. This form� belongs
to DSHk−p(V ). We only need to show that〈T ,�〉Pk\I− = 〈T ,�〉.
Let un be as in Lemma 2.6 but we replaceA by I−. We have

〈T ,�〉Pk\I− = lim〈T , un�〉 = 〈T ,�〉
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becauseT ∈ PCp(V ) and un� → � in DSHk−p(V ). So 〈f $(T ),�〉 = 〈T , f∗(�)〉 for
� ∈ DSHk−p(V ) smooth positive and closed. For� = �s−p ∧ �, we get

‖f $(T )‖ = 〈f $(T ),�〉 = 〈T , f∗(�)〉 = dp‖T ‖.

The last equality follows from a regularization of the positive closed currentf∗(�)
and the properties:‖f∗(�)‖ = dp and T ∈ PCp(V ). Hencef ∗(T ) is well defined and
equal tof $(T ).
Assume now that� is a smooth positive form in DSHk−p(V ) not necessarily closed.

Using a regularization off∗(�) in DSHk−p(V ), we get

〈f ∗(T ),�〉 = 〈T , f∗(�)〉Pk\I− �〈T , f∗(�)〉.

On the other hand, if�′ �� is a smooth closed form, we also have

〈f ∗(T ),�′ − �〉 = 〈T , f∗(�′ − �)〉Pk\I− �〈T , f∗(�′ − �)〉.

The equality〈f ∗(T ),�′〉 = 〈T , f∗(�′)〉 implies that〈f ∗(T ),�〉 = 〈T , f∗(�)〉. This also
holds for� smooth non-positive because we can write� as a difference of positive
forms.
From the first assertion of the proposition, it follows that the right-hand side of the

last equality is well defined for every� ∈ DSHk−p(V ) and depends continuously on
�. This allows to extendf ∗(T ) to a continuous linear form on DSHk−p(V ). Hence
f ∗(T ) ∈ PCp(V ). The continuity off ∗ and the equality(f n)∗ = (f ∗)n are clear. �

4. Convergence toward the Green currents

Let f be ans-regular birational map of algebraic degreed�2 as in Definition 3.1.
Recall that the Green(1,1)-currentT+ := lim d−n(f n)∗(�) of f has continuous local
potentials in a neigbourhood ofPk \ V [17]. Proposition 2.5 shows thatT p

+ is well
defined for 1�p�s. It belongs to PCp(V ). Moreover, we have limd−npf n∗(�p) =
T
p
+ in Pk \ V . The last property follows from a uniform convergence of potentials of
d−nf n∗(�) (see[17]). This is also reproved in Theorem 4.1. We havef ∗(T p

+ ) = dpT
p
+ .

Let I+
n be the indeterminacy set off n. DefineU∞ := ∪n�0f

−n(U) \ I+
n . In this

section, we prove the following result which implies Theorem 1.2.

Theorem 4.1. Let f : Pk → Pk be an s-regular birational map as above. Then for
every p, 1�p�s, the following holds.
1. If T ∈ PCp(V ) is a positive closed current of mass1, then d−pnf n∗(T ) converge

weakly inU∞ to T
p
+ . Moreover, every limit value of the sequenced−npf n∗(T ) is

in PCp(V ). The convergence is also valid in the weak topology ofPCp(V ).
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2. If S is a positive closed(p, p)-current such thatS�T
p
+ in Pk, then S = cT

p
+ in

U∞ wherec := ‖S‖.

Proof. 1. Let� be a(k−p, k−p)-current in DSHk−p(V ). Write ddc� = � = �+−�−
where�± are positive closed(k − p + 1, k − p + 1)-currents supported inPk \ V .
Assume that‖�±‖ = 1. Define�±

n := (f n)∗(�±) and�n := �+
n − �−

n for n�0.
They are supported inU for n�1 and we have‖�±

n ‖ = d(p−1)n.
Let �±

n be the solution of the equation ddc�±
n = �±

n − d(p−1)n�s−p+1 ∧ � given
in Proposition 2.1. The�±

n ’s are negative(k −p, k −p)-forms, smooth onV and they
satisfy ‖�±

n ‖L∞(V ) + ‖�±
n ‖DSH�d(p−1)n.

Define�n := �+
n −�−

n , �0 := �−�0 and�n+1 := f∗(�n)−�n+1. The forms�n

are smooth onV, ddc�n = �n and ‖�n‖DSH�d(p−1)n for n�1.
By Proposition 3.5,‖�n‖DSH�d(p−1)n.
Since ddc�n = 0, we can associate to�n a classbn in Hk−p,k−p(Pk,C). We have

‖bn‖�‖�n‖L1�d(p−1)n.
Since we assume thatT ∈ PCp(V ), Proposition 3.5 allows the following calculus:

〈f n∗(T ),�〉=〈f n∗(T ),�0〉 + 〈f n∗(T ),�0〉
=〈f n∗(T ),�0〉 + 〈f (n−1)∗(T ), f∗(�0)〉
=〈f n∗(T ),�0〉 + 〈f (n−1)∗(T ),�1〉 + 〈f (n−1)∗(T ),�1〉
=〈f n∗(T ),�0〉 + 〈f (n−1)∗(T ),�1〉 + 〈f (n−2)∗(T ), f∗(�1)〉.

Using the equalityf∗(�n) = �n+1 + �n+1 we obtain by induction that

〈f n∗(T ),�〉=〈f n∗(T ),�0〉 + 〈f (n−1)∗(T ),�1〉
+ · · · + 〈T ,�n〉 + 〈T ,�n〉. (2)

Sincef n∗(T ) is cohomologous todpn�p, using a regularization of ddc-closed cur-
rents�i in DSHk−p(V ), we get

〈d−pnf n∗(T ),�〉 =
∫

[�p] ∧ (b0 + d−pb1 + · · · + d−pnbn) + d−pn〈T ,�n〉.

Recall that T ∈ PCp(V ) and ‖�±
n ‖L∞(V ) + ‖�±

n ‖DSH�d(p−1)n. It follows that
lim d−pn〈T ,�n〉 = 0. The relations‖bn‖�d(p−1)n imply that

lim〈d−pnf n∗(T ),�〉 =
∫

[�p] ∧ c� where c� :=
∑
n�0

d−pnbn. (3)
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Propositions 2.1 and 3.5 imply also thatc� depends continuously on� ∈
DSHk−p(V ). So, (3) implies that every limit value of the sequenced−pnf n∗(T ) belongs
to PCp(V ).
Consider now a smooth real-valued(k − p, k − p)-form � supported inU. Observe

that � can be written as a difference�1 − �2 of negative forms supported inU and
that ddc�i + c(�s−p+1 ∧ �) is positive forc > 0 big enough.
It follows that � ∈ DSHk−p(V ). By (3), d−pnf n∗(T ) converge onU to a current

which does not depend onT. Hence, limd−pnf n∗(T ) = T
p
+ on U since this is true

for T = �p (and for T = T
p
+ ).

The relationf n∗(T p
+ ) = dnpT

p
+ implies that limd−pnf n∗(T ) = T

p
+ on U∞.

2. Letc be the mass ofSand defineSn := dnp(f n)$(S). We haveSn�T
p
+ . By Lemma

3.4, f n∗(Sn) is well defined. From Proposition 2.4,T p
+ has no mass on analytic sets.

It follows that f n∗(Sn) = dnpS since this holds out of an analytic set. We also deduce
that ‖Sn‖ = c.
Assume that� is smooth and supported inU.
Proposition 2.1 shows that�j and�j belong to the space generated by the classC

as in Lemma 2.6 forA = ∪i�nf
i(I−).

Hence, we can apply Lemma 2.6 toRi = T+ and to (f n−j )∗(Sn). We get

〈(f n−j+1)∗(Sn),�j 〉 = 〈(f n−j )∗(Sn), f∗(�j )〉

since these integrals can be computed out of the singularities off, �j and f∗(�j ).
The continuity in Lemma 2.6 and a regularization of�j using automorphisms ofPk

imply that the integral〈(f n−j )∗(Sn),�j 〉 is cohomological. We can then apply (2) to
Sn − cT

p
+ . SinceSn − cT

p
+ is cohomologous to 0, we get

dnp〈S − cT
p
+ ,�〉=〈f n∗(Sn − cT

p
+ ),�〉 = 〈Sn − cT

p
+ ,�n〉

=〈Sn − cT
p
+ ,�+

n − �−
n 〉.

The relationsSn�T
p
+ and�±

n �0 imply that the last expression is dominated by a
combination of〈T p

+ ,�+
n 〉 and of〈T p

+ ,�−
n 〉. Hence, sinceT p

+ ∈ PCp(V ) andd−(p−1)n�±
n

belong to a compact set in DSHk−p(V ), we have

dnp|〈S − cT
p
+ ,�〉|�d(p−1)n.

It follows that 〈S − cT
p
+ ,�〉 = 0 for every smooth form� supported inU.

Hence,S = cT
p
+ onU. In the same way, we show thatSn = cT

p
+ onU. The relations

f n∗(Sn) = dnpS andf n∗(T p
+ ) = dnpT

p
+ imply that S = cT

p
+ on f−n(U)\I+

n for every
n�1. �

Remark 4.2. The convergence in Theorem 3.1 is uniform onT ∈ PCp(V ) such that
|〈T ,�〉|�c(‖�‖L∞(V ) + ‖�‖DSH), c > 0, for every� ∈ DSHk−p(V ).
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