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We used a statistical learning framework to evaluate the ability of three machine-learning methods to
predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression
trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can
learn complex patterns in the data but because of overfitting may not generalize well to new data. The
statistical learning framework involves cross-validation (CV) training and testing data and a separate
hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling
for model overfit. The order of prediction performance according to both CV testing R2 and that for the
hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing
results: that with maximum testing R2 and a version with R2 within one standard error of the maximum
(the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values
indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for
the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted
better for an independent data set compared with the maximum R2 versions, which is relevant to extrap-
olation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped
identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared
with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT
results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the varia-
tion in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably
well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We evaluated three off-the-shelf machine learning methods for
their ability to predict nitrate concentration in shallow groundwa-
ter of the Central Valley, California: boosted regression trees (BRT),
artificial neural networks (ANN), and Bayesian networks (BN). We
developed the models within a statistical learning framework
(Hastie et al., 2009) to optimize predictive performance. The
Central Valley is an intensive agricultural region and produces 8%
of U.S. agricultural value on 1% of the U.S. farmland (Reilly et al.,
2008) (Fig. 1). Decadal increases in groundwater nitrate concentra-
tions have been observed in portions of the Central Valley, partic-
ularly in the eastern fans (shown as light green on the map), which
typify younger, oxic conditions (Burow et al., 2013). Competition
for groundwater resources in the region calls into question
whether the aquifer can remain a viable source of supply to drink-
ing water wells (Faunt, 2009).

Suitability of groundwater for drinking depends both on quan-
tity and quality. Statistical models are commonly used at large spa-
tial scales to identify areas with high contamination potential and
to understand factors that increase contamination risk. However,
modeling groundwater contaminants derived mainly from the land
surface is challenging because of numerous processes that influ-
ence solute transport and fate in soils and groundwater. Transport
processes frequently are nonlinear and are complicated by the spa-
tial variability of hydraulic and geochemical conditions in aquifers.
Linear regression and classification methods have been popular
choices for estimating nitrate impacts on groundwater (Ayotte
et al., 2006; Boy-Roura et al., 2013; Frans, 2008; Gardner and
Vogel, 2005; Gurdak and Qi, 2012; Huebsch et al., 2014; Jang and
Chen, 2015; Ki et al., 2015; LaMotte and Greene, 2007; Liu et al.,
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Fig. 1. Locations of shallow wells used to develop the models (modified from Nolan
et al., 2014). The east and west fans are shown in light green and the basin
subregion in dark green. Units of groundwater nitrate concentration are mg/L as N.

Table 1
Summary statistics of nitrate concentration in groundwater from shallow wells (from
Nolan et al., 2014).

Variable Nitrate concentration, mg/L as N

Minimum <0.5
Maximum 74.7
Mean 6.38
Standard deviation 8.20
Median 3.61
Interquartile range 7.47
Number of observations 318
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2005, 2013; Nolan et al., 2002; Rupert, 2003; Warner and Arnold,
2010). Although such methods are straightforward to apply at
large spatial scales, hypothesis testing assumptions (linear and
monotonic responses, assumed distributions of model residuals)
are difficult to satisfy. For example, logistic regression assumes
that the log odds ratio (logit) of observing some condition, such
as exceeding a threshold nitrate concentration, is linearly related
to a set of predictor variables.

Machine learning methods are promising alternatives that
dispense with traditional hypothesis testing. For example, tree-
based methods do not require data transformation, can fit nonlin-
ear relations, and automatically incorporate interactions among
predictor variables (Elith et al., 2008). Random forest regression
(RFR), an ensemble tree method, was previously applied to shallow
and deep wells of the Central Valley and yielded a pseudo R2 of
0.90 for training data (Nolan et al., 2014). Random forest produces
many classifiers (decision trees) and aggregates the predictions
(Liaw andWiener, 2002). The method employs bootstrap aggregat-
ing (bagging) to average the predictions over many trees, which
reduces the variance of the prediction (Hastie et al., 2009). Random
forest has only recently been applied to water resources data;
other examples include nitrate and arsenic in aquifers of the south-
western U.S. (Anning et al., 2012), nitrate in an unconsolidated
aquifer in southern Spain (Rodriguez-Galiano et al., 2014), and
nitrate in private wells in Iowa (Wheeler et al., 2015).

A perceived disadvantage of machine learning methods is their
‘‘black box” nature; without estimated coefficients it is difficult to
show significant relations between the response and predictor
variables. However, individual classification trees can be extracted
from BRT models and are easy to interpret. BRT also yields variable
importance rankings and partial dependence plots. The latter can
be used to infer the direction and degree of influence of predictor
variables, and can provide additional insight by revealing nonlinear
and non-monotonic responses. Nolan et al. (2014) used partial
dependence plots to show that increasingly negative, MODFLOW-
simulated vertical water fluxes (i.e., increasing downward) were
related to increasing RFR-predicted groundwater nitrate concen-
tration, particularly for deep wells during the irrigation season
(see Fig. S2 in the Supporting Information of Nolan et al., 2014).
Use of MODFLOW outputs as predictor variables in the RFR models
constituted a multi-model, hybrid modeling approach. Variables
with a high importance ranking by RFR included the depths to
the top and midpoint of a well’s screened interval. The first depth
was a useful proxy for travel time from the land surface to the well,
and the latter was a proxy for the groundwater age distribution.
Bayesian networks are directed acyclic graphs comprising nodes
(output and predictor variables) and edges (correlated connections
between nodes) (Fienen et al., 2013). The graphic depiction of a BN
is quite interpretable because the user draws the connections
between predictor and response variables.

In the present study we evaluated BRT, ANN, and BN using the
same data set as Nolan et al. (2014). The objective was to compare
the predictive performance of the methods in the context of statis-
tical learning, described in more detail below. The three models
were then compared with the RFR model of Nolan et al. (2014)
and multiple linear regression (MLR).
2. Material and methods

2.1. Data set

The Central Valley data set comprised 318 shallow domestic
wells, and another 119 wells lacking screened interval data were
held out for model evaluation (Nolan et al., 2014). Groundwater
nitrate concentration data are summarized in Table 1. In the pre-
sent study, the modeled response variable was the natural log of
groundwater nitrate concentration (mg/L NO3

� as N) in sampled
shallow wells (i.e., domestic wells with depth below water table
646 m). The log transform reduced the influence of very high
nitrate values (up to 74.7 mg/L) on model predictions. The 41 pre-
dictor variables represented soils, land use, groundwater age surro-
gates, and aquifer texture and MODFLOW-simulated vertical water
fluxes from previous textural and numerical models of the Central
Valley (Faunt, 2009) (Appendix A). All predictor variables were
compiled within 500-m radius circular well buffers.
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2.2. Machine-learning

Machine-learning methods evaluated here included BRT, ANN,
and BN. BRT differs from RFR in that it weights (boosts) the contri-
bution of each new tree while minimizing a loss function. A link
function is specified, and the final model is a linear combination
of all of the trees. The additive boosted model is defined as
(Hastie et al., 2009)

f ðxÞ ¼
XM
m¼1

bmbðx; cmÞ ð1Þ

where bm are expansion coefficients corresponding to each of the M
boosting iterations; x is the set of predictor variables; c parameter-
izes splitting variables and split levels at internal nodes, and predic-
tions at terminal nodes; and b is a basis function that represents an
individual tree. We used stochastic gradient boosting, which
enhances the general form of boosting as follows. Estimation is
stagewise such that bm and cm are estimated sequentially from
m = 1 toM. After an initial tree is trained, subsequent trees are fitted
to the residuals of the previous tree rather than to the data directly.
The loss function is minimized by driving each tree to focus on the
worst performance of the previous tree, and the b values are the
predictions at terminal nodes (De’ath, 2007). We used the squared
error loss function, described as

Lðy; f ðxÞÞ ¼ ðy� f ðxÞÞ2 ð2Þ
Gradient boosting modifies the above by adding steepest-

descent minimization (Friedman, 2001). Stochastic gradient boost-
ing adds randomness at each sequential step through bagging,
which increases accuracy and computational efficiency and is
robust against overfitting (Friedman, 2002).

Artificial neural networks are nonlinear regression models com-
prising an input layer, output layer and unobserved intermediate
(hidden) layers defined as (Günther and Fritsch, 2010):

oðxÞ ¼ f w0 þ
XJ

j¼1

wj � f w0j þ
Xn
i¼1

wijxi

 ! !
ð3Þ

where o(x) is an output neuron, J is the number of nodes in the hid-
den layer, w0 is the intercept of the output neuron, wj is the weight
corresponding to the jth hidden unit, w0j is the intercept of the jth
hidden unit, wij is the weight corresponding to the ith predictor
variable feeding the jth hidden unit, and xi is the ith predictor vari-
able. The hidden units are linear combinations of the predictor vari-
ables x, and these are transformed by the nonlinear activation
function f. In the current work, fwas the hyperbolic tangent sigmoid
function. The unknown parameters w0, w0j, wj, and wij were initially
set to random values, then adjusted by a back-propagation algo-
rithm to minimize the loss function, which is the mean square error
(Limas et al., 2010):

MSE ¼ RðhÞ
n

ð4Þ

where n = the number of observations and R(h), the sum of squared
errors, is given by Hastie et al. (2009)

RðhÞ ¼
XH
h¼1

XL
l¼1

ðylh � olhÞ2 ð5Þ

where y is the observed value and the subscripts refer to the lth
observation and the hth output node (Günther and Fritsch, 2010).
In the current work the ANNs had a single output (groundwater
nitrate concentration), so Eq. (5) reduced to a single summation
over L observations.

The BN is a nonlinear classifier that yields a probability distribu-
tion for each class. We specified up to 10 nitrate concentration
classes for the BN models, using cutpoints of 0.25, 1–6, 8, 13, 21,
and 35 mg/L, which is tantamount to a semi-continuous response
variable. The BN allows for dependencies among predictors
through specification of joint probability distributions. The Baye-
sian approach involves estimating a posterior probability of a class
(Cl). Using Bayes’ theorem we estimate the posterior probability
that an outcome is in a class based on the predictors that have been
observed (x), expressed as (Kuhn and Johnson, 2013)

Pr½y ¼ Cljx� ¼ Pr½xjy ¼ Cl�Pr½y�
Pr½x� ð6Þ

where Pr[y] is the prior probability of an outcome, Pr[x] is the prob-
ability of the predictor variables, and Pr[x|y = Cl] is the likelihood
function, or the conditional probability of obtaining the predictor
variables given the observed data for the lth class.

BNs grow dramatically both in computational expense and
computer memory footprint with an increasing number of parent
nodes. The parent nodes are all those directly connected to a
response node. In this dataset with a single response (nitrate con-
centration) and 41 predictors, the BN rapidly became computation-
ally impractical with increasing numbers of bins for each node. To
mitigate this, and to take advantage of correlation among predic-
tors of similar types, latent nodes were implemented. Latent nodes
represent correlated combinations of several other nodes with val-
ues learned both from the correlations among their parent nodes
and the correlation of the latent node with the output.

The BNs comprise nodes and their correlated connections
(edges), and the correlations are aggregated to form conditional
probability tables. Conditional probabilities were calculated using
Bayes’ theorem above, and the posterior predictions were updated
based on conditioning to the observed data (Fienen and Plant,
2014).
2.3. Statistical learning

All three machine-learning methods can detect and simulate
complex patterns in the data and as a result are prone to overfit-
ting, which decreases predictive performance. Here we developed
the models within a statistical learning framework to optimize
prediction performance by controlling for overfit. Specifically, we
used cross-validation (CV) to evaluate predictive performance for
increasing levels of model complexity with the objective of mini-
mizing ‘‘expected” prediction or test error. The expected test error
includes randomness in CV training data sets (Hastie et al., 2009).
We varied model complexity by changing values of the following
metaparameters: tree interaction depth in the case of BRT; the
number of hidden layer nodes in an ANN; and the number of bins
corresponding to predictor and latent variables that compose a BN.
We refer to the metaparameters as CV-tuning parameters and
these are indicated for each method in Table 2. Before the cross val-
idations, we made initial model runs on training data to determine
reasonable values of variables other than the CV tuning parame-
ters, such as learning rate in the case of BRT and ANN. During CV
runs, only the tuning parameters were varied to isolate the effect
of increasing model complexity. Following CV, we further evalu-
ated selected models using hold-out data that were withheld from
the CV process. Lastly, we compared the predictive performance of
the CV-tuned models to the RFR model of Nolan et al. (2014) and
MLR.

We used 10-fold CV to generate testing data sets; models were
trained on 90% of the 318 observations and tested on 10% for each
level of complexity. In this work, ‘‘testing” refers to 10% data sub-
sets, ‘‘training” refers to the 90% data subsets and also to re-fitting
of CV-tuned models to all 318 observations, and ‘‘evaluation” refers
to application of final, CV-tuned models to the 119 hold-out wells.



Table 2
Model variables for boosted regression trees, artificial neural networks, and Bayesian networks.

Variable Description Value

Boosted regression trees
interaction.depth Tree depth, or number of layers in each tree (cross-validation tuning

parameter)
1–16

n.trees Total number of trees 800
shrinkage Learning rate; determines the contribution of each new tree to the

model
0.04

bag fraction Proportion of data selected for each new tree 0.5

Artificial neural networks
n.neurons Number of neurons on hidden layers (cross-validation tuning

parameter)
5–20

n.neurons Number of neurons on input and output layers 41 (input), 1 (output)
learning.rate.global Controls degree to which weights are adjusted based on change in

partial derivative of error function
0.02

momentum.global Adds fraction of previous weight change to current update to mitigate
convergence on local minimum

0.05

hidden.layer Function for nonlinear transformation of linear combination of
predictor variables

tansig (hyperbolic tangent sigmoid)

error.criterium Loss function LMS (mean square error)
show.step � n.shows Number of training epochs 10,000

Bayesian networks
Number of input bins Number of bins used to discretize input nodes in the BN (cross-

validation tuning parameter)
2–6

Number of latent bins Number of bins assigned to latent variables; each latent variable is
evenly discretized from 0 to 100 with specific values representing
correlations among parent nodes (cross-validation tuning parameter)

4–6

Number of output bins Number of bins assigned to output nodes in the BN 4–10
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‘‘Estimation” refers to model simulated values for training samples,
and ‘‘prediction” refers to simulated values for CV testing subsets
and hold-out data. Sixteen configurations of each model were
ordered from least to most complex, and we evaluated both max-
imum R2 and one standard error (1SE) rule models. The 1SE models
were the simplest configurations with CV testing R2 within one
standard error of the maximum testing R2, where R2 is the square
of Pearson’s correlation coefficient, or ‘‘model R2.” The latter statis-
tic varies between 0 and 1, with higher values indicating better fit.
Testing R2 means of final models were compared using two-sided
confidence intervals given by

R2 � t1�a=2;n�1
sffiffiffi
n

p ð7Þ

where R2 is the mean R2 of the CV resamples, s is the standard devi-
ation, n = 10, and t0:975 at 9 degrees of freedom is 2.26 for a 95% con-
fidence interval.

Final, CV-tuned models were refitted to all training data,
applied to the hold-out wells, and evaluated for ‘‘generalization
error” (Hastie et al., 2009), which indicates model performance
with new data. In addition to MSE and R2, we computed average
bias and the variance of predictions. Average bias was computed
as the difference between the sums of the predictions and hold-
out observations divided by the number of hold-out observations
(119). Hold-out wells lacked data on depths to the top and mid-
point of the screened interval, therefore we used kriged estimates
of these depths. As was mentioned above, these data are useful
proxies for groundwater travel time and age distribution. Adding
kriging uncertainty to these proxy variables likely decreased pre-
dictive performance for hold-out wells, but the same limitation
applied to all three methods.

A map of predicted groundwater nitrate concentration was
obtained by applying the final BRT model to gridded predictor data
comprising over 50,000 cells that were 1 km2 in size. Geographic
Information System (GIS) data layers were made for each predictor
variable in the data set and combined into an input file supplied to
the BRT model object. Because depths to the top and midpoint of
the perforated interval were not available at unsampled locations,
we used median values of these predictors (31 and 32 m, respec-
tively) at all grid cells. We exponentiated the predictions and used
smearing (Duan, 1983) to correct for bias during transformation
back into original units of mg/L of nitrate.

2.4. Modeling software

We used the gbm package for BRT (Ridgeway, 2013) and the
AMORE package for ANN (Limas et al., 2010) within R’s computing
environment (R, 2014). Cross validation was performed for BRT
and ANN using R’s crossval package (Strimmer, 2014), and for BN
we used the Python module CVNetica (Fienen and Plant, 2014),
which is a driver for Netica Bayesian network software (Norsys
Software Corp., 2014). We performed MLR using the stepAIC func-
tion in R’s MASS package, and the stepwise search was run for-
wards and backwards (Ripley, 2014). GIS processing of predictor
variables and model predictions for mapping was performed using
ArcGIS 10.2.2 for Desktop (ESRI, 2014).

3. Results and discussion

3.1. Cross validation tuning of models

Training R2 by all three methods generally increased as model
complexity increased (Fig. 2A), underscoring the flexibility and
learning ability of machine-learning methods. Training R2 was
highest for BRT and was essentially 1 for model complexities
greater than 6, followed by ANN and BN for which maximum train-
ing R2 values (0.98 and 0.94) occurred at model complexities of 8 or
more. The error bands in Fig. 2 are ±1SE of the mean R2 of the 10 CV
resamples, and are comparatively narrow for training data. How-
ever, training R2 is a poor indicator of predictive performance by
the models.

Testing R2 values indicate predictive performance and were
lower than training values for all three methods (Fig. 2B). Model
fit to testing data plateaued or, in the case of ANN, decreased with
increasing model complexity, indicating overfit. Overfit involves
fitting noise in the training data, with the result that the models
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do not generalize well to new data (Kuhn and Johnson, 2013). Sim-
ilar degradation of predictive performance was seen for BN models
of onshore ocean wave height and the percent of pumped ground-
water derived from surface water (Fienen and Plant, 2014), and a
BN model of mean depth to groundwater (Fienen et al., 2013). In
the present study, ANN error bands indicated significant improve-
ment in testing R2 after model complexity 6, but performance
degraded after complexity 11 (Fig. 2B). Model 9 (13 hidden nodes)
had maximum ANN testing R2 (0.22), and model 7 (11 hidden
nodes) satisfied the 1 SE rule (testing R2 = 0.19). Model 7 had a
lower training R2 (0.90) than model 9 (0.98), but performance with
hold-out data improved (see next section).

Applying the 1SE rule to BN resulted in model 8, which had
latent variables containing 4 bins, 4 bins on the predictor variables
(which feed the latent variables), and 4 response bins (testing
Table 3
Training and evaluation results for maximum R2 and one-standard error (SE) cross-valida
ANN model 9 with regularization had 1600 training epochs. Units of MSE (mean square e

Model Model selection rule (model no.) Traini

R2

Boosted regression trees Max. R2 (11) 1.00
One SE (2) 0.89

Artificial neural network Max. R2 (9) 0.97
One SE (7) 0.88
(9) with regularization 0.89

Bayesian network Max. R2 (13) 0.98
One SE (8) 0.94
R2 = 0.25, training R2 = 0.90) (Fig. 2B). The maximum-R2 version
(BN model 13) had 5 bins on the predictor variables, 6 bins on
latent variables, and 10 response bins, and yielded training and
testing R2 values of 0.94 and 0.27, respectively.

In the case of BRT, the maximum testing R2 was obtained with
model 11 which had interaction depth = 11 (testing R2 = 0.39,
training R2 = 1.0), and the 1SE rule yielded model 2 with interac-
tion depth = 2 (testing R2 = 0.36, training R2 = 0.91) (Fig. 2B).
Beyond interaction depth = 1, testing R2 was comparable through
the range of BRT model complexities.
3.2. Model evaluation

Following the cross validations, the maximum R2 and 1SE mod-
els were retrained on all of the training data and applied to hold-
out data to evaluate how well the models generalized to new data.
All MSE values are in units of (ln(mg/L NO3

� as N))2, which in the
case of ANN involved rescaling the model estimates from tangent
sigmoid space to log space. When maximum testing R2 was used
as the model selection criterion, the order of models with
hold-out data was BRT > BN > ANN (R2 = 0.01–0.23, and
MSE = 1.85–6.58) (Table 3). These results suggested that ANN
was more susceptible to overfit than BRT and BN. Based on the
1SE rule, the order of the models by hold-out MSE was the same
as the above (BRT > BN > ANN) (MSE = 1.75–3.08). However for
BRT and ANN the lowest MSE and highest R2 values for hold-out
data were obtained with the simpler 1SE models. The superior
predictive performance of the 1SE BRT model is consistent with
the concept of using trees as weak learners in an additive model.
Classification trees can be made into weak learners simply by
limiting interaction depth, and they can be easily combined and
can be generated quickly (Kuhn and Johnson, 2013). Limiting
interaction depth reduces the number of tree nodes and the
number of parameters c in Eq. (1). An aggregate model comprising
a number of simple trees is more accurate than a single complex
tree model with many parameters, and BRT model 2 (interaction
depth = 2) is much simpler than model 11.

Scatterplots of groundwater nitrate predictions versus hold-out
observations provided insight into degree of model fit, model bias,
and the variance of predictions reported in Table 3. The bias indi-
cates the average difference between observed and predicted val-
ues, and the variance indicates the spread or degree of scatter of
the predictions. Figs. 3–5 compare models selected according to
1SE and maximum-R2 criteria. In the following discussion, units
of variance are (ln(mg/L NO3

� as N))2, and bias units are ln(mg/L
NO3

� as N). BRT had smaller bias (0.03–0.06) than BN (0.23–0.30)
and ANN (�0.53 to �0.25), and ANN had the largest prediction
variance (2.36–3.55). Fig. 3A shows a moderate amount of scatter
in points fitted by BRT model 2 to training data and somewhat
more scatter in the hold-out predictions. The cloud of hold-out pre-
dictions is oriented along the 1:1 line, which is consistent with the
tion tuned models re-fitted to all training observations and applied to hold-out data.
rror) and variance are (ln(mg/L NO3

� as N))2, and bias units are ln(mg/L NO3
� as N).

ng (n = 318) Evaluation with hold-out data (n = 119)

MSE R2 MSE Bias Variance

0.01 0.23 1.85 0.03 1.13
0.26 0.26 1.75 0.06 1.02

0.06 0.01 6.58 �0.53 3.55
0.26 0.12 3.08 �0.25 2.36
0.03 0.12 3.72 �0.18 3.33

0.05 0.18 1.93 0.23 0.26
0.15 0.03 2.39 0.30 0.34
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standard error rule (complexity = 2); (B) maximum R2 rule (complexity = 11).
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Fig. 4. Observed vs. predicted groundwater nitrate concentrations for artificial neural network models re-fitted to all training data and evaluated using hold-out data: (A) one
standard error rule (complexity = 7); (B) maximum R2 rule (complexity = 9); (C) model (9) with regularization.
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low bias of this model (0.06) (Table 3). The lowest observed value
(�1.4) evident in the figures corresponds to a common nitrate cen-
soring level of 0.25 mg/L used by Burow et al. (2013) to accommo-
date multiple reporting levels in the data set.

The maximum-R2 BRT model (11) had somewhat more scatter
in the hold-out predictions compared with BRT model 2 (Fig. 3B),
which is expressed as higher prediction variance (1.13) compared
with model 2 (1.02) (Table 3). Training estimates by model 11
conformed more closely to the 1:1 line, even for censored NO3

�

values, such that there was greater disparity between training
and predictive model performance. These results illustrate a
trade-off wherein the training performance of model 2 (R2 = 0.89)
was less than that of model 11 (R2 = 1.0), but the predictive
performance for hold-out data was improved (R2 = 0.26 for model 2
vs. 0.23 for model 11).

The 1SE ANN model (7) showed poor fit to training data at the
predicted data extremes, and the hold-out predictions do not fol-
low the 1:1 line (Fig. 4A), which is consistent with the high bias
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(�0.25) (Table 3). The maximum-R2 ANNmodel (9) fitted the train-
ing data well along the 1:1 line, but the prediction bias (�0.53) and
variance (3.55) were the highest of any of the models and the latter
was 1.6 � that of the observed data (2.28) (note the difference in
vertical scale between Figs. 4A and B). The high bias is consistent
with the low hold-out R2 values by ANN (Table 3). Artificial neural
networks with many weights typically overfit the data at mini-
mum values of R(h) (Hastie et al., 2009). We attempted to improve
the performance of model 9 through a form of regularization that
involved limiting the number of training epochs (i.e., early stop-
ping). We focused on this model because the patterns of predic-
tions appeared more reasonable compared with model 7’s
consistent overpredictions and underpredictions evident in
Fig. 4A. We varied the number of training epochs from 500 to
10,000 and the maximum R2 for hold-out data occurred with
1600 training epochs (R2 = 0.12, MSE = 3.72) (Table 3). Bias
(�0.18) was lower and prediction variance (3.33) was less than
for model 9 without regularization. However, the version with reg-
ularization did not perform as well with hold-out data as did either
BRT model or BN model 13.

Among off-the-shelf machine-learning methods, tree methods
have several advantages over ANN, including ability to handle
mixed data types and missing values, resistance to outliers, and
ability to handle irrelevant inputs (Hastie et al., 2009). The data
set has numerous predictor variables of different types, each with
different scales of measurement (Appendix A). ANN is hampered
by the presence of irrelevant predictor variables. Nolan et al.
(2014) removed totally irrelevant variables from the data set when
developing their RFR model, but the remaining variables varied in
importance; and, each predictor variable in the data set requires a
weight wij as shown in Eq. (3), which contributes to ANN model
complexity.

Training estimates obtained by BNs generally followed the 1:1
line, although the estimates fell into clusters corresponding to
the discrete nature of the output bins (Figs. 5A and B). For both
the maximum-R2 and 1SE models (nos. 13 and 8 in Table 3), the
hold-out predictions fell into a narrow range of around 1 ln(mg/L
NO3

�), which contributed to considerable prediction bias (0.23–
0.30). The narrow range of predictions resulted in low prediction
variance (0.26–0.34), which was substantially less than that of
the observed data.

The previously reported RFR model (Nolan et al., 2014) when
applied to these same data performed comparably to BRT: hold-
out R2 = 0.24, hold-out MSE = 1.74, training R2 = 0.93, and training
MSE = 0.22. Nolan et al. (2014) did not use CV but instead screened
different values of nodesize from 1 to 8 and monitored out-of-bag
(OOB) MSE. The number of samples in terminal nodes determines
tree complexity, with decreasing numbers of nodes resulting in
larger, more complex trees. In RFR, each tree is constructed with
a subsample of the data, and observations not used are referred
to as OOB and reserved for bootstrap estimates of model error.
The best RFR predictive performance with OOB data was obtained
for nodesize = 5.

We included MLR for context, which based on MSE predicted
less well to hold-out data than BRT, BN, RFR, and ANN model 7,
and calibrated less well than all of the other methods. For MLR
we obtained hold-out R2 = 0.07, hold-out MSE = 3.13, training
R2 = 0.42, and training MSE = 1.23. MLR explained less than half
the nitrate variation in the training data, whereas BRT, BN, ANN,
and RFR explained from 88% to 100%.

The three 1SE models were compared using two-sided confi-
dence intervals on the mean CV testing R2 values, which ranged
from 0.19 to 0.36 (Fig. 6). The order of the models in terms of CV
predictive performance was BRT > BN > ANN, which is consistent
with hold-out results. The confidence intervals overlap, suggesting
that CV predictive performance was not significantly different
among the three models.
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Considering all CV results, maximum testing R2 was as high as
0.39 with an upper confidence interval bound of 0.50 (BRT model
11). The disparity between CV testing and hold-out results (highest
R2 = 0.26) may reflect the fact that the former data sets had mea-
sured depth to screened interval, whereas the latter relied on
kriged estimates of this important variable. In general, prediction
of nitrate in drinking water wells is challenging because they com-
monly are deeper than monitoring wells. For Central Valley wells
sampled in the 1980s–2000s (Burow et al., 2013), the median
depth of domestic wells was 55 m and median nitrate concentra-
tion was 2.1 mg/L. In contrast, monitoring wells had median depth
of 11 m, and median nitrate was 5.0 mg/L. Deeper wells commonly
have longer travel times, increased likelihood of nitrate-reducing
conditions, and age mixtures that reflect recharge that occurred
before the intensive use of synthetic N fertilizer (Dubrovsky
et al., 2010). These factors may have reduced correlations between
groundwater nitrate and land-use variables and limited the predic-
tive ability of the models.

We selected BRT model 2 as final for mapping based on CV
testing and model evaluation results with hold-out data. BRT
yielded consistently higher testing R2 across the range of model
complexities (Fig. 2B), and model 2 had the highest R2 and lowest
MSE for hold-out data (Table 3). Also, the range of predictions by
model 2 for hold-out data reasonably matched the spread of
observed nitrate values (Fig. 3A). The resulting map (Fig. 7) closely
resembles the groundwater nitrate map previously generated by
Fig. 7. Predicted groundwater nitrate concentration by boosted regression tree
model 2 for the Central Valley, CA. Units of groundwater nitrate concentration are
mg/L as N.
random forest regression for the Central Valley (Nolan et al.,
2014). Spatial patterns of predicted nitrate are consistent with
what is known about nitrate occurrence in the region. The map
shows a north–south gradient wherein predicted nitrate is
generally higher in the San Joaquin Valley (south part of Central
Valley) compared with the Sacramento Valley in the north. Prior
researchers noted that Fe and Mn were consistently higher in the
east fans and basin subregion of the Sacramento Valley compared
with the San Joaquin Valley, which indicates reducing conditions
less conducive to nitrate (Burow et al., 2013). Fig. 7 also shows
low predicted nitrate concentration (0–2 mg/L) in the center of
the Valley (dark green area in Fig. 1), which makes sense because
groundwater becomes older and more reduced as it migrates
toward the center of the basin.

4. Conclusions

A statistical learning approach helped control tendencies of
machine-learning methods to overfit training data. Ordered by pre-
diction R2, performance by the best models was BRT > BN > ANN.
Hold-out data augmented the CV approach in two ways. Hold-
out data suggested that simpler BRT and ANN models obtained
by the 1SE rule would outperform the more complex versions
(i.e., those with maximum CV testing R2) when applied to new
data. Additionally, hold-out data provided insight into model
prediction bias and variance. Although CV testing R2 values by
the three methods were not significantly different, scatterplots of
observed vs. predicted hold-out data revealed considerable bias
by ANN and BN and high prediction variance by ANN. ANN may
have been hampered by the comparatively large number of
predictor variables, which necessitates many weights and
contributes to overfitting. The 1SE BRT model was selected for
mapping and yielded mapped predictions that reasonably
conformed to what is known about nitrate occurrence in shallow
groundwater of the Central Valley. Although the hold-out data
were useful in model evaluation, the results represent a single,
unique data set and results with other independent data sets
may differ.

Tree methods are flexible, are resistant to outliers, can handle
irrelevant inputs, and seem well suited to the data set. Although
none of the three methods adequately predicted censored nitrate
data in hold-out data sets, the frequency of censored nitrate values
in the training data was comparatively low (18%). However,
random forest classification or probability-based BRT (Bernoulli
link function) may be more appropriate with higher levels of
censoring.

Predictive performance by the models may have been ham-
pered by using screened interval depth as a proxy for groundwater
age. Age is among the most important variables controlling
groundwater nitrate concentration but is difficult to estimate.
Future efforts are focused on improving estimates of groundwater
age distributions through particle tracking with numerical ground-
water flow models.

Of the off-the-shelf methods tested here, only BN estimates pre-
diction uncertainty. Adding an uncertainty component such as
Monte Carlo would benefit BRT, ANN, and RFR. Few studies have
applied Monte Carlo to machine learning methods, but a Markov
Chain Monte Carlo approach has been used with ANN (Hastie
et al., 2009; Neal and Zhang, 2006). Additionally, Monte Carlo
methods have been used with ensemble tree methods to estimate
the variance of treatment effects (Austin, 2012).
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Variable Description

Nitrogen input and land use
Fert_N_tot Farm + nonfarm fertilizer N, kg/ha

LU_crop_pas Cropland-pasture (2-pasture, 5-idle, 14-grain/hay,
15-vineyard, 16-truck, 17-field, 20-rice)

LU_orch_vin Orchard-vineyard (15-vineyard, 18-deciduous fruit an
nut tree, 19-citrus)

LU_urb_res Urban-residential (7-landscape/golf, 8-residential,
9-urban)

Pop_density Population density, people/km2 � 10

Soil properties
AWC Available water capacity, fraction
Bulk_den Bulk density, g/cm3

Clay Clay content, percent
Hi_WT_dep Depth to saturated soil, m
Hydgrp_A Percent of hydrologic group A
Hydgrp_B Percent of hydrologic group B
Hydgrp_C Percent of hydrologic group C
Hydgrp_D Percent of hydrologic group D
Hydrat_A Percent of drainage class well-drained
Hydrat_B Percent of drainage class somewhat poorly drained
Hydrat_C Percent of drainage class poorly drained
Hydrat_D Percent of drainage class moderately well drained
Hydrat_E Percent of drainage class excessively drained
Hydrat_G Percent of drainage class somewhat excessively drain
Ksat_vert Depth-integrated Ksat, lm/s
Org_mat Organic matter content (percent by weight)
Porosity Porosity, percent
Sand Sand content, percent
Silt Silt content, percent

Well-construction data
Perf_top Depth to top of perforated interval, ft
Scr_mid Depth to midpoint of perforated interval, ft

Central Valley model outputs
PC_screen Percent coarse sediment above the well screen
PC_upper Percent coarse sediment in upper active model layer
Vel_Oct91 Vertical water fluxa, Oct. 1991, m3/d
Vel_Nov91 Vertical water fluxa, Nov. 1991, m3/d
Vel_Dec91 Vertical water fluxa, Dec. 1991, m3/d
Vel_Jan92 Vertical water fluxa, Jan. 1992, m3/d
Vel_Feb92 Vertical water fluxa, Feb. 1992, m3/d
Vel_Mar92 Vertical water fluxa, Mar. 1992, m3/d
Vel_Apr92 Vertical water fluxa, Apr. 1992, m3/d
Vel_May92 Vertical water fluxa, May 1992, m3/d
Vel_Jun92 Vertical water fluxa, June 1992, m3/d
Vel_Jul92 Vertical water fluxa, Jul. 1992, m3/d
Vel_Aug92 Vertical water fluxa, Aug. 1992, m3/d
Vel_Sep92 Vertical water fluxa, Sept. 1992, m3/d
Wat_lev92 Avg. simulated depth to water, 1992, m

a Monthly average MODFLOW water flux across the bottom of the upper active mode
Appendix A

Predictor variables for the BRT, BN, and ANN models. CVHM,
Central Valley Hydrologic Model, and CVTM, Central Valley Textu-
ral Model (Faunt, 2009); DWR, California Department of Water
Resources (DWR, 2013); NWIS, National Water Information System
(USGS, 2005); SSURGO, Soil Survey Geographic Database (USDA,
2014); STATSGO, State Soil Geographic Database (Wolock, 1997).
Source

County N data (Gronberg and Spahr, 2012); farm N was
apportioned within well buffers by cropland-pasture and
orchard-vineyard lands, and nonfarm N was apportioned by
urban-residential land.
DWR

d DWR

DWR

1990 census

SSURGO
SSURGO
SSURGO
STATSGO
SSURGO
SSURGO
SSURGO
SSURGO
SSURGO
SSURGO
SSURGO
SSURGO
SSURGO

ed SSURGO
Calculated from SSURGO Ksat for i layers and total soil depth
SSURGO
SSURGO
SSURGO
SSURGO

NWIS
NWIS

CVTM
CVTM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM
CVHM

l layer, where negative sign represents water moving vertically downward.
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