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An element y of a p-primary abelian torsion group is said to be of infinite 
height if for all n the equation pnx = y has a solution in the group. Let E be a 
field which is finitely generated over its prime field. In this paper we investigate 
the subgroup consisting of the elements of infinite height in the p-primary 
component of B(E), the Brauer group of E, and X(E), the continuous character 
group of E. 

Before stating our results we introduce some notation. We denote thep-primary 
component of an abelian torsion group G by G, . The Ulm subgroups of G, 
are defined inductively for any ordinal h by: G,(O) = G, , G,(h + 1) = pG,(X), 
and for X a limit ordinal, G,(X) = naCA G&3). If w denotes the first infinite 
ordinal, then G,(w) represents simply the elements of infinite height in G, . 
G,(w2) is the subgroup of G,(w) consisting of the elements of G,(w) of infinite 
height in G,(w). The least ordinal X such that G,(X) = G,(X + 1) is called the 
Ulm length of G, and denoted by Z,(G). For h = Z,(G), G,(h) = DG, , the 
maximal divisible subgroup of G, . Since DG, is a divisible group it is a direct 
summand of G, _ We denote the Brauer group of a field E by B(E). Let Eab be 
the maximal abelian extension of E in some algebraic closure of E. Then 
Gal(E,,/E) is the Galois group of Enb over E, and X(E) is the continuous 
character group hom(Gal(E,,/E), Q/Z). We d enote the characteristic of E by 
char E. For any subfield F of E, t.d. E/F is the transcendence degree of E over F. 
By a global field we mean either an algebraic number field or an algebraic 
function field in one variable over a finite constant field. p will always stand for a 
prime number. 
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The completion of a field K at a nonarchimedean valuation n is written &; 
k-, stands for the residue class field of K, at ‘in. The fixed field of the kernel of 
(T E X(K) is denoted by Ku; KU is a cyclic extension of K of degree equal to the 
order of o in X(E). Conversely, if L is a cyclic extension of K, then there are a 
finite number of ct E X(K) with L =.= Ku. 

W’ith this notation established, we can now state our main results. 

THEORE~I I. Let B be a $eld jinitely generated over its prime field and 
p # char E. Then X(E),(,) E H @ DX(E), where II is a finite group and 
DX(E), is isomorphic to the direct sum of a finite number of copies of Z(p’,). In 
particular, the Ulm length of X(E), is < ~2. 

As a consequence of Theorem I and the results of [3] and [4] we obtain 
information about certain Brauer groups: 

THEOREM 2. Let E be a purely transcendental extension of a global field F 
with 1 < t.d. E/F < YZ and p + char E. Then B(E),(w) g G 0 DB(E), where 
G is countable and isomorphic to a direct sum of cyclic p-groups of unbounded 
exponent and DB(E), is isomorphic to the direct sum of w copies of Z(pl). In 
particular, the Ulm length of B(E), q I e ua s ~2. Moreover, if G has a cyclic direct 
summand of order p”, then G has a direct summand isomorphic to the direct sum of 
w copies of Z/p”Z. 

We begin the proofs of the theorems with two lemmas. We have made no 
attempt to prove the lemmas in the greatest generality possible but have stated 
them only in the form in which they will be used. A special case of the second 
lemma appears implicitly in the proof of Theorem 4 of [3]. 

LEMMA 3. Let E be a $eld jinitely generated ovey its prime field, r a discrete 
rank one valuation of E, p + char(EV), and let m be a fixed natural number. Then 
there is an integer n = n(E, p, r, m) which is minimal so that fov any$nite extension 
L, of E,, with [L, : Em] dividing m, neither L, nay L, contains a primitive p’“th root 
of unity. 

Proof. By Hensel’s lemma it is enough to prove the result for I;, . Since 
[I;, : ET] divides m it is clearly enough to show that & is finitely generated over 
its prime field. We prove this by induction on t.d. E/F where F is the prime field 
of E. By induction we may suppose that E = K(t) where t.d. K/F + 1 := t.d. 
E/F and where K, is finitely generated over F=,; here K, and F, denote the 
completions of K and F under the valuations obtained by restriction of 71. 

Let V, and V,. denote the valuation rings of E and K with respect to ‘in and 
ZT lK , respectively, and let Pz and PK denote the maximal ideals of these valuation 
rings. Since t or l/t is in V, , we may assume that t E V, . If t E rJ,, then 
i$, z K, and we are finished. If t $ PE , then E, E K,(t + PE) and again we 
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conclude that &, is finitely generated over its prime field. This proves our first 
lemma. 

LEMMA 4. Let 17 be$nitely generated over itsprimefield. If o E X(E),(w), then 
Eu/E is unrami$ed at all discrete rank one valuations rr of E with char gn f p. 

Proof. Suppose (5 E X(E),(w) and let 7~ be a discrete rank one valuation of E 
with char i?,, # p. Then E,,E” is a cyclic tamely ramified p-extension of E,, . 
Let T be the maximal unramified extension of EmEu and suppose that T # E,E”. 
By Lemma 3 with m = 1, there is an s such that T does not contain a primitive 
psth root of unity. Since u E X(E),(w), there exists a 6 E X(E), with p% = U. 
Thenps = [ES : EO]. LetL be the completion of ES at a valuation of E” extending 
7~. Since ES is a cyclic p-extension of E and p # char E, , z is separable over EV 
and so Hilbert theory applies. Since the intermediate fields between E” and E are 
linearly ordered and since T f E,E”, it follows that the decomposition field for 
v from E to E” is a subfield of E0 [12, Proposition 4.10.81. Thus L is a cyclic 
totally and tamely ramified extension of T and@ = [L : T] > [E8 : E”] = p”. By 
[9, Lemma 11, p. 741 T contains a primitive pfth root of unity, contradicting our 
choice of s. Thus T = EWE” and so rr is unramified from E to E”, as desired. 

We now turn to the proof of Theorem 1. Consider the following assertion: 

(*) Let L be a field finitely generated over its prime field and letp # char L. 
Then there exist only finitely many u E X(L),(w) with cr of orderp. 

Assume that we have proved (*) and let E be a field finitely generated over its 
prime field, char E # p. Let H be a reduced subgroup of X(E)),(m) so that 
X(E),(w) z H @ DX(E),(w). Finally let r be the directed graph whose vertices 
are elements of H and such that 6 is connected to r if p7 = 6. 

It follows from (*) that each vertex of r has finite order. If r were finite, the 
Konig infinity lemma would imply that r contains an infinite path. An infinite 
path in rcorresponds, however, to a divisible subgroup of H, which is impossible 
since H is reduced. We conclude that r is finite and so H is a finite group. 
DX(E),(w) is a direct sum of copies of z(p=), and (*) implies that there are only 
finitely many summands. Thus, to prove Theorem 1, it is enough to prove (*). 

Assume now that L is finitely generated over its prime field and p # char L. 
Since (*) is obvious if L is a finite field, we may assume that L contains a global 
field F. We proceed by induction on t.d. L/F. 

Suppose first that t.d. L/F = 0. Then L is itself a global field. Let 
0 E X(L)Jw), u of order p, p # charl. By Lemma 4, Lo/L is unramified at all 
discrete rank one valuations r ofL with char&, # p. By [7, Satz 11.81 there are 
only finitely many possibilities for L and so there are only finitely many possible 
0’s. 

Assume next that Y = t.d. L/F > 1. By [5, p. 166] there is a global field 
Fl CL and a separating transcendence base tl ,..., r, forL over F, such thatL is a 
finite separable extension of F,(t, ,..., ty). Let K, = F,(t, ,,.., t,-,), let K be the 
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algebraic closure of K,, in L, and let t = t, . ThenL is a finite separable extension 
of K(t), K is algebraically closed in L, and t.d. L/F = t.d. K/F, + 1. Let 
u E X(L),(w), u of order p. By Lemma 4, Lu/L is unramifkd at all discrete rank 
one valuations r of L with char L, # p. 

Suppose Lo = L W where W is algebraic over K. Then W is separable over K 
since LW is separable over L and K is algebraically closed in L. Let W, be the 
normal closure of W in some algebraic closure of L. By [2, Corollary 1, p. 901, 
[WI : K] = [L WI : L]. But L”/L is G aoissoLW, =LOandsop = [Lo:L] = 1 
[WI : K]. Thus W = WI and so W is a cyclic extension of K of degree p. 

Let n be the discrete rank one valuation of K(t) trivial on K and having t as 
uniformizing parameter. The residue class field of K(t), is then K and, since 
p # char L by assumption, it follows that p f char L, for any extension y of x 
to L. Fix some extension of n to L and denote this extended valuation by r. For 
simplicity, we write E rather than L, . 

Assume W qz. Then WL is a cyclic extension of L of degree p and so there is 
a 6 E X(t), with l6 = WI% We claim that 6 E X(L),(w). Suppose not. Then 
there is an m so that there is no solution X(z), of the equation pnk = 6. Let 
n = n(E, p, r, p”“) be as in Lemma 3 and let s -= n + rlz. Since (J E X(L),(w), 
there is a 8 E X(L), withps-l0 := 0. Let Y :-= LB so [Y : L] =- ps. Since Lo == L W 
and W $? L, r has a unique extension to Lo and this extension is unramified. Since 
Y is a cyclic p-extension of L, the intermediate fields are linearly ordered. 
Since char L f p, L is the decomposition field for r from L to Y and x has a 
unique extension to Y [12, sects. 4-101. Denoting the extension of T to I’ by rr 
and setting Yn equal to Y, we see that f is a cyclic p-extension of E containing 
WE = La. By our choice of m, [Y : L] divides p”“. By Lemma 3 Y does not 
contain a primitive pnth root of unity. Let I?,, be the maximal unramified 
extension of L, in Y, . Since [Y : L] = p” = [Y, : L,] = [I’, : R,][R, : L,] by 
[12, sects. 4-101 and Y = R, , we have [Y, : R,] ‘3 ps--?” = p”. But p -f 
char Y,, = charL so Yv is a cyclic totally and tamely ramified extension of R, 
of degree > pn. By [9, Lemma 11, p. 741, R, contains a primitive p’“th root of 
unity and so R, = y does also. This is a contradiction and shows that 
6 E X(L),(,). Since L is finitely generated over its prime field, p + char L, and 
t.d. L/F = Y - I, we conclude by our inductive hypothesis that X[E),(w) 
contains only finitely many elements of order p. This implies that there are only 
finitely many possible W’s as above with W CL and WL unramified over L at 71. 
Since there are only finitely many cyclic extensions W of K with WC L we 
conclude that there can be only finitely many IJ E X(L),(w), u of order p, such 
that La = L W with W algebraic over K. 

Now suppose that (T E X(L),(w), 0 of order p, and assume that there does not 
exist a W algebraic over K with Lo = LW. Let I? be an algebraic closure of K 
in some field containing L as a subfield. Since Lo is not a constant field extension 
by assumption, I?L” is a cyclic extension of IfL of degree p. Let r be an arbitrary 
discrete rank one valuation of r?L which is trivial on R. Then the residue class 
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field of l?L, contains Rand so has characteristic different fromp sincep # char L 
by assumption. Since L-/L is unramified at all discrete rank one valuations y of 
L with p # charL,, , it follows that Lo/L is unramified at n 1 L. Thus I?L”/RL 
is unramified at all discrete rank one valuations of KL which are trivial on R. 
Corresponding to the extension I?L/R(t) there is a uniquely determined algebraic 
curve A which is a complete nonsingular irreducible variety [lo, p. 181. The 
extension I?LoII?L then corresponds to a cyclic unramified cover of degreep of A. 
By a theorem of Lang and Serre [B, Theorem 4, p. 3271 (see also [IO, pp. 127-1281 
and [I 1, pp. 373 and 3811) there exist only finitely many such covers. We are thus 
reduced to proving that there are only finitely many T E X(L)P(w), T of order p, 
such that XL” = xLT. 

Suppose then that 7 E X(J~)~(W), 7 of order p, ifLo = l?LT, and Lo #LT. Since 
&Lo = I?Lr, there is a finite extension V of K such that VL” = VLT. Since 
[ VLoL7 : VL] = p, it follows that [VL n L”LT : L] = p. Let U = VL n 
L”LT n V. If U = K, then VL n Lo0 is an algebraic function field with K as 
field of constants. Since Loti is separable over L and L is separable over K, 
LaLT n VL is separable over K. Since LZr n VL(V) = VL we have 
[VL : LZT n VL] = [V : K] by [2, Corollary 1, p. 901. But V is the field of 
constants of VL by [2, Theorem 2, p. 901 so [V : K] = [VL : L]. Thus 
[LnLTn VL :L] = 1, a contradiction. We conclude that U # K and so 
VL n L”L7 = UL. Let y E X(L), with Ly = UL. We claim that y E X(L),(w). 
Let n be arbitrary and let La and La be, respectively, cyclic extensions of Lo and 
LT of degree pn where 01, p E X(L), . 01 and /J exist since 0, 7 E X(L),(w). Since 
UL CL”Lr, UL CL”Lfl. Let (0) = Gal(LaLB/La), (p) = Gal(L*Lfl/L@). Since both 
6’ and v have order p*+l neither induces the identity automorphismwhen restricted 
to UL. Without loss of generality we may assume that 0 j UL = 9 1 UL. Then 
e-rv has order pn+l and its fixed field L, is a cyclic extension of L containing UL. 
Thus there is a 6 E X(L), with ~“6 = y and La = L, . We conclude that 
y E X(L),(w) as desired. Since LY is a constant field extension LU, there are only 
finitely many choices for y by the preceding arguments. Thus there are only 
finitely many possibilities for L Y, Since Lr C LaLy, there are only finitely many 
possibilities for 7. This completes the proof of Theorem 1. 

Before proceeding to the proof of Theorem 2 we take this opportunity to 
digress for a moment and point out an interesting technical point that arises 
during the proof of Theorem 1. Suppose (maintaining the context of the proof) 
that 0 E X(L),(w) where Lo = L W with W a cyclic extension of K of degree p. 
Then W = KS for some 5 E X(K), . It is natural to conjecture that 5 E X(K)Jw), 
but we have not been able to prove this except when pf [L : K(t)]. As the 
argument in the proof shows, this would also follow if there exists a discrete 
rank one valuation ?T of L which is trivial on K and such that L,, = K. Such 
valuations need not, however, exist. 

We next turn to the proof of Theorem 2. Let E be a purely transcendental 
extension of a global fieldF with 1 ,< t.d. E/F < 03 and supposep # char(E). 
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We proceed by induction on t.d. E/F and so we may assume that the result is 
true for subfields of E of lower transcendence degree over F. The cases where 
transcendence degree equals I were handled in [3] and [4]. Let I:’ K(t) whcrc 
t is transcendental over K and t.d. E/F =z t.d. K/F + 1. By a basic result of 
Auslander and Brumer [I. Proposition 4. l} ( see also [3, Proposition I]) there 
is a split exact sequence 

where f runs through all manic irreducible polynomials in K[t] and K, 
K[t]/(f(t)). (M’e take this opportunity to correct a minor error in [3]. The exact 
sequence above is misstated in Proposition 1 as: 

0 ---)r B(K),, 4 B(E), -f @ X(V) --F 0 
V 

where V runs through all finite extensions of E in some algebraic closure of I:. 
This misstatement does not, however, affect any of the results of [3].) 

If t.d. E/F == 1, then the Ulm length Z,(B(E)) of B(E), equals 02 by Theorem I 
of [4]. If t.d. E/F ;--- 1, then l,(B(K)) == ~2 by induction. Since I,(.Y(K,)) ,‘. ~2 
by Theorem 1 we conclude that l,(B(E)) 7~ ~02. B(E), is countable since B is. By 
induction DB(K), is a direct sum of w copies of Z(p”‘) if t.d. E/F 1 ; this holds 
also for t.d. E/F m= 1 by the classical theory of Brauer groups over global 
fields. Thus we conclude from the Auslander-Brumer exact sequence that 
LIB(E), is a direct sum of w copies of Z(p-). Let G be a subgroup of R(R),,(W) so 
that B(E),(w) g G @ LIB(E), . Since Z,(B(E)) = ~2, DE?(B),, :m~ R(E),,(w2). 
Thus G is isomorphic to B(E),(w)/B(E),(w2), and is then a countable p-primary 
abelian group with no elements of infinite height. Thus G is a direct sum of 
cyclic groups [6, Theorem 11, p. 231. Finally, the last assertion of Theorem 2 
follows from the result [4, Theorem 31 that the Ulm invariants of E(E),, only 
can have the values 0 or w. This completes the proof of Theorem 2. 

We remark that some additional information about the structure of H(E),, can 
be found in [4]. 
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