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This is a sequel to my previous papers on generalized power series. For the
convenience of the reader I gather in the first section the definitions and resuits
which shall be required. Any missing proof is either very easy or is already in one
of the above quoted papers. After the preliminaries, I characterize (under suitable
conditions) the generalized power series which are powers; the essential idea is to
extend the validity of the usual binomial series. A short section gives conditions for
a ring of generalized power series to be a real ring. As known, the ring of usual
power series with coefficients in a field, in any number of indeterminates, is a
unique factorization domain. I show that the result holds for generalized power
series with exponents in a free-ordered monoid which is noetherian and narrow.
This leads to interesting examples of unique factorization domains. Completely
integrally closed domains of generalized power series are also characterized in
terms of their ring of coefficients and monoid of exponents. The final section is
devoted to seminormal domains. The main results about usual power series are
extended to generalized power series. € 1995 Academic Press, Inc.

1. PRELIMINARIES

(A) Monoids

A monoid is a set endowed with an associative, commutative binary
operation and having a neutral element. Unless stated otherwise, the
operation shall be written additively and the neutral element will be

denoted by 0.

Let S be a monoid. The element ¢t € § is cancellative when the
following property holds: if 5,5’ €5 and s +t =s" + ¢, then s = ¢. Let
C(S) be the set of cancellative elements of S. The monoid S is cancellative

when § = C(S).

If S is a cancellative monoid, the group of differences, defined in the

usual way, is denoted by §=85-58.
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Let G(S) = {s € S| there exists ¢ € § such that s + ¢t = 0}; then G(S)
is the largest subgroup of the monoid S.

The monoid § is torsion-free when the following property holds: if
s,t €8, k>1isan integer and ks = kt, then s = ¢.

A subset T of S is a set of generators of § if every s € § may be written
in the form s = X7_ k¢, with m >0, k; > 1,and ¢,...,t, € T.

A subset T of § is independent when the following condition holds: if
L, erk()t = L, o p&'()t (with k(t), k'(¢) natural numbers such that only
finitely many are different from 0), then k(¢) = k'(t) for every t € T.

S is a free monoid if it has an independent set of generators.

If S is a free monoid, then S is torsion-free and cancellative.

If n>1 and X c S, I shall use the notation nX = {x, +
o505, 8, € X)L

(B) Ordered Sets

Let (S, <) be an ordered set. It is not assumed that < is a total order,
nor is it excluded that < be the trivial order (s < ¢ only when s = ¢).

(S, <) is artinian (resp., noetherian) if every strictly descending (resp.
ascending) sequence of elements of S is finite.

(S, <) is narrow if every subset of pairwise order-incomparable ele-

ments of § is finite.
(1.1). S is finite if and only if § is artinian, noetherian, and narrow.

(1.2). S is artinian and narrow if and only if the following condition
holds: if (s,), is any sequence of elements of §, there exists a sequence
ny <n, < --- such thats, <s, < -

If (S, <;) (for i € I) is a family of ordered sets, the product order <
on S =1TI1,.,S; is defined componentwise: (s;); < (¢,); when s, <;¢; for
every [ € I.

(1.3). If (S,, <;) are artinian and narrow sets (for { = 1,..., n), then

13

(I'T7.,S;, <) (where < is the product order) is artinian and narrow.

Let <, <’ be orders on the set S. If s < implies s <’t (for all
s,t €8), then < is said to be coarser than <', and <’ is said to be
finer than <.

(1.4). Assume that < is coarser than <’, and let X S. If X is
< -narrow, then X is <’-narrow. If X is <’-artinian, then it is
artinian. If X is both < -artinian and < -narrow, then it is also
artinian and <’-narrow.

S-
<’'-
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(C) Ordered Monoids

Let (S, <) be an ordered monoid, that is, (S, <)is an ordered set, S is a
monoid, and the order < is compatible with the operation: if 5,s',t € §
and s < s, then s +t <s +t.

(S, <) is a strictly ordered monoid if, moreover, s,s',t €S and s <
imply s + ¢ <s' + t. In this situation, < is said to be a strict order. Thus,
if § is cancellative or the order is trivial then (S, <) is a strictly ordered
monoid.

An element ¢ of the ordered monoid (S, <) is < -cancellative when
s+t <s +¢ implies s <s'. The set C_(S) of all < -cancellative ele-
ments is a submonoid of C(S). (8, <) is said to be < -cancellative when
S = C_(S). It fo"'ows that S is cancellative and the order < is strict. If
(S, <) is totally ordered, or if S is cancellative and the order is trivial,
then it is < -cancellative. Also, every ordered group is < -cancellative.

If § is cancellative and < is a compatible order on S, define s <’t if
there exists u € § such that s + © <t + u. Then <’ is a compatible
order on S, finer than < and § is <’-cancellative.

If § is < -cancellative, the order < of § extends natuﬂrally to a
compatible order, still denoted < , on the group of differences § = § — S.
If the order < on § is total, resp. trivial, then its extension to $ satisfies
the same property.

If S is a torsion-free group and < is a compatible order on S, then <

extends naturally to a compatible order, still denoted < , on the smallest

divisible group Q containing S. If the order on S is total, resp. trivial, then
so is its extension to Q.

(1.5). If the monoid S has a compatible strict total order, then S is
cancellative and torsion-free.

The following result is important:

(1.6). If S is a cancellative and torsion-free monoid, if
compatible order on §, there exists a compatible total order
which is finer than < .

< is any
<’ on S,

(1.7). If X,Y are artinian and narrow subsets of the ordered monoid
(S, <),then X+ Y ={s +t|ls € X, t € Y}is artinian and narrow.

I shall sometimes consider ordered monoids satisfying the following
condition:

0<s foreverys € S. (S0)

If (S0) holds, then G(S) = {0}. If (S, <) satisfies (S0), if < is coarser
than <’, then (S, <') satisfies also (S0).
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(1.8). Let (S, <) be an ordered monoid. If X is an artinian and
narrow subset of §, such that 0 < s for every s € X, then the submonoid
of § generated by X is also artinian and narrow.

The proof of the above result is in [Ri3]; it requires a lemma of Erdds
and Rado quoted in [Hi] (see for example [Ro] for a simple proof).
As is shown in [Ri3], the above result implies

(1.9). Let (S, <) be a strictly ordered monoid, let X be an artinian
and narrow subset of S, such that 0 < s for every s € X. Then, for every
t € S, there exists an integer k() > 1 such that if n > k(¢) then ¢ & nX.

The following result is in [EI-Ri]:

(1.10). Let (S, <) be an ordered monoid and assume that § is
torsion-free. Then the following conditions are equivalent:

(a) If s,¢ €8, there exists an integer k > 1 such that ks < kt or
kt < ks.

(b) There exists a compatible total order <’ on S, finer than <,
namely s <'t if and only if there exists an integer & > 1 such that ks < kt.

’

The order < is said to be a subtotal order when the above conditions
are satisfied.

If S is a torsion-free and < -cancellative monoid, if < is a compatible
subtotal order, then its natural extension to § =S — 5 is still a subtotal

order.

(D) Generalized Power Series

Let R be a commutative ring, let (S, <) be a strictly ordered monoid.
Let A =[[R% =]] be the set of all maps f: § — R such that supp(f) =
{s € S|f(s) = 0} is artinian and narrow. On A, the addition is defined
pointwise.

If fi.....f,€A and s€S, let X(f,....f)=1{t,....1)€
S*f(e)#0,...,f(t,)+0and £, + -+ +1, = s}.

(1.11). Foralls € Sand f,,..., f, € A, theset X(f,,..., f,)is finite.

Define the operation of convolution * on A, as follows:

(f*g)(s) = Y f(r)e(w).

(r,u)eXLf, &)
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With these operations, 4 is a commutative ring, with unit element e,
namely
e(0) =1
e(s)=0 ifsel, s+0.

The elements of A are called generalized power series with coefficients in
R and exponents in S.

For simplicity, if k is a positive integer I write f* = f* --- xf (k
times).

Note that if f, g € A, then

supp(f + &) S supp(f) U supp(g),
supp( f * g) < supp(f) + supp(g).

R is canonically embedded as a subring of 4 and S is canonically
embedded as a submonoid of the monoid (A4, =), by the mapping s € § —
e, € A, where

e(s)=1
e(ty=0 ifteS,t#s.

(1.12). If <, <’ are compatible strict orders on the monoid S and <
is coarser than <', if A =[[R%=]] and A =[[R%=']], then A is a
subring of A'. If (S, <) is narrow, then 4 = A4,

(1.13). A is a domain if and only if R is a domain and § is torsion-free
and cancellative.

The proof is in [Ri2].
For the next result, see [El-Ril:

(1.14). A is a field if and only if R is a field, S is a torsion-free group,
and < is a subtotal order.

The following result will also be needed:

(1.15). Let S be torsion-free and cancellative. Then A is a reduced
ring if and only if R is a reduced ring.

For the proof, see [Ri2].
Let U(R), resp. U(A), denote the group of units of the ring R, resp. A.

(1.16). Assume that (S, <) satisfies condition (S0) and let f € A. Then
f € U(A) if and only if f(0) € U(R).
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For the proof see [Ri3].

If feA, f+#0, denote by w(f) the set of minimal elements of
supp( f); then w(f) is a non-empty finite set, consisting of pairwise order
incomparable elements. If 7(f) consists only of one element s, we write

w(f) =s.

(1.17). Let f, g be non-zero elements of A. Assume that w(f) =s isa
< -cancellative element of § and f(s)g(¢) # 0 for every ¢ € 7r(g). Then
a(f+g)=s+ w(g)

Proof. First, I show that s + w(g) c w(f* g). Let ¢ € w(g), then
(f*gXs +t) = Zf(w)g(v) (sum extended over all (u,v) € X, ,(f, g)).

Then s <u,sos+uv <u+v=s5+t¢t Since sis < -cancellative, v <1t
and since g(v) # 0 then v = ¢, and u = s because the order < is strict.
Thus (fx gXs + t) = f(s)g(t) # 0, by hypothesis.

If w<s+t and wesupp(f=*g), then 0 # (f*gXw)=Lf(ugv)
(sum extended over all (i, ) € X, (f, g)).

Thens <u,s+v<u+v=w<s +t, andsince s is < -cancellative,
v <t € w(g), which is absurd.

This shows that s + 7(g) < w(f * g).

Conversely, let w € m(f*g), s0 0 # (f > g)w) = Lf(wg(r) (sum ex-
tended over all (u, ) € X, (f, g)).

Then s < u; since g(v) # 0, there exists ¢t € w(g), such that ¢ < v,
therefore s +t<u+v=w. But s+tes+ a(g) cn(f+*g) hence
s+t =w, showing that w(f*g) Cs + w(g). »

As a corollary, w(e,* g) = s + m(g), whenever s is a < -cancellative
element.
Another corollary is the following:

(1.18). Let f be a non-zero element of A. Assume that w(f) =sis a
< -cancellative element of S and f(s)* # 0 (for k > 1). Then 7(f¥) =
km(f).

2. POWERS

I keep the same notations.

(2.1). Let n > 2 and assume that 4 = 4",
(i) If A is a domain, then R = R" and § = nS.
(i) If S satisfies condition (S0) then R = R".

Proof. (i) By (1.13), R is a domain and S is a cancellative and
torsion-free monoid. By (1.6), S has a compatible strict total order <’
finer than <.
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Let A =[[R% =']], so by (1.12) A is a subring of A". For every h € A',
let 7w'(#) denote the <’-smallest element of supp(h).

Let r € R; 1 may assume r # 0. There exists f € A such that re = f",
so f # 0. This relation holds also in 4’, hence 0 = 7'(f") = nw'(f), and
therefore 0 = 7'(f). Write f = f(0)e + f', where f' € 4,0 <'7'(f’). Then
re = f(0)%e + [, with f"e A4, 0 <'z'(f"), and 1 conclude that r =
f(O)" € R

Let s € §. By hypothesis, there exists g € A such that e, = g"; hence
s=7(g") =nw'(g) €ns.

(i) Let r € R; I may assume r # (. Then re = f", with f € 4. Hence
r=f"0=Xf(s) - f(s,) (sum extended over X, (f,..., f). Since r #
0, this set is not empty.

If f(s)#0,...,f(s,)+0and s, + - - +s, = 0, by (S0) (and noting
that the order < is strict) s, = --- =5, = 0. This shows that

X (f,..., f)consists only of (0,0,...,0) and r = f(0)". ¢

(2.2). Let g € A be such that supp(g) C {s € [0 < s}.
(i) For every s € §, there exists k(s) > 1 such that g(s) = 0 for
every [ > k(s).
(i) If (r,),,, is any sequence of elements of R, denote by £7_,rg’
the mapping s € § — L7 'r,g'(s) € R. Then I7_yr,g' € A.
Proof. (i) This follows at once from (1.9).

(i) It is clear from (i) that the mapping I7_,r,g' is well defined.
Moreover, supp(X7_,r,g") € UT. ol supp(g). By (1.8), U7T_,/supp(g) is
artinian and narrow, hence 7_,r,g' € 4.

If g € A is such that w(g) C {s € S|0 < s}, I define the mapping
9.t R[[Z]] — 4

from the ring of usual formal power series in the determinant Z, into A,
by letting

‘Pg( Z riZi) = Z rigi-

i=0

(2.3). ¢, is a ring-homomorphism.

Proof. Since ¢, transforms sums into sums, it suffices to yerify that if
p=X7_ogr,Z), p=Xi griZ% and p'=p-p =X (r/Z' with r] =
Eik=iliTer then ¢, (p") = @, (p)* ¢, (p).
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If s € S, consider the finite set X = X (Z7_yr;8”, X5, ri %)

With the notations of (2.2), let N| > k(s) and also N, > k(¢), for every
t € S such that there exists (7, u) € X; let N, > k(s) and also N, > k(u),
for every u € § such that there exists (r,u) € X; let N = N, + N,. Note
that X = X(ZNr,g’, LYz rig"). It follows that

( > r;'g")(s)

i=0

N
(Zr,"g')(S)
=10

N, N,
[( ) rjg’) *( P r;g*)](S)
Jj=0 k=10

N, N,
( Zr,g’)(t)( rLg")(ll)
(Lex \j=0 k=0

( Yorel|(1)

j=0

I
1

I
g

(r,u)ex

[( i r,g’) *( i r,’\.g"”(sy
j=0 k=0

Denote by v, the p-adic valuation (where p is any prime).
The following result is probably known:

concluding the proof. g

LemMma.  Let m, k > 2 and let p be a prime number not dividing m. Then

() (k) < v fm=D2m =1 - ((k—Dm— 1), for every k > 1.
(ii) If R is a ring such that m is invertible in R, then, for every k > 1

AR CR RACR

(=D 'm—1@m =1y ((k = )m = 1)/ (m* x k)
€R.

3
i

Proof. (i) For every e > 1, there exists an integera,, 1 <a, <p‘ — 1,
such that a,m = 1 (mod p*).
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Let M=(m-1D2m -1 - (k—-—1Dm—-1and M, ={bll <b <k
— 1, bm =1 (mod p°)}. Let s, = [(k — 1 ~ a,)/p°]. Then

#M, = #{il0<i<s,, (a, +i)m
=1+s,.

1 (mod p°)}

Since a, + 1 < p°then[k/p°l <1+ [(k — 1 —a,)/p°], hence as it is

obvious
(k1) (%] - 15))
v D=1—1+ —|—=1—1]+
7 p’ P
([k k
te —(: - e—1 + -
p P
k k] 'k]
=|l=|+|=|+ - +|=|+
p p | P

<(1+s)+(1+s)+ - +(1L+s,)+ -

= #M, + #My + - HH#M, +

#M, + 2(#M, — #M\) + - +e(#M, — #M,_ ) + -~
v,(M).

(ii) This follows at once from (i), since m is invertible in R and
M/ k! is p-integral for every prime p not dividing m. g

(2.4). Let m = 2 and assume that m is invertible in the ring R. Let
g € A be such that 7(g) c {s € 5|0 < s} and let

1 1 1
h=e+|mle+|mle*+ | ml|et+ .
1 2 3

Then h A and h" =¢e + g.

Proof. First observe that & € A, by (2.2) and the above lemma.
In RI[Z]] the following identity holds:

m

1 1
1+ \mlZ+|m|Z°+-| =1+2Z.
1 2
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Applying the ring-homomorphism ¢,, it follows that

m

1 1
hm=le+ | mle+|ml|g? | =e+g. »
1 2

(2.5). Let m > 2 be invertible in the ring R. If f€ U(A), w(f) =5 €
mG(S), and f(s) € U(RY", then f & U(A)™.

Proof. Let s = mt and f(s) = r™, with t € G(§), r € U(R).

Let & = f(s)"'e_,* f. Thus h € U(A), since —s is < -cancellative, by
the special case of (1.17), w(h) = {0} and h(0) =

Hence h = e + g, where g € A, g = 0, or supp(g) C {5 € S|0 < s}. By
(2.4) there exists k €A such that k" =e + g =h. It follows that
(re, x k)™ = f(s)e,x h = f. Since f € U(A) then re, x k € U(A), thus f €
u4)". p

Here is a corollary:

(2.6). Let m = 2 be invertible in the ring R and assume that (S, <)
satisfies condition (S0). Assume also that U(R) = U(R)Y". Then U(A) =
ucA4yn.

Proof. let fe U(A) and e = f* g with g € A. Then 1 = Lf(s)g(t)
(sum extended over all couples (s, 1) such that 0 =s + 1, f(s) = 0, g(1) #
0). By (S0), necessarily s =t = 0, hence 7(f) = {0} and f(0) € U(R) =
U(R)". By (2.5), fe U(A)". ¢

3. REaL RinGs

Recall that the ring R is said to be a real ring if the following condition
is satisfied: if r|,...,7,, € Rand £™ ;r? =0,thenr, = -+ =r, = 0.

In particular, a real ring is reduced (i.e., it has no nilpotent elements
different from 0). Indeed, if r” = 0, if m < 27, then also r2" = 0; it
follows successively that 72" ' =0,...,r>=0and r = 0.

It is clear that if A4 is a real ring then its subring R is also a real ring.

Also, S is torsion-free, because if s €S, k> 1, and ks = (), then
0=e,,=ek if k<27 then 2" =0, s0 " '= -+ =e2=¢, =0,
hence s = 0.

(3.1). Assume that S is torsion-free and cancellative. If R is a real
ring, then A is a real ring.
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Proof. Let f,,..., f,, €A be such that each f, # 0 and X7, f* = 0.
Let <’ be a strict total order on §, finer than <. A4 is a subring of
A" = [[R* =']], hence the relation X" ,f> = 0 still holds in A" Let s =
min, _,_ {7 (f)} (in (S, <). Then 0 = (X", f>N2s) = £, f3(2s) =
Y [f.(s))2 Since R is a real ring, then f,(s) = 0 for every i = 1,...,m,
which is a contradiction. g

4. Unioue Facrtorization Domains

For the next result I need the following fact. Let R be a ring, let (Y)), .,
be a family of indeterminates. The ring RI[[Y]],.,, of power series in the
indeterminates Y, and coefficients in R, consists of the series Lr,, M (sum
over all monomials M = Hj’-‘:lY,-l"f, with ij,...,i, €1, e; > 1, and with
coefficients r,, € R).

Cashwell and Everett [Ca-Ev] (see also Liu [Li]) have shown that if R is
a field, then R[[Y1};, is a unique factorization domain.

(4.1). Let R be a field, assume that the ordered set (S, <) is artinian
and narrow and that § is a free monoid. Then A is a unique factorization
domain.

Proof. Since § is a free monoid, then it is torsion-free and cancellative.
Thus, by (1.13), 4 is a domain.

Since § is artinian and narrow, then 4 = R® (the set of mappings from
S to R).

Let T be a set of free generators of the monoid § and let R[[Y,]], ., be
the ring of formal power series with coefficients in R, in the indetermi-
nates Y, (+ € T). Since R is a field, then RI[Y,]], ., is a unique factoriza-
tion domain, it suffices to establish a ring-isomorphism ¢: 4 — R[[Y]}, . ;.

Let f€ A =R if s €5 it may be written in unique way in the form
s = Z;‘_lejtj (with HeT, e =21, k= 0); denote by M, the monomial
M, = TT}_ Y. Define

e(f) = L f(s)M,.
ses
It is clear that ¢ is bijective and also that ¢(f + g) = ¢(f) + ¢(g) and
e(f*g) = o(fle(g). Indeed,

o(fxg) = L(f+e)s)M, = L ¥ flu)g(e)MM,

sES seSute=s
= Zsm ) T eorm,) = erete)

Thus ¢ is a ring-isomorphism, concluding the proof. g
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ExampLE. Let (£,),., be a sequence of natural numbers greater than
1, such that for each n > 1 there exists a prime p which divides t,, but p
does not divide ¢,,¢,,...,¢,_,. Let §* be the multiplicative monoid
gencrated by (1), .. ; it is a submonoid of the multiplicative cancellative
monoid N ;. Then §°® is a free monoid, and (¢,), ., is a system of frce
generators. Indeed, if [T¥_ % = TT14_ 1% with d,, e, > 0, max{d,, e,} # 0,
by cancellation (which is valid in N, ,) I may assume, for example, d, > 0,
e, = 0. Let p be a prime such that plt,, p + ¢,t, -~ ¢, _,. This contra-
dicts the unique factorization of integers as products of primes.

Let § = {log sls € $°), thus S is a free additive monoid of positive real
numbers, which may be endowed with the total order < induced by the
usual order of R. Since (8, <) is artinian, if R is any field then 4 is a
unique factorization domain.

For example, I may take t, = F, (the nth Fibonacci number) for
n # 1,2,6,12, because each such Fibonacci number has a primitive prime
factor (see Carmichael [Ca] or Ribenboim [Ri5]).

5. CoMpLETELY INTEGRALLY CLOSED DOMAINS

Let R be a domain and let K be its field of fractions. Recall that R is a
completely integrally closed domain when the following property is satisfied:

If x € K and there cxists r € R, r # 0, such that rx" € R for every
n > 1, then x € R.

Similarly, let § be a cancellative monoid and let §=5-S be the
group of differences. § is said to be a completely integrally closed monoid
when the following condition is satisfied:

If + € § and therc exists s € 5, such that s + nt € § for every n > 1,
then t € §.

Let R be a domain, (S, <) a < -canceliative ordered monoid.

(5.1). If A is a completely integrally closed domain, then R is a
completely integrally closed domain and S is a completely integrally closed
monoid.

Proof. Let K be the field of fractions of R and let L be the field of
fractions of A, hence K is a subfield of L.

Let x € K and assume that there exists r € R, r # 0, such that x" € R
for every n > 1. Let f=xe and g=vre,s0 fEL, g€ A, and g+ f" =
(rx")e € A for every n > 1. By hypothesis, f € A, so x € R.

Now let ¢ € S and assume that there exists s € S such that s + nt € S,
for every n > 1. Note that the order < on S extends to a compatible
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order still denoted <, on S and A C [[RS =] If t =5, — s, (with
sl,szeS) then e, e [R5 =]] and e, =e, *e, so e, €L. Moreover,
e, x(e,) =e.,,. € A for every n > 1. Hence e, €A and therefore ¢ € S.

]

(5.2). Assume that R is a completely integrally closed domain and that
(S, <)is asubtotally ordered, < -cancellative monoid, which is torsion-free
and completely integrally closed. Then A is a completely integrally closed
domain.

Proof. Let K be the field of fractions of A, let $ be the group of
dlfferences of §, endowed with the natural extension of the order of §. Let

= [[K5 =1L since (§, <) is a subtotally ordered torsion-free group by
(1.14), B is a field, hence it contains the field of fractions L of A.

Let f& L and assume that there exists g € 4, g # 0, such that g *
f" e A for every n > 1. Identifying f with an element of B, let X =
supp(f) NS N f'(R), hence X is artinian and narrow.

Define f: § — R by putting

f(s) ifseXx
Is(s) { 0 ifseX.

So supp(f,) = X, hence fg € A.

Let f' =f—fg€ L c B. Then supp(f) N S N f'~Y(R) = & because if
seS, f'(s) R, and f'(s) + 0, then 5 & X, hence f(s) ER, s0 s € X,
which is absurd.

It suffices to show that f" = 0 and I assume f’ # 0. Then

g g =g n (=) =g = (e gy
T R R

by hypothAesis.

Since § is a torsion-free group, there exists a compatible strict total
order <’ on §, finer than <. Let t, = '(f'), s, =7(g)€S. Aisa
subring of A" = [[R% =']].

By (1.17), forevery n > 1, w'(g * f'") = 5, + nt, € § because g * f'" &
A.Thus ¢, € S.

Similarly, (g * f""Xs, + nt,) = g(s))f""(nt) = g(s ) f' (¢t € R for
every n > 1. Thus f'(¢;) € R. I conclude that ¢, € supp(f')N SN
f""(R) = @, and this is absurd, completing the proof. g
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As a corollary, we have the following.

(5.3). Assume that R is a completely integrally closed domain and that
(8, <) is a totally ordered completely integrally closed monoid. Then A is
a completely integrally closed domain.

Proof. This is just a special case of the preceding result. g

Here it should be noted that a similar result cannot hold for the
property of being integrally closed. Indeed, it is known that there exists an
integrally closed domain R such that the usual ring of formal power series
R{[X1] is not integrally closed (see, for example, Bourbaki [Bo, p. 76,
Exercise 27] or Brewer [Br)).

6. SEMINORMAL RINGS

The concept of seminormality has been studied by various authors; I
refer the reader to the paper by Brewer and Nichols [Br-Ni] which is
directly relevant.

A ring R is seminormal when the following property is satisfied: if
b.c € R and b? = c¢?, then there exists 4 € R such that b =4’ and
c=a’

Swan [Sw] gave another characterization of seminormal rings, in terms
of their Picard group, but this will not be required here.

Costa [Co] showed (I repeat his simple proof) the following

(6.1). If R is seminormal, then R is reduced.

Proof. Let b € R be such that b* = 0;if 2"~ < k < 2™ (with m > 1),
let ¢ = 52", hence ¢? = 0.

I shall show that ¢ = 0, and then the argument may be repeated,
leading eventually to b = 0.

First ¢2 =0, ¢ = 0, hence there exists @ € R such that ¢ = ¢* and
¢ = a’. It follows that ¢ = a® = ac, therefore ¢ = a’c =c*=0. g

Clearly, every field is a seminormal ring.

It is also very easy to show that every unique factorization domain is
seminormal.

If R is a subring of 7, R is said to be seminormal in T when the
following property holds: if b € T and b2 b> € R then b € R.

The following rephrasement of the definition is almost immediate:

(6.2). If R is a subring of T, then R is seminormal in T if and only if
the following condition is satisfied: if a € T and there exists &, such that
a* € R for every k > k,, then a € R.
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Proof. It is clear that the property indicated implies that R is seminor-
mal in T (taking &k, = 2).

Conversely, let R be seminormal in 7', let a € T, and let k, = 1 be the
smallest exponent such that a* € R for every k > k,. If k, > 1 then
(a¥o="2 e R, (a*»"N)} € R, so a*~!' € R, which is absurd. Therefore
k,=1,hence a € R. ¢

It follows at once from the definition:

(6.3). If RcTcU- (where R, T are subrings of the ring U), if R is
seminormal in 7 and T is seminormal in U, then R is seminormal in U.

It is also casily scen:
(6.4). Let R be a subring of the ring 7.

(i) If T is reduced and R is seminormal, then R is seminormal in T.

(i) f T is seminormal and R is seminormal in 7, then R is
seminormal.

Thus, a domain is seminormal if and only if it is seminormal in its field
of fractions.

A monoid S is said to be seminormal when the following condition
holds: if s,r € § and 2s = 3¢, there exists g € §, such that s = 3g and
t = 2q.

It is clear that every group is seminormal. It is also very easy to show
that every free monoid is seminormal.

Let Q be a monoid and let § be a submonoid. § is said to be
seminormal in Q when the following condition holds: if s € Q and
25,35 € S, then s € §.

The proof of the next proposition is omitted, since it is exactly like the
proof of (6.2):

(6.5). Let S be a submonoid of Q. Then § is seminormal in Q if and
only if the following condition holds: if g € @ and there exists k, > 1
such that kg € S for every k > k, then g € §.

S is said to be (2.3)-rorsion-free when the following condition holds: if
s,t €8,2s =2¢t, and 3s = 3¢, then s = 1.

(6.6). Let § be a submonoid of the seminormal monoid Q.

(i) If § is (2,3)-torsion-free and seminormal, then S is seminormal
in Q.

(i) If S is seminormal in Q, then S is seminormal.
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Proof. (i) Let g € Q be such that 2¢q,3q9 € S. Since 3(2q) = 2(3qg),
there exists ¢+ € § such that 2g = 2+ and 3g = 3t. By hypothesis, g =
re S.

(ii) Let s, € § be such that 2s = 3¢. Then there exists g € Q such
that s = 3q, t = 2q. By hypothesis, g € § hence § is seminormal. g

In particular, if § is a torsion-free, cancellative, seminormal monoid,
then S is seminormal in $.

Let R be a subring of T, let (5, <) be an ordered submonoid of (Q, <).
Let 4 =[[R%=]] and B =[[T< #]l. Then A4 may be identified with a
subring of B, namely if f & 4 its canonical image in B is such that

flg) =0 for every g € Q\ S.
The following result is trivial:

(6.7). If A is seminormal in B, then R is seminormal in 7 and S is
seminormal in Q.

Proof. Let t € T be such that t?,t* € R. So te € B is such that
(te)*,(te)* € A; hence by hypothesis, te € A4, thus t € R.

Let ¢ € Q be such that 2¢,3g € S. Then (e,)* = e,, € A, (¢,)* = e,
€ A. Hence e, eAd,s0q€e€S. g

I give the analogous result.

(6.8). Let S be torsion-frec and cancellative. If A is a seminormal
ring, then R is seminormal and § is a seminormal monoid.

Proof. Let r,,r, € R be such that r} = r3}; we may assume r,, r,, # 0.
Then (r,e)* = (r,e)?, hence there exists f € 4, f # 0, such that re = f*
and rye = f?.

By (1.6) there exists a compatible strict total order <’ on §, finer than
< ; as before, we denote by 7'(f) the <’-smallest element of supp(f). A
is a subring of A" = [[R> =']).

Then 0 = w’(fz). Since A is seminormal, then by (6.1) it is a reduced
ring. It follows from (1.15) that R is reduced, hence by (1.18) 0 =
7'(f?) = 27'(f). Since S is torsion-free, then 7'(f) = 0 and I may write
f=f0e + f" where f' €A and 0 <'7'(f"). Hence

rie=f*=f(0)e+f,

rye =f*=f(0)% + f1,
where f], f; € Aand 0 <'w'(f7), 0 <'7'(f}). Thus r, = f(0)°, r, = f(0)’,
showing that R is a seminormal ring.

Now let s,,5, € § be such that 25, = 3s,. Then (e,)* = e, = e;, =
(e, )". By hypothesis, there exists f € A such that e, —f* —f2 Then

!
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by (1.18) s, = 7w'(f¥) = 37'(f), s, = w'(f?) = 27'(f), proving that S is
seminormal. g

I shall now study the converse of the above statements.
The following result is an extension of a theorem for formal power
series by Brewer and Nichols {Br-Nil:

(6.9). Let (Q, <) be a torsion-free and cancellative ordered monoid,
let 7 be a ring. We assume that the ordered submonoid (S, <) is
seminormal in (Q, <) and that the subring R is reduced and seminormal
in 7. Then A = [[R% =]} is seminormal in B = [[T< =]].

Proof. By (1.6) there exists a compatible strict total order <’ on Q,
which is finer than < . We note that B is a subring of B" = [[T7¢ =']] and
A is a subring of A’ = [[R* =']].

For each f € B, f # 0, denote by 7'( f) the smallest element of supp(f)
(in the order <’). Note that supp(f) is < -artinian and < -narrow,
hence it is a well-ordered subset of (Q, <’), by (1.4).

I divide the proof into several parts.

(1) Let feB, f+0, and assume that f? f? e 4; let 7' (f) =s.
Then f(s) € Rand s € §.
Indeed, f2(2s) = f(s)?, f3(3s) = f(s)? thus f(s)? f(s)® € R, hence by
hypothesis, f(s) € R.
Since R is reduced, by (1.18), w'(f2) =27 (f)=2s€ 8, #(f¥) =
37'(f) = 3s € S. But S is seminormal in Q, hence s € §.

(2) T introduce the following definition.
Let ¢,q € supp(f), with r <'q. We say that (¢, q) satisfies condition
(= *) when the following is true:
For every m > 0, for every subset {u,,...,u,} of supp(f) such that
t <'uy <' - <’u, <'q,forall integersn > 1,...,n,, > 1:

f(f)I:—[lf(uf)"'ER
and

m
t+ Y nu €S.

i=1

I say that r satisfies condition (*) when (z, q) satisfies (* x), for all
q < supp(f), such that ¢ <'g.
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(3) 1 show that s satisfies ().
First I note that (s, s) satisfies (* *), since 5 € S, f(s) € R.
Let s <'g, with g € supp(f). 1 show that if (s, g') satisfies (* *) for
every q' € supp(f) such that s <'q’ <’q, then (s, g) satisfies (* ).
Let

Let n > 1, arbitrary, and consider g, = f(s)e,* f2*(f — f )" =
2ol )= DRFE 2 f(de, x fE

By hypothesis f"%*? € A for every k > 0.

Also, supp(f(s)e, * f¥) s + supp(f}). If ¢ € supp(f}) then

(f(s)e,x fF)(s +0) = f() Lfole)™ -+ folwn)™

(sum for all (v,,...,r,) such that each v, € supp(f,), n, + -+ +n, =k,
nyey + ¢+, = v; hence v, <'q for each i).

By (1.11), the number of summands is finite, hence there exists g €
supp( f), such that ¢’ <’q and ¢v; <’q’ for each v; in any one summand. By
hypothesis, (s, ) satisfies (* ), hence (f(s)e, * f)e + v) € R, and also
s+ Li_nu; € S, for each summand. Thus f(s)e,* ff € A for0 < k <n,
hence g, € A4, for every n > 1. In particular, since R is reduced, then
w'(g,) = 3s + nq € S, forevery n = 1 and g,(35 + nq) = f(s)*f(g)" € R.

Let b = f(NT™, f(u,)f(q), with s <'u, <'q (for each i), m > 0,
n,>11=>0.

If kK = 4, then

b* =f(s)k‘“[f(S)inf(ui)k"‘}[f(S)Bf(q)“] €R.

Hence by (6.2), b € R.

Letw =s + X7 nu, + lg, with s <'u; <'q (foreach i), m > 0, n; > 1,
[ =0.

Again, if kK > 4 then

kw=(k—-4)s + [s + Y knu,| + (3s + kig) € 5.

i=1

By (6.5), w € S.

This shows that (s, g) satisfies (* *).

Since supp(f) is <’-well ordered, then (s, g) satisfies (* =), for every
q € supp(f), showing that s satisfies ().
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(4) 1 show that if ¢t € supp(f), then ¢ satisfies ().
Otherwise, there exists the <’-smallest ¢ € supp( f), not satisfying (*).
By (3), ¢t # s.
Let f* = f — f,, where f, is defined as was f,. Thus f* € B, w'(f*) =1,
and f*(¢) = f(1).
Also,

(Y =fr=2f < f+ (f)
(FFY =f3=3f,«F2+30f) = (f)"

But ¢ satisfies (*), for every ¢ € supp(f), v <’t. Hence f, * h € A for
every h € B, such that supp(h) € U%_,n supp(f).

In particular, (f)% (f) (f)?+f, f,+f? € A, showing that
(fFP.(fF) € A

Noting that 7'(f*) = r and that for ¢ <'q, ¢ € supp(f) if and only if
q € supp( f*), it follows from (3), that ¢ satisfies ( *), which is contrary to
the hypothesis.

(5) End of the proof:
If + € supp(f), then (¢,¢) satisfies (* +), hence t € S, f(1) € R. This
shows that fe€ 4. g

The results which follow also generalize the corresponding facts about
power series rings, established in [Br-Ni]. The proof of the next proposi-
tion does not appeal to the characterization of seminormal rings in terms
of the Picard group, since in the present situation the ring of formal power
series over a field—which is the unique factorization domain—is replaced
by the ring of generalized power series with coefficients in a field;
according to (4.1), the latter ring is a unigue factorization domain in
certain cases, but it is not expected to be generally so.

(6.10). Let R be a seminormal ring. Let (S, <) be a < -cancellative
subtotally ordered monoid, which is torsion-free and seminormal. Then
A = [[R¥ =]] is seminormal.

Proof. R is seminormal, hence reduced, so it is a subring of a product
11, . ;D,, where each D, is a domain. Let K, be the field of fractions
of D,.

Since (S, <) is < -cancellative, its order extends canonically to an
order, still denoted <, on the group of differences §, which is still
torsion-free; moreover, (§, <) is subtotally ordered.

By (1.14), L, = [[K;" =]l is a field. Hence 11, ., L, is seminormal; since
RclIl,.,D cTIl,., K, and R is seminormal, by (6.4) R is seminormal
in ', , K,. On the other hand, § is seminormal in S by (6.6). It follows
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from (6.9) that A4 = [[R%=]] is seminormal in [[IT,., Kf' =]] =
I, K5 =]l =T11,., L,. By (6.4), A is seminormal. g

In particular, if R is a seminormal ring, if (S, <) is a totally ordered
seminormal monoid, then A is seminormal.

In this way it is possible to obtain many interesting examples of
seminormal rings.

I shall indicate other sufficient conditions on R and (S, <) for the ring
A to be seminormal.

I introduce the following definition. Let m > 2; the ordered monoid is
< -m-cancellative when the following condition holds: if 5,7 €S and
ms < mt, then 5 < t.

(6.11). Assume that R is a field of characteristic 2 (resp. 3) and that
(S, <) is an ordered torsion-free group which is < -2-cancellative (resp.
< -3-cancellative). Then A = [[R’ =]] is seminormal.

Proof. Let f,g €A be such that f2=g% f g+0. Let <’ be a
compatible total order on the torsion-free group §, which is finer than <
and let A =[[R* =']]. So A is a subring of A4'. By (1.14), A’ is a field, so
it is seminormal. Hence there exists k € A’ such that f = k%, g = k°.

Under the first hypothesis, I show that supp(g) = {2s]s € supp(k)}.
Indeed, let g(¢) # 0, that is, k?(¢) = ¥, , _,k()k(0) # 0. If u # v then
kGok(r) + k(0)k(u) = 2k(w)k(r) = 0, because 2R = 0. From £°%(¢) # 0,
there exists s € § such that t = 2s, with k(s) # 0, so supp(g) € {2s5ls €
supp(k)}), and conversely. Since supp(g) is narrow, and S is < -2-
cancellative it follows that supp(k) is also narrow. Since supp(g) is
artinian, then so is supp(k); thus k € A.

The proof is similar under the second hypothesis. g

(6.12). Assume that R is a seminormal ring of residual characteristics
equal to 2 (resp. 3). Let (S, <) be a < -cancellative torsion-free ordered

monoid, which is seminormal and < -2-cancellative (resp. < -3-
cancellative). Then A = [[R3 =]] is seminormal.

Proof. Let (P),.,; be the family of minimal non-zero prime ideals of
R.let D, = R/ P; and let K, be the field of quotients of D,. By hypothesis
each field K, has characteristic 2 (resp. 3). I note that R C I1,., D; <
I1,.,K,.

Let S be the group of differences of § and denote still by < the order
extension of < to §; clearly, § is < -2-cancellative (resp. < -3-
cancellative). By (6.11), L, =[[K} =]l is seminormal. Hence IT,., L,
is seminormal. Since R is seminormal, by (6.4) it is seminormal in
IT,.,; K, By (6.6), S is seminormal in S. By (6.9), A is seminormal in
(1,., K> =N =T11,., L, Finally, by (6.4), A is seminormal. g
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