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a b s t r a c t

A central problem in the theory of Gorenstein dimensions over commutative noetherian
rings is to find resolution-free characterizations of the modules for which these invariants
are finite. Over local rings, this problem was recently solved for the Gorenstein flat and
the Gorenstein projective dimensions; here we give a solution for the Gorenstein injective
dimension. Moreover, we establish two formulas for the Gorenstein injective dimension of
modules in terms of the depth invariant; they extend formulas for the injective dimension
due to Bass and Chouinard.

© 2009 Elsevier B.V. All rights reserved.

0. Introduction

Gorenstein dimensions are homological invariants that are useful for identifying modules and ring homomorphisms
with good homological properties. This paper is concerned with the Gorenstein injective dimension and the Gorenstein flat
dimension, denoted Gid and Gfd, respectively. These invariants are defined in terms of resolutions by modules from certain
classes, the Gorenstein injective and the Gorenstein flat modules. See Section 1 for definitions.
Let R be a commutative noetherian ring. It is frequently useful to know that finiteness of the classical homological

dimensions of an R-moduleM can be detected by the vanishing of (co)homology. For the injective dimension one has

idRM = sup{ j | Ext
j
R(R/p,M) 6= 0 for some p ∈ Spec R }.

One of the key problems in Gorenstein homological algebra has been to find criteria for finiteness of Gorenstein dimensions
that are resolution free. See the survey [1] and the introduction in [2] for a further discussion of this issue. The problemwas
partly solved by Christensen, Frankild, and Holm in [2]: If R has a dualizing complex andM is an R-module, then

GidRM is finite if and only ifM belongs to B(R)
where B(R) is the Bass class of R; the crucial point is that verification of membership in B(R) does not involve construction
of a Gorenstein injective resolution. Similarly GfdRM is finite if an only ifM belongs to the Auslander class A(R).
If R is a homomorphic image of a Gorenstein ring, then it has a dualizing complex. In particular [2] solves the problem

when R is local and complete or, more generally, essentially of finite type over a complete local ring. However, non-trivial
modules of finite Gorenstein injective dimension or finite Gorenstein flat dimension may exist over rings that are not
homomorphic images of Gorenstein rings; see Example 1.6. In [3] Esmkhani and Tousi show that when R is local, but not
necessarily a homomorphic image of a Gorenstein ring, an R-moduleM has finite Gorenstein flat dimension if and only if the
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module R̂⊗RM is in the Auslander class A(̂R) of the completion R̂. This solves the resolution-free characterization problem
for the Gorenstein flat dimension over local rings. In a separate paper [4] the same authors give a solution for the Gorenstein
injective dimension of cotorsion modules over local rings.
In this paper,we complete the solution for local ringswith the special case S = R̂of the next result,whereinRHomR(S,M)

and S⊗L
RM are the right derived homomorphism complex and the left derived tensor product complex. More general

statements are proved in Theorems 1.7 and 1.8.

Theorem A. Let ϕ : R → S be a local ring homomorphism such that S has a bounded resolution by flat R-modules when
considered as an R-module via ϕ. For every R-module M there are inequalities

GidRM > GidS RHomR(S,M) and GfdRM > GfdS(S⊗L
RM).

If ϕ is flat, then equalities hold; in particular, the respective dimensions are simultaneously finite in this case.

As noted above, Esmkhani and Tousi’s [4] resolution-free characterization of finiteness of Gorenstein injective dimension
only applies to cotorsion modules. The cotorsion hypothesis is quite restrictive. Indeed, work of Frankild, Sather-Wagstaff,
and Wiegand [5,6] shows that a finitely generated cotorsion R-module is complete. For Gorenstein rings, the following
application of Theorem A strengthens the main result of [5]; it only assumes that the Ext-modules are finitely generated
over R̂, not over R.

Theorem B. Let R be a Gorenstein local ring, and let M be a finitely generated R-module. If the R̂-modules ExtiR(̂R,M) are finitely
generated for i = 1, . . . , dimRM, then the modules ExtiR(̂R,M) vanish for i > 1, and M is complete.

The hypotheses of this result are satisfied ifM is complete, e.g., ifM has finite length; cf. Remark 3.2. Theorem B is a special
case of 3.1.
In Section 2 we consider formulas that express the Gorenstein injective dimension of an R-module in terms of the depth

invariant. Our main result in this direction is Theorem C. It extends Chouinard’s [7] formula for injective dimension, and it
removes the assumption about existence of a dualizing complex from [2, thm. 6.8].

Theorem C. For every R-module M of finite Gorenstein injective dimension there is an equality

GidRM = sup{depth Rp −widthRp Mp | p ∈ Spec R}.

For certain modules this formula has already been established by Khatami, Tousi, and Yassemi [8,9]. Actually, we prove
Theorems A and C for R-complexes, and the latter yields a Bass formula for homologically finite R-complexes; see 2.3. Such
a formula was established for modules in [8].

1. Finiteness and descent of Gorenstein homological dimensions

Throughout this paper R and S are commutative noetherian rings. Complexes of R-modules, R-complexes for short, are
indexed homologically: the ith differential of an R-complex M is written ∂Mi : Mi → Mi−1. We proceed by recalling the
definitions of Gorenstein injective and Gorenstein flat modules from [10,11].
(1.1) An R-module J is said to be Gorenstein injective if there is an exact complex I of injective R-modules such that J ∼= Ker∂ I0
and the complex HomR(E, I) is exact for every injective R-module E.
An R-module G is Gorenstein flat if there is an exact complex F of flat R-modules such that G ∼= Im ∂F0 and E⊗R F is exact

for every injective R-module E.
The first step toward Theorem A is to notice that the central arguments in the works of Esmkhani and Tousi [3,4] apply

to any faithfully flat ring homomorphism, not just to the map R→ R̂; see 1.3. To this end the next fact is key.

Lemma 1.2. Let ϕ : R→ S be a faithfully flat ring homomorphism. If E is an injective R-module, then it is a direct summand (as
an R-module) of the injective S-module HomR(S, E).

Proof. Let E be an injective R-module. It is well known, and straightforward to show, that HomR(S, E) is an injective
S-module. Because ϕ is faithful, it is a pure monomorphism of R-modules, cf. [12, thm. 7.5]. This implies that S/R is a flat
R-module, so HomR(S/R, E) is injective. Now apply the exact functor HomR(−, E) to 0→ R→ S → S/R→ 0 to obtain a
split exact sequence of injective modules. �

Lemma 1.3. Let ϕ : R→ S be a faithfully flat ring homomorphism.
(a) Assume that dim S is finite. An R-module M is Gorenstein injective if and only if HomR(S,M) is a Gorenstein injective
S-module and ExtiR(F ,M) = 0 for every flat R-module F and all i > 1.

1

(b) An R-module M is Gorenstein flat if and only if S⊗RM is a Gorenstein flat S-module and TorRi (E,M) = 0 for every injective
R-module E and all i > 1.

1 The vanishing of ExtiR(F ,M) for every flat R-module F and for all i ≥ 1 means exactly that M is cotorsion. It is straightforward to show that this is
equivalent to the standard definition of cotorsion which only requires Ext1R(F ,M) = 0 for every flat R-module F .
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Proof. Argue as in the proofs of [3, thm. 2.5] and [4, thm. 2.5], but use the injective S-module HomR(S, E) from 1.2 in place
of the double Matlis dual E∨∨. �

For the proofs that follow, we need some terminology.
(1.4) Let M be an R-complex; it is said to be bounded above if Mi = 0 for i � 0, bounded below if Mi = 0 for i � 0, and
bounded ifMi = 0 for |i| � 0. If the homology complex H(M) is bounded, thenM is called homologically bounded. If H(M)
is finitely generated, then M is said to be homologically finite. The notations inf M and supM stand for the infimum and
supremum of the set {i ∈ Z | Hi(M) 6= 0}, with the convention that inf M = ∞ and supM = −∞ if H(M) = 0.
From this point, we work in the derived categories D(R) and D(S); see e.g. [13]. Given two R-complexes M and N , their

left derived tensor product complex and right derived homomorphism complex are denoted M⊗L
R N and RHomR(M,N).

The symbol ‘'’ is used to identify isomorphisms in derived categories.
(1.5) The Gorenstein injective dimension of a homologically bounded R-complexM is defined as follows

GidRM = inf

{
sup{i ∈ Z | J−i 6= 0}

∣∣∣∣∣J is a bounded above complexof Gorenstein injective modules
and isomorphic toM in D(R)

}
.

The Gorenstein flat dimension is defined similarly in terms of bounded below complexes of Gorenstein flat modules; see
[14, (5.2.3)].
When R has a dualizing complex D, Avramov and Foxby [15] define two full subcategories A(R) and B(R) of D(R).

The objects in the Auslander class A(R) are the homologically bounded R-complexes M such that D⊗L
RM is homologically

bounded and the natural morphism M → RHomR(D,D⊗L
RM) is an isomorphism in D(R). The objects in the Bass class

B(R) are the homologically bounded R-complexes M such that RHomR(D,M) is homologically bounded and the natural
morphism D⊗L

R RHomR(D,M)→ M is an isomorphism in D(R).
For a homologically bounded R-complexM , the main results in [2] state

GfdRM is finite if and only ifM belongs to A(R); and (1.5.1)
GidRM is finite if and only ifM belongs to B(R). (1.5.2)

Before proving Theorem A, we recall an elementary construction of rings that admit non-trivial modules of finite
Gorenstein dimensions.

Example 1.6. Let Q be a commutative noetherian ring and consider the ring of dual numbers R = Q [X]/(X2). It is routine
to show that the cyclic R-module R/(X) is Gorenstein flat and not flat. Hence, for every faithfully injective R-module E
the module HomR(R/(X), E) is Gorenstein injective and not injective; see [14, thm. (6.4.2)]. Furthermore, if Q is not a
homomorphic image of a Gorenstein ring, then neither is R.

The next result contains half of Theorem A from the introduction. Recall that a ring homomorphism ϕ : R→ S has finite
flat dimensionwhen S, considered as an R-module via ϕ, has a bounded resolution by flat R-modules.

Theorem 1.7. Let ϕ : R → S be a ring homomorphism of finite flat dimension, and assume that dim R is finite. For every
homologically bounded R-complex M there is an inequality

GidRM > GidS RHomR(S,M).

If ϕ is faithfully flat and dim S is finite, then equality holds; in particular, the dimensions are simultaneously finite in this case.

Proof. Assume that M has finite Gorenstein injective dimension, and fix a bounded complex J of Gorenstein injective
R-modules such that there is an isomorphismM ' J inD(R). As anR-module, S has projective dimension atmost dim R <∞;
see [16, II. thm. (3.2.6)] and [17, prop. 6]. Therefore, by [2, cor. 2.12] there is an isomorphism RHomR(S,M) ' HomR(S, J)
in D(S), and the right-hand complex is a bounded one of Gorenstein injective S-modules; see [18, Ascent table II (h)]. In
particular, there is an inequality GidRM > GidS RHomR(S,M).
Assume now that ϕ is faithfully flat and that d := dim S and GidS RHomR(S,M) are finite. Recall the inequalities

pdR S 6 dim R 6 d. Consider a resolution M
'
−→ I by injective R-modules. The complex HomR(S, I) ' RHomR(S,M) is

one of injective S-modules, and one has Hi(HomR(S, I)) = 0 for all i < inf M − d, as pdR S is at most d. Left-exactness of the
functor HomR(S,−) yields an isomorphism

Ker∂HomR(S,I)n−1
∼= HomR(S,Ker∂ In−1)

for each n. It follows that RHomR(S,M) is isomorphic in D(S) to the complex

0→ HomR(S, I0)→ · · · → HomR(S, In)→ HomR(S,Ker∂ In−1)→ 0

for n < inf M−d. Set K = Ker∂ Iinf M−2d−1. Since the S-complex RHomR(S,M) has finite Gorenstein injective dimension, the
S-module HomR(S, K) is Gorenstein injective; see [2, thm. 3.3]. To show that GidRM is finite, we use Lemma 1.3(a) to prove
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that K is Gorenstein injective over R: For every flat R-module F , one has pdR F 6 d, and for every i 6 1 dimension shifting
yields

ExtiR(F , K) ∼= Ext
i+d
R (F ,Ker∂ Iinf M−d−1) = 0.

To prove the equality of Gorenstein injective dimensions, choose an injective R-module E such that

GidRM = − infRHomR(E,M)

cf. [2, thm. 3.3]. Themodule E is a direct summand of an injective S-module Ẽ by Lemma 1.2, hence the third step in the next
sequence

GidS RHomR(S,M) > − infRHomS (̃E,RHomR(S,M))
= − infRHomR(̃E,M)
> − infRHomR(E,M)
= GidRM.

The first step is by [2, thm. 3.3], the second one is from Hom-tensor adjointness, and the last one comes from the choice of
E. The opposite inequality was proved in the first paragraph of this proof. �

The next result contains the other half of Theorem A, and it gives a partial answer to [19, quest. 8.10]; see also
Proposition 1.9. Its proof is similar to, but simpler than, the proof of Theorem 1.7. Note that 1.8 has no assumptions on
the Krull dimension of R or S.

Theorem 1.8. Let ϕ : R → S be a ring homomorphism of finite flat dimension. For every homologically bounded R-complex M
there is an inequality

GfdRM > GfdS(S⊗L
RM).

If ϕ is faithfully flat, then equality holds; in particular, the dimensions are simultaneously finite in this case. �

Equality can fail in Theorems 1.7 and 1.8 if ϕ is not flat, even if R is local and ϕ is surjective. See 3.3 for an example.
We conclude this section with an application of Theorem 1.7 which, in particular, answers [19, quest. 8.10] for local ring

homomorphisms.

Proposition 1.9. Let ϕ : R→ S be a faithfully flat ring homomorphism, and assume that R is semi-local. For every homologically
bounded R-complex M, there are equalities

GfdS(S⊗RM) = GfdR(S⊗RM) = GfdRM.

Proof. If GfdRM is finite, then the desired equalities hold by [19, cor. 8.9]. Theorem 1.8 says that GfdS(S⊗RM) and GfdRM
are simultaneously finite. Hence, it remains to assume that GfdR(S⊗RM) is finite and prove that GfdRM is finite.
The completion R̂ of R (with respect to its Jacobson radical) has a dualizing complex. By Theorem 1.8 the finiteness of

GfdR(S⊗RM) implies that Gfd̂R(̂R⊗R(S⊗RM)) is finite, so the complex

R̂⊗R(S⊗RM) ' (̂R⊗RM)⊗R S ' (̂R⊗RM)⊗R̂(̂R⊗R S)

is in the Auslander class A(̂R) by (1.5.1). As S is faithfully flat over R, the module R̂⊗R S is faithfully flat over R̂, and it follows
that R̂⊗RM is in A(̂R), cf. [20, rmk. 4]. Thus, Gfd̂R(̂R⊗RM) is finite by (1.5.1), and Theorem 1.8 implies that GfdRM is finite.
�

2. A Chouinard formula for Gorenstein injective dimension

The width of a complexM over a local ring Rwith residue field k is defined as:

widthRM = inf(k⊗L
R M).

There is an inequality widthRM > inf M , and equality holds if M is homologically finite, by Nakayama’s lemma. Let N be
another R-complex; a standard application of the Künneth formula yields

widthR(M⊗L
R N) = widthRM +widthR N. (2.0.1)

If M is homologically bounded and of finite projective dimension, and if H(N) is bounded above, then there is an equality
[21, thm. (4.14)(a) and (1.6)(b)]:

widthR RHomR(M,N) = depthRM +widthR N − depth R. (2.0.2)

Foxby [22] defines the small support of a complexM over a noetherian ring R, denoted suppRM , as the set of prime ideals
p in R such that the complexMp has finite width over Rp.
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Lemma 2.1. Let J be a Gorenstein injective R-module. Then one has

depth Rp 6 widthRp Jp

for every p in Spec R, and equality holds if p is a maximal element in suppR J .

Proof. Let p be given, and let T be an Rp-module of finite projective dimension. Because there is an exact sequence

· · · → A2 → A1 → A0 → Jp → 0

where each Ai is an injective Rp-module, a standard dimension shifting argument shows that ExtiRp(T , Jp) = 0 for all i > 0.
Set d = depth Rp, and choose a maximal Rp-regular sequence x. Because The Rp-module Rp/(x) has finite projective

dimension, the previous paragraph provides the first inequality in the next display

0 6 inf RHomRp(Rp/(x), Jp) 6 widthRp RHomRp(Rp/(x), Jp) = widthRp Jp − d

where the equality follows from (2.0.2). This proves the desired inequality.
Let p be maximal in suppR J , and let I be the minimal injective resolution of J . For prime ideals q that strictly contain

p, the indecomposable module ER(R/q) is not a direct summand of any module Ij in I; see [22, rmk. 2.9]. It follows that
Ij ∼= (Ij)p ⊕ I ′j where I

′

j is a direct sum of injective hulls of the form ER(R/q) such that p 6⊆ q. Recall that for each such q we
have HomR(ER(R/p), ER(R/q)) = 0, and so HomR(ER(R/p), I ′j ) = 0. In conclusion, there are isomorphisms

HomR(ER(R/p), Ij) ∼= HomR(ER(R/p), (Ij)p ⊕ I ′j ) ∼= HomR(ER(R/p), (Ij)p).

This explains the last isomorphism below; the first one is Hom-tensor adjointness

HomRp(ERp(Rp/pRp), Ip) ∼= HomR(ER(R/p), Ip) ∼= HomR(ER(R/p), I).

It follows that the modules ExtiRp(ERp(Rp/pRp), Jp) vanish for i > 0.
Set S = Rp; it is a local ring with depth d, maximal ideal n := pRp and residue field l := Rp/pRp. The S-module B := Jp has

minimal injective resolution H := Ip. One has n ∈ suppS B and

ExtiS(T , B) = 0 for all i > 0 and every S-module T with pdS T finite

ExtiS(E, B) = 0 for all i > 0, where E is the injective envelope of l.
(1)

To prove the desired equality widthR B = d, we adapt the proof of [18, cor. 6.5]. Let K denote the Koszul complex on a
system of generators for n, and note that K ⊗S E and HomS(K , E) are isomorphic up to a shift. The total homology module
H(HomS(K , E)) has finite length. In particular K ⊗S E is homologically finite. Fix a resolution by finitely generated free
S-modules

L
'
−→ K ⊗S E. (2)

Then there are (quasi)isomorphisms:

K ⊗S(E⊗L
S HomS(E, B)) ' L⊗S HomS(E, B) ∼= HomS(HomS(L, E), B) (3)

the last one is Hom-evaluation [23, lem. 4.4]. The resolution (2) induces a quasiisomorphism α from the complex
HomS(K ⊗S E, E) ∼= HomS(K , Ŝ) to HomS(L, E). The mapping cone C of α is a bounded complex of direct sums of Ŝ and
E. By (1) the modules Cj are Ext-orthogonal to B, that is, we have ExtiR(Cj, B) = 0 for all i ≥ 1 and all j. Hence, an application
of HomS(−, B) yields a quasiisomorphism

HomS(HomS(L, E), B)
Hom(α,B)
−−−−−→

'
HomS(HomS(K , Ŝ), B). (4)

The modules in the complex HomS(K , Ŝ) are Ext-orthogonal to the modules in the mapping cone of the injective resolution
B
'
−→ H . Therefore, one has

HomS(HomS(K , Ŝ), B) ' HomS(HomS(K , Ŝ),H) (5)

see [2, lem. 2.4]. Now piece together (3)–(5), and use Hom-evaluation to obtain

K ⊗S(E⊗L
S HomR(E, B)) ' K ⊗S RHomS (̂S, B). (6)

By the width sensitivity of K , see [21, (4.2) and (4.11)], the complexes RHomS (̂S, B) and E⊗L
S HomS(E, B) have the same

width. From (2.0.1) and (2.0.2) one has

widthS E +widthS HomS(E, B) = widthS B. (7)
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The maximal ideal n is in suppS B, so widthS B is finite. It follows from (7) that widthS HomS(E, B) is finite; in particular,
HomS(E, B) is non-zero. As every element in E is annihilated by a power of themaximal ideal n, it follows that nHomS(E, B) 6=
HomS(E, B). (Indeed, if HomS(E, B) = nHomS(E, B), then HomS(E, B) = nt HomS(E, B) for each t > 1. Since HomS(E, B) 6=
0, there are elements ψ ∈ HomS(E, B) and e ∈ E such that ψ(e) 6= 0. Also, there is an integer t > 1 such that nte = 0.
The condition ψ ∈ nt HomS(E, B) then implies ψ(e) = 0, a contradiction.) Thus, one has widthS HomS(E, B) = 0, and the
desired equality follows as widthS E = d by [21, prop. (4.8)]. �

The next result contains Theorem C from the introduction.

Theorem 2.2. For every R-complex M of finite Gorenstein injective dimension there is an equality

GidRM = sup{depth Rp −widthRp Mp | p ∈ Spec R}.

Proof. If H(M) = 0 then the equality holds for trivial reasons. Assume H(M) 6= 0; without loss of generality, assume also
that M0 6= 0 and Mi = 0 for all i > 0. Set g = GidRM , and notice that g > 0. If g = 0, then M is a Gorenstein injective
module, and the desired equality follows immediately from Lemma 2.1.
Assume now that g > 0. There is an exact triangle in D(R)

J → I → M → Σ J

where J is a Gorenstein injective module, and I is a complex with idR I = g . This is dual to the special case n = inf N = 0
of [24, thm. 3.1]. By the Chouinard formula for injective dimension [25, thm. 2.10], there is a prime ideal p such that
widthRp Ip = depth Rp − g . By Lemma 2.1 one has

widthRp Jp > depth Rp > widthRp Ip

so from the exact sequence of homology modules

· · · → Hi+1(M⊗L
R Rp/pRp)→ Hi(J ⊗L

R Rp/pRp)→ Hi(I⊗L
R Rp/pRp)→ Hi(M⊗L

R Rp/pRp)→ · · · (1)

one gets the equality widthRp Mp = widthRp Ip. This proves the inequality ‘‘6’’.
For the opposite inequality, let a prime q be given. If widthRq Mq > depth Rq, then g > depth Rq−widthRq Mq; so assume

widthRq Mq < depth Rq. Again (1) yields widthRq Mq = widthRq Iq, as one has widthRq Jq > depth Rq by Lemma 2.1. Now the
inequality g > depth Rq −widthRq Mq follows from the Chouinard formula for injective dimension. �

For modules, the Bass formula below is proved in [8, cor. 2.5]. Our argument is similar; the key tools are [26, thm. 3.6]
and Theorem 2.2.

Corollary 2.3. Let R be local, and let M be a homologically finite R-complex. If M has finite Gorenstein injective dimension, then
there is an equality

GidRM = depth R− inf M.

Proof. Let p be a prime ideal in R, and choose a prime ideal q in R̂minimal over p̂R. The map Rp → R̂q is local and flat with
artinian closed fiber R̂q/p̂Rq. Hence one has depth Rp− inf Mp = depth R̂q− inf(̂R⊗RM)q, and from Theorem 2.2 follows the
inequality

GidRM 6 Gid̂R(̂R⊗RM).

By [26, thm. 3.6] the complex R̂⊗RM has finite Gorenstein injective dimension over R̂. Since R̂ has a dualizing complex,

Gid̂R(̂R⊗RM) = depth R̂− inf(̂R⊗RM) = depth R− inf M

by [2, thm. 6.3]. The two displays combine to establish the inequality ‘‘6’’; the opposite one is from Theorem 2.2. �

3. Module structures and vanishing of homology

The first result of this section contains Theorem B from the introduction. Indeed, when R is Gorenstein, every R-module
has finite Gorenstein injective dimension, cf. [14, thm. (6.2.7)], and Theorem 3.1 applies to the natural map R→ R̂.

Theorem 3.1. Let ϕ : R → S be a flat local ring homomorphism such that the induced map R/m → S/mS is an isomorphism.
Let M be a finitely generated R-module with GidRM finite. If the S-module ExtiR(S,M) is finitely generated for every i =
1, . . . , dimRM, then one has ExtiR(S,M) = 0 for i > 1, and M has an S-module structure compatible with its R-module structure
via ϕ.
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Proof. The module HomR(S,M) is finitely generated over R and hence over S; and the modules ExtiR(S,M) vanish for
i > dimRM; see [6, cor. 1.7 and proof of thm. 2.5]. Thus, the S-complexRHomR(S,M) is homologically finite. In the sequence
below the first and third equalities are from Corollary 2.3

depth R = GidRM = GidS RHomR(S,M) = depth S − infRHomR(S,M).

The second equality is from Theorem 1.7. The assumptions on ϕ imply that R and S have the same depth, whence
infRHomR(S,M) = 0. This establishes the desired vanishing of Ext-modules, and the existence of the S-structure on M
follows from [6, thm. 2.5]. �

Remark 3.2. If R is Gorenstein, then every finitely generated complete R-module (in particular, every R-module of finite
length) satisfies the hypotheses of Theorem 3.1. See [6, thm. 2.5] or [27, thm. 2.3].

The next example shows that the flatness hypothesis is necessary for the equality in Theorems 1.7 and 1.8.

Example 3.3. Let R be a complete Cohen–Macaulay local ring with a non-maximal prime ideal p ⊂ R such that Rp is not
Gorenstein. For example, the ring could be R = k[[X, Y , Z]]/(X2, XY , Y 2)with prime ideal p = (X, Y )R.
As an R-module, Rp has infinite Gorenstein injective dimension. Indeed, if GidR Rp <∞, then GidRp Rp is finite as well by

[2, prop. 5.5], and this contradicts the assumption that Rp is not Gorenstein; cf. [14, thm. (6.3.2)].
Let x = x1, . . . , xd be a maximal R-regular sequence and set S = R/(x). The surjection R � S is a homomorphism of

finite flat dimension. The small supports of S and Rp are disjoint, so [22, lem. 2.6 and prop. 2.7] yields H(S⊗L
R Rp) = 0. The

complexes S⊗L
R Rp and RHomR(S, Rp) are isomorphic (up to a shift) in D(R). In particular, one has

GfdS(S⊗L
R Rp) = −∞ = GidS RHomR(S, Rp),

but GfdR Rp = 0 and GidR Rp = ∞.

Remark 3.4. No finitely generated R-module can take the place of Rp in Example 3.3. Indeed, let ϕ : R → S be a local ring
homomorphism, and let M 6= 0 be a finitely generated R-module. As S/mS and M/mM are not zero, then Nakayama’s
lemma yields S⊗RM 6= 0, whence H(S⊗L

RM) is not zero. Assume that ϕ has finite flat dimension. Then (2.0.2) yields
H(RHomR(S,M)) 6= 0 because depthR S and widthRM are both finite. Now [28, thm. 4.8] yields GfdS(S⊗L

RM) = GfdRM .
Assuming further that ϕ is module finite, the corresponding equality GidS RHomR(S,M) = GidRM is proved below.

Proposition 3.5. Let ϕ : R→ S be a module-finite local ring homomorphism of finite flat dimension, and assume that R admits
a dualizing complex. For every homologically finite R-complex M one then has

GidRM = GidS RHomR(S,M).

Proof. By (2.0.2) one has inf RHomR(S,M) = depth S + inf M − depth R, so by Corollary 2.3 it is sufficient to prove that
GidRM is finite if and only if GidS RHomR(S,M) is finite. The ‘‘only if’’ is already known from Theorem 1.7, so assume that
GidS RHomR(S,M) is finite.
Let D be a dualizing complex for R. Since the homomorphism ϕ is module finite, the complex RHomR(S,D) is dualizing

for S, cf. [15, (2.12)]. By [2, cor. 6.4] the complex RHomS(RHomR(S,M),RHomR(S,D)) has finite Gorenstein flat dimension
over S. Adjunction and Hom-evaluation [23, lem. 4.4] yield

RHomS(RHomR(S,M),RHomR(S,D)) ' RHomR(RHomR(S,M),D)
' S⊗L

R RHomR(M,D).

It follows from [28, thm. 4.8] that RHomR(M,D) has finite Gorenstein flat dimension over R, and therefore [2, cor. (6.4)]
implies that GidRM is finite. �

Proposition 3.6. Let ϕ : R→ S be a module-finite local ring homomorphism of finite flat dimension. For every finitely generated
complete R-module M one has

GidRM = GidS RHomR(S,M).

Proof. SinceM is finitely generated and complete, it follows from [6, thm. 2.5] thatM is isomorphic to HomR(̂R,M) and that
one has ExtiR(̂R,M) = 0 for i ≥ 1. In particular, the complex RHomR(̂R,M) is homologically finite over R̂.
Let ϕ̂ : R̂ → Ŝ denote the local homomorphism induced on completions. Since S is module finite and has finite flat

dimension over R, the completion Ŝ is module finite and has finite flat dimension over R̂. Theorem 1.7 explains the first and
fourth equalities in the next sequence:

GidRM = Gid̂R RHomR(̂R,M)
= Gid̂S RHomR̂(̂S,RHomR(̂R,M))
= Gid̂S RHomS (̂S,RHomR(S,M))
= GidS RHomR(S,M).
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The third equality is due to the isomorphisms

RHomS (̂S,RHomR(S,M)) ' RHomR(̂S,M) ' RHomR̂(̂S,RHomR(̂R,M))

and the second equality is from Proposition 3.5. �
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