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The prevalence of obesity has increased worldwide at an alarming rate. However, non-invasive phar-
macological treatments remain elusive. Leptin resistance is a general feature of obesity, thus strate-
gies aimed at enhancing the sensitivity to this hormone may constitute an excellent therapeutical
approach to counteract current obesity epidemics. Nevertheless, the etiology and neuronal basis
of leptin resistance remains an enigma. A recent hypothesis gaining substantial experimental sup-
port is that hypothalamic endoplasmic reticulum (ER) stress plays a causal role in the development
of leptin resistance and obesity. The objective of this review article is to provide an updated view on
current evidence connecting hypothalamic ER stress with leptin resistance. We discuss the experi-
mental findings supporting this hypothesis, as well as the potential causes and underlying mecha-
nisms leading to this metabolic disorder. Understanding these mechanisms may provide key
insights into the development of novel intervention approaches.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Obesity has reached epidemic proportions worldwide causing
major human and economic consequences [1]. The World Health
Organization currently estimates that more than 1.9 billion adults
are over-weight and more than 600 million obese, but effective and
safe pharmacological treatments remain elusive [2].

A predominant attribute of obesity is leptin resistance, which is
the inability of high circulating leptin levels to exert its anorexi-
genic actions. Thus, therapeutical strategies aimed at improving
leptin sensitivity would constitute an excellent approach for the
treatment of obesity. Unfortunately, and despite the strong
connection between obesity and leptin resistance, its etiology is
currently unknown.

Recently, the hypothesis that hypothalamic ER stress is causally
linked with leptin resistance and obesity has progressively gained
solid experimental support. The purpose of this article is to review
and discuss current evidence related to this topic.

2. Hypothalamic control of energy balance: the melanocortin
system

In mammals, the central nervous system (CNS) plays a critical
role in energy homeostasis regulation through the modulation of
complex and distributed neuronal networks. The hypothalamus,
and in particular the arcuate nucleus (ARC), occupies a central
position in the neural hierarchy implicated in the regulation of
whole-body energy balance and metabolism. Extensive experimen-
tal evidence indicates that these biological processes are largely
mediated by two specific subpopulations of ARC neurons: (a) neu-
rons co-expressing orexigenic neuropeptides agouti-related protein
(AgRP) and neuropeptide Y (NPY) and; (b) neighboring neurons
co-expressing anorexigenic neuropeptides alpha-melanocyte stim-
ulating hormone (a-MSH, a product of proopiomelanocortin
(POMC) processing) and cocaine and amphetamine-related
transcript (CART) [3]. These subsets of hypothalamic neurons
(henceforth referred as AgRP and POMC, respectively), together
with downstream target neurons expressing melanocortin recep-
tors (MCR) 3 and 4, are the core of the melanocortin system. This
is a critical collection of circuits that sense and integrate a wide
variety of local (neurotransmitters and neuropeptides) and circu-
lating (hormones and metabolites) signals to promote appropriate
neuroendocrine, autonomic and behavioral responses to preserve
systemic energy balance [3].

Genetic and pharmacological studies indicate that a-MSH and
AgRP neuropeptides mediate, to large extent, the divergent physi-
ological functions of these two subsets of neurons. While a-MSH is
an endogenous MCR3 and 4 agonist, thereby generating an anorex-
igenic output by suppressing appetite and enhancing thermogene-
sis [4,5], AgRP is an antagonist of these receptors that counteracts
the effects of a-MSH on food intake and body weight [6].
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Furthermore, the orexigenic outcome of AgRP neurons is also
accomplished by the secretion of NPY, which binds to specific
receptors, and by direct inhibitory GABAergic synapsis onto
POMC neurons [7]. The most well-known factors regulating the
activity of these circuits are peripheral hormones such as ghrelin,
insulin and, specially, leptin [3].

3. Leptin biology, physiology and pathophysiology

The discovery of leptin in 1994 by Jeffrey Friedman laboratory
[8] was an enormous breakthrough in metabolic research.
Extensive experimental investigation over the last 20 years has
undoubtedly positioned leptin as a major regulator of long-term
energy balance. Leptin is a hormone produced by the adipose tis-
sue in proportion to fat stores that conveys information about
the energy status of the organism [9,10]. It mainly acts as an affer-
ent signal to the brain, and in particular to the hypothalamus,
where it coordinates energy homeostasis through the modulation
of food intake and energy expenditure [11]. The expression of lep-
tin, and its circulating plasma levels, is influenced by the organism
nutritional state [12]. Disturbances in leptin signaling and synthe-
sis have been extensively related with obesity. For example, defec-
tive leptin production leads to a dramatic obese phenotype both in
mice (ob/ob) and humans [13,14]. A similar phenotype is found in
mice (db/db) and with leptin receptor deficiency [15,16].

3.1. Leptin signaling

The leptin receptor (LepR) is expressed throught the CNS, but it
is densely located in the hypothalamus [17]. Although there are six
different isoforms of leptin receptors (LepRa-f) generated by alter-
native splicing, the long form (LepRb) is the responsible for the
main effects of leptin in the hypothalamus [18]. Binding of leptin
to LepRb results in the recruitment and activation of Janus kinase
2 (JAK2), which in turn phosphorylates different tyrosine residues
of the LepRb thereby activating different signaling pathways and
inducing distinct physiological functions [19,20]. Remarkably, the
phosphorylation of Tyr1138 plays a prominent role in mediating
the effects of leptin on energy homeostasis through the activation
of the transcription factor Signal transducer and activator of tran-
scription 3 (STAT3) [19,21]. The activation of STAT3 is associated
with enhanced transcription of two proteins that serve as negative
regulators of the leptin signaling: the feedback inhibitor suppres-
sor of cytokine signaling 3 (SOCS3) and the phosphotyrosine phos-
phatase-1B (PTP1B) [22,23]. In addition to the JAK2-STAT3
pathway, leptin also modulates the activity of additional signaling
mediators, that have also been implicated in energy balance con-
trol, such as the phosphoinositol-3-kinase (PI3K) and 50-adenosine
monophosphate-activated protein kinase (AMPK) cascade [18].

3.2. Leptin and the hypothalamic regulation of energy homeostasis

ARC POMC and AgRP neurons express LepRb, and thus they are
direct targets of leptin action [7,24,25]. Generally speaking, the
anorexigenic effects of leptin are primarily achieved through the
activation of POMC neurons and the concomitant repression of
AgRP neurons by different strategies. Leptin signaling cascade,
through STAT3 transcriptional effects, promotes Pomc gene expres-
sion and its conversion into the bioactive anorexigenic neuropep-
tide a-MSH [26–28]. In addition to these transcriptional effects,
leptin directly depolarizes POMC neurons thus promoting a-MSH
release to target areas [7,29–31]. In contrast, leptin hinders Npy
and AgRP gene transcription [32–34] while reduces the direct
GABAergic tone onto POMC neurons thereby disinhibiting POMC
neuronal activity [7]. In summary, leptin promotes an anorexigenic
output through the coordination of direct and indirect effects on
POMC and AgRP neurons.

3.3. Leptin resistance

The discovery of leptin created great hope on the potential of
this hormone to become the miracle cure for human obesity.
Encouraging studies showed that leptin administration was able
to reduce hyperphagia and body weight in rodent models and
humans with genetic leptin deficiency [35–37]. Furthermore, lep-
tin treatment exerted potent dose–response anorectic effects in
normal control mice [35,36]. However, subsequent experiments
reported that most genetic and induced mouse models of obesity,
as well as obese individuals, exhibited elevated circulating levels of
leptin pointing to the existence of physiological resistance to the
anorexigenic effects of the hormone [9,38]. Indeed, the results of
leptin monotherapy in clinical trials were unsuccessful, with mod-
est effects in the majority of human obese patients indicating rel-
ative leptin resistance with increasing adiposity [39].

Currently, the general hypotheses explaining leptin resistance
are divided into three categories: (a) reduced leptin transport to
the brain [40,41]; (b) impaired leptin signaling in target neurons;
(c) defective signaling in downstream target cells and circuits
[42,43]. The precise neuronal basis of leptin resistance remains
elusive, although defects in different biological processes have
been proposed to be the underlying cause including hypothalamic
inflammation, defective autophagy and endoplasmic reticulum
(ER) stress [43]. Despite all these processes are interconnected at
multiple levels, in the following sections we will exclusively focus
on the latter by summarizing current evidences linking hypothala-
mic ER stress with the development of leptin resistance and
obesity. Excellent revisions on the role of hypothalamic inflamma-
tion upon energy balance can be found elsewhere [44,45].

4. Endoplasmic reticulum: an overview

4.1. The endoplasmic reticulum

The ER is a dynamic organelle that forms an interconnected net-
work of convoluted membrane sacs that consists of two different
domains: the smooth domain (SER) and the rough domain (RER;
holder of ribosomes). The SER is important for fatty acid and phos-
pholipid synthesis, carbohydrate metabolism, and regulation of
Ca2+ homeostasis. In contrast, the RER is the region where the vast
majority of secreted and transmembrane proteins are synthesized,
folded and assembled into secondary and tertiary structures that
confer a state of stability and maturation by specialized enzymes
(chaperones) [46]. To ensure that these complex processes are ade-
quately achieved, the cell has developed a collection of quality con-
trol mechanisms. Under normal circumstances, improperly folded
proteins are delivered to the cytosol by the ER for proteosomal
degradation (ERAD) [47]. Nevertheless, strong and prolonged cellu-
lar perturbations may alter ER homeostasis, leading to the accumu-
lation of potentially toxic misfolded proteins and ER stress. To
guarantee adequate ER performance under these conditions, this
organelle activates a set of phylogenetically conserved, stress-re-
sponsive signaling pathways collectively termed the unfolded pro-
tein response (UPR) [48,49].

4.2. The unfolded protein response (UPR)

The UPR is mediated by three principal classes of ER-resident
transmembrane protein sensors that are negatively regulated by
the chaperone immunoglobulin heavy chain binding protein (BIP/
GRP78). Under stress conditions, the increased burden of unfolded
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proteins promotes the dissociation of BIP from these sensors and
their subsequent activation in an attempt to alleviate the workload
of the ER by expanding its abundance, temporarily reducing trans-
lation and increasing protein folding capacity [48,49]. These UPR
branches operate in parallel and in a coordinated manner to
restore ER homeostasis. The following is a summary of the basic
signaling and specific functions of the different UPR branches.

4.2.1. PKR-like ER kinase (PERK)
PERK is a type I ER transmembrane protein. Upon ER stress, the

two proteins dissociate leading to PERK dimerization, autophos-
phorylation and activation of the kinase domain [50]. Activated
PERK inhibits a eukaryotic translation initiation factor 2 (eIF2a),
thus reducing protein synthesis and load into the ER [51].
However, some genes containing an internal ribosome entry site
(IRES) are selectively translated. One of them is the activating
transcription factor 4 (ATF4) [52], which is implicated in the
expression of genes related with UPR and cell survival.

4.2.2. Inositol-requiring protein-1 (IRE1)
IRE1 is a type I ER transmembrane protein. ER stress activates

IRE1 RNAse domain by homodimerization and autophosphorila-
tion, thereafter catalyzing the splicing of X-box binding protein 1
(Xbp1) mRNA generating a potent transcription factor called
XBP1s. In the nucleus, XBP1s modulates the expression of UPR
pathway genes involved in protein folding and ER biogenesis
[53,54]. IRE1 also triggers the activation of other signaling events
independent of XBP1, such as the degradation of a subset of
mRNAs that probably assist in clearing the ER membrane [55].

4.2.3. Activating transcription factor 6 (ATF6)
ATF6 is a type II ER transmembrane protein belonging to the

family of bZIP transcription factors. Under stress conditions, it
translocates to the Golgi apparatus were it is processed by different
proteases. The N-terminal active domain is released and migrates
to the nucleus where regulates the expression of genes related
with protein folding and ERAD [56,57].

4.2.4. UPR-mediated apoptosis
Prolonged activation of the UPR and lack of ER stress resolution

results in cell death by the activation of autophagic programs or
apoptosis. UPR-mediated apoptosis is complex but largely medi-
ated by the mitochondrial canonical pathway, involving the activa-
tion of the pro-apoptotic BCL-2 family members BAX and BAK at
the mitochondria, the release of cytochrome c and activation of
downstream caspases.

PERK and eIF2a pathways induce the pro-apoptotic transcrip-
tional factor CCAAT/-enhancer-binding protein homologous
(CHOP), which is considered a master regulator of ER stress-
induced apoptosis [58]. It promotes the activation of transcription
factor growth arrest and DNA damage-inducible protein 34
(GADD34) and the endoplasmic reticulum oxidoreductase-1
(Ero1a) [59,60]. Furthermore, CHOP increases the level of pro-
apoptotic BH3-only protein bim (BIM) and the p53 upregulated
modulator of apoptosis (PUMA) while decreases the transcription
of the pro-survival protein Bcl-2 [61].

The IRE1a branch also contributes to apoptosis by activating
c-Jun N-terminal kinase (JNK) pathway and the apoptosis signal-
regulating kinase 1 (ASK1), as well as by binding to the tumour
necrosis factor receptor associated factor 2 (TRAF2). JNK pathway
induces apoptosis through different mechanisms, including the
activation of caspase-12, inhibiting Bcl-2 anti-apoptotic function
or binding to BAX and BAK thus leading to the mitochondrial acti-
vation of apoptosis [62].

Apoptosis induction in the context of unmitigated ER stress may
constitute a protective mechanism to the organism. However, the
detailed molecular mechanisms and the cellular threshold switch-
ing from a homeostatic process to cell death remain incompletely
understood.

4.3. The connection between ER and mitochondria

The ER establishes direct physical contacts with most mem-
brane-bound organelles. These junctions are essential for struc-
tural and functional communication between organelles, and
thus they necessary for adequate biological performance. The most
studied contact sites are those established with the mitochondria,
which form specialized ER domains termed mitochondrial-associ-
ated membranes (MAMs). These junctions allow bidirectional com-
munication and trafficking of factors, including key signaling
molecules such as lipids and Ca2+ [63]. Furthermore, the interac-
tion between ER and mitochondria also plays a key role in the
dynamic regulation (motility and shape) of these organelles. The
accumulation of misfolded proteins in the ER causes a reinforce-
ment of ER-mitochondria contacts and a Ca2+ efflux to mitochon-
dria trough MAMs. During early states of ER stress, these changes
promote mitochondrial respiration and ATP production that allow
the ER to cope with the energy requirements associated with UPR
activation [64]. However, sustained Ca2+ transmission during pro-
longed ER stress may lead to deleterious changes in pH and reac-
tive oxygen species (ROS) production in the mitochondria. These
alterations may cause modifications in mitochondrial membrane
potential, changes in its permeability and a ATP depletion leading
to apoptosis [65]. In summary, ER-mitochondria contacts are criti-
cal for a number of biological processes and organelle functions.
Alterations in the establishment of these juctions may interfere
with adequate ER homeostasis leading to ER stress.
5. ER stress and leptin resistance

Pioneering studies by Ozcan et al. demonstrated in 2004 a close
relationship between ER stress and obesity [66]. Since then, a bulk
of papers has extensively documented the relevance of adequate
ER homeostasis in different peripheral tissues upon metabolic
control [49].

In recent years, accumulating evidence indicate the existence of
a causal link between hypothalamic ER stress and the development
of leptin resistance. Both genetic and diet-induced obesity (DIO)
models are associated with enhanced expression of ER stress mark-
ers in the hypothalamus [67–71] (Table 1). A direct involvement of
hypothalamic ER stress in leptin resistance and obesity develop-
ment comes from a number of in vitro and in vivo pharmacological
and genetic studies. For example, culture cells and hypothalamic
organotypic slice preparations treated with ER stress inducers
(tunicamycin, thapsigargin, brefeldin A or dithiothreitol) markedly
inhibited leptin-induced STAT3 phosphorylation [72,73] (Table 1).
Furthermore, intracerebroventricular (ICV) administration of these
ER stress inducers to control mice promoted hypothalamic ER
stress and leptin resistance associated with increased food intake
and body weight gain [68–70] (Table 1). Remarkably, different
approaches aimed at alleviating ER stress in the hypothalamus
were able to reverse these phenotypes. Treatment with the chem-
ical chaperones 4-phenylbutyrate (4-PBA) or tauroursodeoxycholic
acid (TUDCA) normalized the expression of ER stress markers and
enhanced leptin sensitivity in both diet-induced and genetic mod-
els of obesity [67,68,70,72] (Table 1). Additionally, based on the
hypothesis that increased UPR function would enhance leptin sig-
naling, Ozcan and collaborators overexpressed XBP1s or ATF6 in
MEFs. Overexpression of these critical UPR mediators increased
the resistance of cells to the inhibitory effects of tunicamycin and
prevented ER stress-mediated inhibition of leptin signaling [68].



Table 1
Modulation of hypothalamic ER stress and leptin pathways in rodent models.

", Increased; ;, decreased; ARC, arcuate nucleus; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; BIP/GRP78, binding immunoglobulin protein;
BW, body weight; CHOP, CCAAT-enhancer-binding protein homologous protein; DIO, diet induced obesity; eIF2a, the alpha subunit of eukaryotic initiation factor 2; ER,
endoplasmic reticulum; exp, expression; FI, food intake; HFD, high fat diet; Hyp, hypothalamus; ICV, intracerebroventricular; IL-6, interleukina-6; IRE1, serine/threonine-
protein kinase/endoribonuclease; L, leptin; m, month; p, phosphate; PERK, protein kinase RNA-like endoplasmic reticulum kinase; PTP1B, tyrosine-protein phosphatase non-
receptor type 1; SOCS3, suppressor of cytokine signaling 3; STAT3, signal transducer and activator of transcription 3; Tg, thapsigargin; Tm, tunicamycin; TUDCA, taurour-
sodeoxycholic acid; VMH, ventromedial hypothalamus; w, week; Xbp1s, spliced form of X-box binding protein 1; 4-PBA: 4-phenylbutyric acid.

S. Ramírez, M. Claret / FEBS Letters 589 (2015) 1678–1687 1681



1682 S. Ramírez, M. Claret / FEBS Letters 589 (2015) 1678–1687
To further confirm the link between ER stress and leptin signaling,
these authors generated a mouse model with reduced ER folding
capacity in the brain by deleting XBP1 in neurons (XNKO). Under
high-fat diet (HFD) conditions these mice displayed an obesogenic
phenotype, associated with hyperphagia and reduced oxygen con-
sumption. As predicted, hypothalamic expression levels of phos-
phorylated PERK were markedly upregulated and leptin-induced
STAT3 phosphorylation was significantly blunted in the XNKO
mice [68] (Table 1).

Collectively, these reports demonstrate that the hypothalamic
ER folding capacity links leptin resistance with obesity and that
modulation of this process is able to enhance leptin sensitivity. A
critical aspect is to unveil the causes and downstream molecular
mechanisms involved, which are summarized in the following
section.

5.1. Causes leading to hypothalamic ER stress-induced leptin
resistance

5.1.1. Hypothalamic lipotoxicity
High-fat rich diets elicit ER stress, leptin resistance and obesity.

But how HFD feeding can directly perturb hypothalamic neuronal
function? A considerable body of evidence has demonstrated that
hypothalamic neurons are able to sense circulating fatty acids,
and that endogenous lipid metabolism in this CNS region is a key
mechanism regulating whole-body energy balance [74]. Obese
rodents exposed to a HFD exhibit elevated concentrations of free
fatty acids in the hypothalamus, which leads to an accumulation
of palmitoyl-CoA and other harmful species [75,76]. This ectopic
accumulation of lipids in the hypothalamus, generically termed
lipotoxicity, is conceptually similar to the process described in
peripheral tissues in obesity states. A number of reports have
linked hypothalamic lipotoxicity with ER stress as a possible expla-
nation for the onset of obesity. Studies in hypothalamic cell lines
have demonstrated that palmitate, a lipotoxic metabolite in excess,
triggers ER stress and apoptosis [77–80]. Interestingly, mild palmi-
tate stress decreases protein abundance and function of the a-MSH
receptor MCR4 [80]. To specifically test the role of ER stress in this
process, these authors co-treated cells with palmitate and 4-PBA.
Administration of this chemical chaperone was able to correct
the propensity of endogenous MC4R to misfold, restoring its pro-
tein levels and the correct response to a-MSH [80]. These results
connect lipotoxicity with ER stress and downstream melanocortin
system.

In in vivo studies, it has also been described that ICV injection of
saturated fatty acids, in particular arachidonic acid (C20:0),
induces ER stress in the hypothalamus of rats [81]. More recently,
elegant studies from Contreras and collaborators have identified
ceramides as another lipotoxic metabolite able to elicit hypothala-
mic liptoxicity and ER stress [82]. Central ceramide delivery
enhances hypothalamic expression of ER stress markers and causes
overweight due to decreased sympathetic tone to BAT and reduced
thermogenesis. Genetic over-expression of BIP/GRP78, a chaperone
that facilitates the proper protein folding acting upstream the UPR
pathways, specifically in the ventromedial nucleus of the hypotha-
lamus (VMH) reversed ceramide-induced ER stress and metabolic
alterations. Opposite biological effects were observed in experi-
ments in which BIP/GRP78 was inactivated in the VMH using
dominant negative adenovirus. Interestingly, obese Zucker rats
exhibited increased levels of ceramides and increased UPR
response in the VMH. Overexpression of BIP/GRP78 in the VMH
of obese Zucker rats was able to ameliorate their metabolic pheno-
type and enhance leptin (pSTAT3) signaling in this hypothalamic
region. Overall, these data identified ceramide accumulation in
the VMH as a novel lipotoxic process that eventually leads to ER
stress and obesity [82] (Table 1).
As lipotoxicity in the hypothalamus exerts harmful effects and
metabolic abnormalities, it is reasonable to predict that preventing
hypothalamic lipid accumulation and formation of toxic lipid spe-
cies would overcome these alterations. Two different strategies
have experimentally tested this hypothesis. On one hand, increas-
ing fatty acid oxidation (FAOx) through pharmacologic approaches
in vitro [77,79], and on the other hand extending the demand and
utilization of these lipids with physical exercise in vivo [83,84].
Mayer et al. reported enhanced apoptosis in an embryonic
mouse hypothalamic cell line treated with palmitate that was
prevented with the co-treatment with the AMPK activator
5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) [77].
Similarly, two different FAOx inducers (C75 and FSG67) were also
tested in primary hypothalamic neurons. Increased fatty acid cata-
bolism limited palmitate availability and prevented the production
of other toxic lipids, thus generating favorable changes in ER stress
and inflammation [79]. Enhanced FAOx augments ROS production
due to mitochondrial activity. In the hypothalamus, ROS act as
important signaling molecules and thus their levels are tightly bal-
anced [85]. However, persistent ROS cause protein, lipid and DNA
damage in addition to ER stress. C75 or FSG67 treatment did not
compromise mitochondrial health or ROS levels, as mitochondrial
membrane potential, mitochondrial function and ROS levels were
unaltered [79].

These findings suggest that situations of elevated demand of
energy and FAOx, such as during intense exercise, may constitute
an alternative way to improve ER stress and metabolism. It has
been described that during exercise interleukin 6 (IL-6) is released
from skeletal muscle, and recent data indicate that IL-6 anti-in-
flammatory effects are mediated through IL-10 or IL-1 [86]. In line
with these observations, it has been reported that IL-6 and IL-10
expression are elevated in the hypothalamus during exercise
[83]. Interestingly, in DIO models, exercise and IL-6 administration
exerted an inhibitory role upon hypothalamic ER stress and inflam-
mation in the hypothalamus. Exercise was unable to mitigate ER
stress when IL-6 signaling was blocked in these animals.
Furthermore, thapsigargin-induced hypothalamic ER stress was
reduced by exercise or IL-6 [83] (Table 1). However, controversy
exist in that point, as another report has shown that 3 weeks of
exercise actually increased hypothalamic ER stress in both lean
and obese mice [84] (Table 1). These discrepancies may be the con-
sequence of different experimental strategies. Further studies are
required to establish the precise role of exercise in hypothalamic
ER stress.

5.2. Downstream mechanisms underlying hypothalamic ER stress-
induced leptin resistance

5.2.1. The role of POMC neurons and altered neuropeptide processing
The anorexigenic effects of leptin are critically mediated by the

expression and release of a-MSH. This bioactive neuropeptide is
generated through the sequential cleavage of the POMC precursor
by different convertases [87]. As the ER is the site of protein folding
and assembling of secretory proteins, a plausible hypothesis is that
ER stress may interfere with proper synthesis and processing of
POMC thus preventing the release of a-MSH in response to leptin.
Hypothalamic POMC neurons are direct targets of leptin, and evi-
dence indicate that these neurons may to some extent mediate
the development of leptin resistance [88–90].

Recently, we and others have investigated the link between lep-
tin resistance and ER stress in POMC neurons [70,71,73] (Table 1).
Rodent DIO is associated with unchanged POMC transcript levels
with increased POMC protein content but reduced a-MSH in the
hypothalamus [70,91]. These disparate observations suggest accu-
mulation of unfolded POMC and the existence of compensatory
processing mechanisms in the setting of hypothalamic ER-stress.



Fig. 1. Overview of leptin effects and POMC processing in the hypothalamus under physiological and obesogenic conditions. In physiological conditions the action of leptin
enhances the synthesis of a-MSH in the POMC neurons of the ARC. This neuropeptide is released in target areas where interacts with MC4R promoting decreased food intake
and increased thermogenesis. The accurate interaction between mitochondria and ER (MAMs) results in proper a-MSH folding and subsequent correct effect of leptin. HFD
feeding or obese POMCMfn2KO mice exhibit decreased Mfn2 expression, triggering ER stress, defective a-MSH folding and leptin resistance. ARC, arcuate nucleus; ER,
endoplasmic reticulum; HFD, high fat diet; MC4R, melanocortin receptor 4; Mfn2, mitofusin 2; a-MSH, a-melanocyte-stimulating hormone.
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Consistent with these results, expression of pro-convertase 2 (PC2),
which catalyzes the conversion of adrenocorticotropin (ACTH) into
a-MSH, was reduced in the hypothalami from obese rodents.
Further confirming that ER stress was the cause of POMC defective
processing, pharmacological induction of ER stress in the hypotha-
lamus reduced ACTH/a-MSH ratio and PC2 expression as in the
case of DIO. Central TUDCA treatment to obese rats was able to
normalize POMC processing and phenotype [70].

Electron microscopy studies showed that DIO is associated with
reduced number of ER-mitochondria contacts specifically in POMC
neurons [71]. This finding was related to diminished expression of
hypothalamic Mitofusin 2 (Mfn2), a dynamin-like GTPase protein
which is fundamental for the establishment of ER-mitochondria
contacts [92]. In addition to this critical function, Mfn2 has also
been reported to mediate cellular responses to ER stress
through the interaction and modulation of PERK activity [93].
Overexpression of Mfn2 in the ARC of DIO mice was able to atten-
uate the obese phenotype and enhanced ER stress characteristic of
obesity (Table 1). Collectively, these results suggest that alterations
in Mfn2-mediated ER-mitochondria contacts may underlie the
development of leptin resistance and obesity. Interestingly, a
recent study reports that the number of ER-mitochondria junctions
in POMC neurons is increased in a mouse model with enhanced
leptin sensitivity [94]. Thus, this parameter may be a potential
readout of leptin sensitivity.

To further confirm the importance of Mfn2 in POMC neurons,
we generated a POMC-specific Mfn2 knockout mouse
(POMCMfn2KO). POMCMfn2KO mice displayed early development
of leptin resistance and a dramatic obese phenotype [71]. Similar
to DIO mice, POMCMfn2KO mice exhibited a decrease in the mito-
chondria-ER contacts in POMC neurons and increased ER stress in
the hypothalamus. Furthermore, the hypothalamic POMC/a-MSH
ratio was altered indicating defective POMC processing. Central
administration of chemical chaperones to POMCMfn2KO mice was
able to normalize the obese phenotype and related metabolic
parameters, including POMC processing and a-MSH levels [71]
(Table 1). In summary, Mfn2 deletion in POMC neurons elicits ER
stress, thus altering a-MSH processing and leading to leptin resis-
tance and obesity (Fig. 1). These results argue for a critical role of
Mfn2 in ER homeostasis maintenance and ER stress-induced leptin
resistance.

Constitutive expression of a dominant Xbp1s form in POMC
neurons leads to a lean phenotype, characterized by increased
energy expenditure and leptin sensitivity, further supporting a fun-
damental role for POMC neurons in the systemic deleterious meta-
bolic effects of hypothalamic ER stress [73]. Remarkably, ER stress
inducers failed to blunt leptin-induced depolarization of POMC
neurons and also failed to induce leptin resistance in mice lacking
Xbp1s in POMC neurons. Expression studies also showed the
requirement of PTP1B and SOCS3 in ER stress-induced acute leptin
resistance of POMC neurons [73] (Table 1).

POMC neurons have also been directly related with apoptosis
triggered by HFD feeding in the context of obesity and leptin resis-
tance. Velloso and colleagues reported that DIO alters the expres-
sion of 57% of genes associated with neuronal apoptosis, pointing
to a clear effect of dietary fats in inducing hypothalamic neuronal
cell death. Interestingly, HFD administration reduced the number
of POMC, but not NPY neurons, leading to an imbalance in energy
homeostasis [95]. Similarly, another study also reported that HFD
administration was associated with a reduction in the number of
ARC POMC neurons and enhanced presence of autophagosomes
[96]. The reason why POMC neurons appear to be particularly sen-
sitive to the deleterious effects of fat-rich diets is currently
unknown, but it could be related with excessive ROS production
or reduced buffering capacity in these neurons.

5.2.2. Leptin signaling molecules
An obvious molecular candidate to contribute to ER stress-in-

duced leptin resistance is LepR. However, folding and translocation
of LepR in culture cells were unaffected after pharmacological ER
stress induction, thereby excluding LepR processing as the main
molecular mediator of this process [68]. Additional potential can-
didates are SOCS3 and PTP1B, which are negative regulators of lep-
tin signal transduction. Both molecules have been reported to be



Fig. 2. Schematic summary representation of the development of leptin resistance
in the hypothalamus due to HFD and the generation of ER stress.
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highly expressed in the hypothalamus of rodents under obese con-
ditions [21,70,91,97,98]. Furthermore, ICV administration of ER
stress inducers increased the expression of SOCS3 and PTP1B in
the ARC [70] (Table 1). Similarly, culture cells treated with a
non-competitive allosteric inhibitor of PTP1B, and also with a
specific PTP1B siRNA, showed reversion of ER stress-induced leptin
resistance [72]. In contrast, no differences were observed when
SOCS3 was tested suggesting that PTP1B mediates this effect. In
line with these results, it has been recently described that sleep
fragmentation in mice promote hyperphagic behaviors and
reduced leptin signaling in the hypothalamus. These effects are
mediated by enhanced ER stress, associated with increased
PTP1B activity with no changes in the SOCS3 pathway [99].
Nevertheless, the involvement of PTP1B is controversial as other
studies have identified SOCS3 as the major determinant involved
in leptin resistance mediated by hypothalamic ER stress [67].

Fig. 2 summarizes the relationship between hypothalamic lipo-
toxicity, ER stress and downstream molecular defects leading to
leptin resistance.

6. Alleviating ER stress as a potential treatment for leptin
resistance and obesity

Leptin resistance is a hallmark of obesity. Given the strong link
between ER stress and obesity development, strategies aimed at
reducing aberrant ER stress activation in hypothalamic neurons
may constitute a promising approach to improve leptin sensitivity
and treat obesity. In this regard, chemical chaperones are thera-
peutical candidates to re-sensitize neurons to leptin in the context
of overnutrition and overweight. In general terms, these molecules
promote protein folding and reduce protein aggregation, thus
attenuating ER stress. TUDCA and 4-PBA, which have been reported
to mitigate ER stress and enhance leptin sensitivity in a variety of
in vitro and in vivo models and cell types, are approved by the FDA
for other clinical applications. In fact, clinical trials have already
demonstrated the efficacy of these compounds in improving glu-
cose homeostasis and insulin signaling in human obese subjects
[100,101].

Recent studies have further tested the ability of other clinical
compounds in the resolution of ER stress. Fluvoxamine, a selective
serotonin reuptake inhibitor primarily used for a number of anxi-
ety and depressive disorders, attenuates ER stress-induced leptin
resistance in neuronal cell lines and mice [102]. Flurbiprofen is a
phenylalkanoic acid derivative of non-steroidal anti-inflammatory
drugs which is prescribed to treat arthritis. This drug exhibited
chaperone properties, reducing protein aggregation and improving
ER stress-induced leptin resistance in neuronal cell lines.
Moreover, flurbiprofen administration showed weight-reducing
effects in mice during and after HFD administration suggesting
preventive and therapeutic effects [103,104]. Finally, caffeine has
also shown to exert chaperone effects and to ameliorate leptin
resistance induced by ER stress in neuronal culture cells [105].

The beneficial effects of drugs with chaperone function in cells,
rodent models and humans upon leptin sensitivity suggest that
this class of compounds may constitute a promising therapeutical
approach to counteract the growing obesity epidemics.
Nevertheless, detailed studies on the metabolic outcomes, funda-
mental mechanisms and potential side effects are needed.
Another important current limitation is the route of administration
of these drugs. As ER stress has been reported to be abnormally
upregulated in a range of tissues in metabolic disorders, enteral
and parenteral options may be suitable approaches that have been
proved to be useful [100,101]. However, targeting the hypothala-
mus or specific subsets of neurons will require substantial research
to design targeted pharmacological strategies to achieve such
specificity.

7. New concepts, hypothesis and future directions

The presented evidence posits hypothalamic ER stress as a rel-
evant pathogenic mechanism underlying leptin resistance and obe-
sity. Recent progress has raised novel concepts and key questions
around this topic. In this section we summarize some of these
ideas and outstanding enigmas that require further investigation.

7.1. Nutritional causes of hypothalamic ER stress

Lipid overload, especially saturated fatty acids, trigger ER stress
in the hypothalamus. A straightforward explanation is that this
lipid excess causes alterations in the ER membrane composition
and biophysical properties that can be sensed by UPR transducers
such as IRE1 and PERK [106,107]. The toxic effects of lipids may be
minimized through their accumulation in lipid droplets, which are
originated from the ER, thereby attenuating UPR activation and ER
stress. Thus a conceivable hypothesis, that requires experimental
support, is that hypothalamic ER stress occurs when the amount
of toxic lipids surpasses the storage capacity of lipid droplets.
The contribution of specific lipid species and other nutrients to
ER-stress related leptin resistance, and the potential of beneficial
dietary nutrients (such as unsaturated fatty acids) to counteract
it remains to be investigated.

7.2. Hypothalamic ER stress anatomy

The hypothalamus is made up of a number of nuclei, which con-
tain different populations of neurons exerting distinct biological
functions. In this regard, it is unquestionable that understanding
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the contribution of specific regions and cells to ER stress-induced
leptin resistance will provide valuable insights in the field. ARC
POMC neurons are direct targets of leptin, and we and other have
shown that these neurons are especially vulnerable to ER stress.
However, other cell types and brain areas implicated in energy
balance control also respond to leptin. For example, specific popu-
lations of neurons in other hypothalamic areas, the reward system
(ventral tegmental area, nucleus accumbens) or the brainstem do
express LepR. Thus it is reasonable to believe that these regions
are also implicated in ER stress-driven leptin resistance.
Furthermore, recent research has shown that non-neuronal cells
(astrocytes, microglia, tanycytes) also mediate leptin signaling
and play regulatory roles upon energy homeostasis [108–112].
The potential role of these cell types in leptin resistance develop-
ment remains to be elucidated.

7.3. Defective neuropeptide processing

Evidence indicates that leptin resistance, in the context of
hypothalamic ER stress, is largely mediated by defective POMC
processing. However, how ER stress alters the processing of other
neuropeptides is unknown. PC2 expression is reduced by ER stress
and is primarily responsible for the reduced a-MSH levels observed
in DIO [70]. However, it is important to note that defective PC2
activity could also potentially alter the biosynthesis of other key
neuropeptides such as NPY and AgRP. In line with this, it is con-
ceivable that ER stress should affect most of the cellular proteins
processed by this organelle, but protein physicochemical proper-
ties may be a key factor in determining their proneness to suffer
folding defects. Interestingly, the hypothalamic content of CART,
which is colocalized in POMC neurons in this particular region
[113], is not altered under ER stress and obesity conditions (unpub-
lished results). The reason why ER stress alters POMC but not CART
processing is currently unclear.

7.4. Peripheral consequences of hypothalamic ER stress

The hypothalamus, through multisynaptic relays, regulates
peripheral tissues through the autonomic nervous system.
Emerging data indicates that hypothalamic ER stress may further
contribute to obesity and the metabolic deterioration through
effects in brown adipose tissue or the liver [82,114,115]. The
molecular mechanisms underlying these observations will provide
valuable information on the regulation of fundamental biological
processes such as thermogenesis and hepatic glucose production.

7.5. Hypothalamic ER stress in humans

The UPR is highly conserved, from yeast to humans. In fact, a
number of human diseases have been associated with alterations
in protein folding and ER stress, including metabolic disorders such
as diabetes and obesity [60,116]. However, current evidence impli-
cates ER stress in peripheral tissues, such as the adipose tissue,
liver or pancreas, in the development of metabolic conditions.
Thus, a key question to address is the significance of hypothalamic
ER stress in human obesity. Future research will undoubtedly
unveil this enigma, and will provide valuable insights into the
potential use of drugs targeting ER stress to treat human obesity.
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