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a b s t r a c t

In this paper, a fractional order differential system formodeling humanT-cell lymphotropic
virus I (HTLV-I) infection of CD4+ T-cells is studied and its approximate solution is
presented using a multi-step generalized differential transform method. The method is
only a simple modification of the generalized differential transform method, in which
it is treated as an algorithm in a sequence of small intervals (i.e. time step) for finding
accurate approximate solutions to the corresponding systems. The solutions obtained are
also presented graphically.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Most people are not familiar with fractional calculus. Indeed, it is three centuries old, as old as the traditional
calculus. The research of the theory of fractional differential equations has only been begun considerably recently [1,2].
At this time, the applications of fractional differential equations to physics, biology and engineering are a recent focal of
interest [2,3]. Numerous systems are known to exhibit fractional order dynamics, such as viscoelastic systems [4], robotic
manupulators [5], gear transmissions [6] and vibration systems [7].More lately,manymathematicians and scientistsworked
on the problem of finding the qualitative characteristics and numerical solutions of biological models of fractional order [8–
10]. There are variant approaches of modeling diverse biological systems, e.g. ordinary differential equations, difference
equations and partial differential equations. In these studies mentioned above, differential equations of fractional order are
used. Themajor reason is that fractional differential equations are innately reference to systemswithmemory, which stands
in most biological systems.

The human T-cell lymphotropic virus-I (HTLV-I) is a retrovirus with a single-stranded RNA virus containing reverse
transcriptase (RT) activity and has been implicated in two significant human diseases like adult T-cell leukemia (ATL) and
HTLV-I associated myelopathy/tropical spastic paralysis (HAM/TSP). HTLV-I is transmitted in various ways including by sex,
blood transfusion, infected needle sharing and vertically from mother to baby. The virus primarily infects CD44 T cells and
once the infection has taken place spreading to naive cells is through cell-to-cell infection.

There has been an enormous effort made in the mathematical modeling of HTLV-I since the 1990s (see Refs. [11–17]). In
Ref. [18], the authors proposed a modified model that describes the T-cell dynamics of human T-cell lymphotropic virus I
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(HTLV-I) infection and the development of adult T-cell leukemia (ATL). The model is given by:

T ′
= λ − µTT − κTAT , (1)

T ′

L = κ1TAT − (µL + γ )TL, (2)

T ′

A = γ TL − (µA + ρ)TA, (3)

T ′

M = ρTA + βTM


1 −

TM
TMmax


− µMTM , (4)

under the initial values:

T (0) = c1, TL(0) = c2, TA(0) = c3, TM(0) = c4, (5)

where T , TL and TA denote the numbers of uninfected, latent infected, actively infected CD4+ cells, and TM the number of
leukemia cells, respectively. The parameters λ, λ, µT , κ and κ1, κ and λ, µT , κ and κ1 are the source of CD4+ T-cells from
precursors, the natural death rate of CD4+ T-cells, the rate at which uninfected cells are contacted by actively infected cells,
the rate of infection of T-cells with a virus from actively infected cells, respectively. µL, µA and µM are blanket death terms
for latently infected, actively infected and leukemic cells. Additionally, γ and ρ represent the rates at which latently infected
and actively infected cells become actively infected and leukemic, respectively. The rate β determines the speed at which
the saturation level for leukemia cells is reached. TMmax is the maximal value that adult T-cell leukemia can reach.

Now we study the fractional-order into the model of HTLV-I infection of CD4+ T-cells [18]. The new system is described
by the following set of fractional differential equation

DαT = λ − µTT − κTAT , (6)

DαTL = κ1TAT − (µL + γ )TL, (7)

DαTA = γ TL − (µA + ρ)TA, (8)

DαTM = ρTA + βTM


1 −

TM
TMmax


− µMTM , (9)

where α is a parameter describing the order of the fractional time-derivative in the Caputo sense and 0 < α < 1, subject
to the same initial conditions given in Eq. (5). The general response expression contains a parameter describing the order of
the fractional derivatives that can be varied to obtain various responses. Obviously, the integer-order system can be viewed
as a special case from the fractional-order system by putting the time-fractional order of the derivative equal to unity. In
other words, the ultimate behavior of the fractional system response must converge to the response of the integer order
version of the equation.

According to our knowledge, this work represents the first available numerical solution for a model of differential
equations of HTLV-I of fractional order. For this reason, we intend to obtain the approximate solution of the problems (5)–
(9) via a reliable algorithm based on an adaptation of the generalized differential transformmethod (GDTM) [19–22], called
the multi-step generalized differential transform method (MSGDTM). It can be found that the corresponding numerical
solutions obtained by using GDTM is valid only for a short time while the ones obtained by using the MSGDTM is more valid
and accurate during a long time.

This paper is organized as follows. In Section 2, we present some necessary definitions and notations related to fractional
calculus. In Section 3, the proposed method is described. In Sections 4 and 5, the method is applied to the problems (5)–(9)
and numerical simulations are presented graphically, respectively. Finally, the conclusions are given in Section 6.

2. Preliminaries

For the concept of the fractional derivative we will adopt Caputo’s definition which is a modification of the
Riemann–Liouville definition and has the advantage of dealing properly with initial value problems in which the initial
conditions are given in terms of the field variables and their integer order which in the case in most physical processes.

Definition 1. A function f (x) (x > 0) is said to be in the space Cα (α ∈ R) if it can be written as f (x) = xpf1(x) for some
p > α where f1(x) is continuous in [0, ∞), and it is said to be in the space Cm

α if f (m)
∈ Cα, m ∈ N .

Definition 2. The Riemann–Liouville integral operator of order α > 0 with a ≥ 0 is defined as

(Jαa f )(x) =
1

Γ (α)

∫ x

a
(x − t)α−1f (t)dt, x > a, (10)

(J0a f )(x) = f (x). (11)
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Properties of the operator can be found in [23]. We only need here the following: For f ∈ Cα, α, β > 0, a ≥ 0, c ∈ R and
γ > −1, we have

(Jαa J
β
a f )(x) = (Jβa J

α
a f )(x) = (Jα+β

a f )(x), (12)

Jαa x
γ

=
xγ+α

Γ (α)
B x−a

x
(α, γ + 1), (13)

where Bτ (α, γ + 1) is the incomplete beta function which is defined as

Bτ (α, γ + 1) =

∫ τ

0
tα−1(1 − t)γ dt, (14)

Jαa e
cx

= eac(x − a)α
∞−
k=0

[c(x − a)]k

Γ (α + k + 1)
. (15)

The Riemann–Liouville derivative has certain disadvantageswhen trying tomodel real-world phenomenawith fractional
differential equations. Therefore, we shall introduce a modified fractional differential operator Dα

a proposed by Caputo in
his work on the theory of viscoelasticity.

Definition 3. The Caputo fractional derivative of f (x) of order α > 0 with a ≥ 0 is defined as

(Dα
a f )(x) = (Jm−α

a f (m))(x) =
1

Γ (m − α)

∫ x

a

f (m)(t)
(x − t)α+1−m

dt, (16)

form − 1 < α ≤ m, m ∈ N, x ≥ a, f (x) ∈ Cm
−1.

The Caputo fractional derivative was investigated by many authors, for m − 1 < α ≤ m, f (x) ∈ Cm
α and α ≥ −1, we

have

(Jαa D
α
a f )(x) = JmDmf (x) = f (x) −

m−1−
k=0

f (k)(a)
(x − a)k

k!
. (17)

For mathematical properties of fractional derivatives and integrals one can consult the mentioned references.

3. MSGDTM algorithm

In this section we present the multi-step generalized differential transform method (MSGDTM) that we have developed
for the numerical solution of systems of fractional differential equations. For this purpose, we consider the following initial
value problem for systems of fractional differential equations

Dα1
∗
y1(t) = f1(t, y1, y2, . . . , yn),

Dα2
∗
y2(t) = f1(t, y1, y2, . . . , yn),

...

Dαn
∗
yn(t) = f1(t, y1, y2, . . . , yn),

(18)

subject to the initial conditions

yi(t0) = ci, i = 1, 2, . . . , n, (19)

where Dαi
∗ is the Caputo fractional derivative of order αi, where 0 < αi ≤ 1, for i = 1, 2, . . . , n. Let [t0, T ] be the interval

over which we want to find the solution of the initial value problems (18)–(19). In actual applications of the generalized
differential transform method (GDTM), the K th-order approximate solution of the initial value problems (18)–(19) can be
expressed by the finite series

yi(t) =

K−
i=0

Yi(k)(t − t0)kαi , t ∈ [t0, T ], (20)

where Yi(k) satisfied the recurrence relation

Γ ((k + 1)αi + 1)
Γ (kαi + 1)

Yi(k + 1) = Fi(k, Y1, Y2, . . . , Yn). (21)

Yi(0) = ci, Fi(k, Y1, Y2, . . . , Yn) is the differential transform of function fi(t, y1, y2, . . . , yn) for i = 1, 2, . . . , n. The basics
steps of the GDTM can be found in [19–22].
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Assume that the interval [t0, T ] is divided into M subintervals [tm−1, tm], m = 1, 2, . . . ,M of equal step size h =

(T − t0)/M by using the nodes tm = t0 + mh. The main ideas of the MSGDTM are as follows:
First, we apply the GDTM to the initial value problems (18)–(19) over the interval [t0, t1], we will obtain the approximate

solution yi,1(t), t ∈ [t0, t1], using the initial condition yi(t0) = ci, for i = 1, 2, . . . , n. For m ≥ 2 and at each
subinterval [tm−1, tm] we will use the initial condition yi,m(tm−1) = yi,m−1(tm−1) and apply the GDTM to the initial value
problems (18)–(19) over the interval [tm−1, tm]. The process is repeated and generates a sequence of approximate solutions
yi,m(t), m = 1, 2, . . . ,M , for i = 1, 2, . . . , n. Finally the MSGDTM assumes the following solution

yi(t) =


yi,1(t), t ∈ [t0, t1]
yi,2(t), t ∈ [t1, t2]
...
yi,M(t), t ∈ [tM−1, tM ].

(22)

The new algorithm, MSGDTM, is simple for computational performance for all values of h. As we will see in the next
section, the main advantage of the new algorithm is that the obtained solution converges for wide time regions.

4. Solving the systems (6)–(9) using the multi-step generalized differential transformmethod (MSGDTM)

In Ref. [24], it has been shown that MSDTM is a very accurate and efficient method for solving integer order non-chaotic
or chaotic systems and the results have shown remarkable performance compared with the RK4 method. In this section,
this method is applied to the fractional order system given in Eqs. (6)–(9).

Applying the MSGDTM Algorithm to Eqs. Using (6)–(9) gives

TT (k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


λδ(k) − µTTT (k) − κ

k−
l=0

TAA(l)TT (k − l)


,

TLL(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


κ1

k−
l=0

TAA(l)TT (k − l) − (µL + γ )TLL(k)


,

TAA(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)
[γ TLL(k) − (µA + ρ)TAA(k)] ,

TMM(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


ρTAA(k) + β


TMM(k) −

1
TMmax

k−
l=0

TMM(l)TMM(k − l)


− µMTMM(k)


,

(23)

where TT (k), TLL(k), TAA(k) and TMM(k) are the differential transformation of T (t), TL(t), TA(t) and TM(t), respectively and
δ(k) equals 1 when k = 0 and equals 0 otherwise. The differential transform of the initial conditions are given by
TT (0) = c1, TLL(0) = c2, TAA(0) = c3, TMM(0) = c4. In view of the differential inverse transform, the differential transform
series solution for the systems (6)–(9) can be obtained as

T (t) =

N−
n=0

TT (n)tαn,

TL(t) =

N−
n=0

TLL(n)tαn,

TA(t) =

N−
n=0

TAA(n)tαn,

TM(t) =

N−
n=0

TMM(n)tαn.

(24)

Now, according to the multi-step generalized differential transform method, the series solution for the systems (6)–(9)
is suggested by

T (t) =



K−
n=0

TT1(n)t
αn, t ∈ [0, t1]

K−
n=0

TT2(n)(t − t1)αn, t ∈ [t1, t2]

...
K−

n=0

TTM (n)(t − tM−1)
αn, t ∈ [tM−1, tM ],

(25)
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TL(t) =



K−
n=0

TLL1(n)t
αn, t ∈ [0, t1]

K−
n=0

TLL2(n)(t − t1)αn, t ∈ [t1, t2]

...
K−

n=0

TLLM (n)(t − tM−1)
αn, t ∈ [tM−1, tM ],

(26)

TA(t) =



K−
n=0

TAA1(n)t
αn, t ∈ [0, t1]

K−
n=0

TAA2(n)(t − t1)αn, t ∈ [t1, t2]

...
K−

n=0

TAAM (n)(t − tM−1)
αn, t ∈ [tM−1, tM ],

(27)

TM(t) =



K−
n=0

TMM1(n)t
αn, t ∈ [0, t1]

K−
n=0

TMM2(n)(t − t1)αn, t ∈ [t1, t2]

...
K−

n=0

TMMM (n)(t − tM−1)
αn, t ∈ [tM−1, tM ],

(28)

where TTi(n), TLLi(n), TAAi(n) and TMMi(n) for i = 1, 2, . . . ,M satisfy the following recurrence relations

TTi(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


λδ(k) − µTTTi(k) − κ

k−
l=0

TAAi(l)TTi(k − l)


,

TLLi(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


κ1

k−
l=0

TAAi(l)TTi(k − l) − (µL + γ )TLLi(k)


,

TAAi(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


γ TLLi(k) − (µA + ρ)TAAi(k)


,

TMMi(k + 1) =
Γ (αk + 1)

Γ (α(k + 1) + 1)


ρTAAi(k) + β


TMMi(k) −

1
TMmax

k−
l=0

TMMi(l)TMMi(k − l)



− µMTMMi(k)


,

(29)

such that TTi(0) = TTi−1(0), TLLi(0) = TLLi−1(0), TAAi(0) = TAAi−1(0) and TMMi(0) = TMMi−1(0).
Finally, we start with TT0(0) = c1, TLL0(0) = c2, TAA0(0) = c3 and TMM0(0) = c4, using the recurrence relation given in

Eq. (29), then we can obtain the multi-step solution given in Eqs. (25)–(28).

5. Numerical results

We take the parameters

λ = 6/day, µT = 0.6/day, κ = κ1 = 0.1mm3day−1, µL = 0.006/day, γ = 0.0004/day,
µA = 0.05/day, ρ = 0.00004/day, β = 0.0003/day, TMmax = 2200/mm3 and
µM = 0.0005/day

and the initial conditions

TT (0) = 1000/mm3, TLL(0) = 250/mm3, TAA(0) = 1.5/mm3 and TMM(0) = 0/mm3.
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Fig. 1. T (t) versus t: (Solid line) α = 1.0, (Dotted line) α = 0.95, (Dashed line) α = 0.85.
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1200

1000

800

600

400

200

0
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Fig. 2. TL(t) versus t: (Solid line) α = 1.0, (Dotted line) α = 0.95, (Dashed line) α = 0.85.

TA

t
50 100 150 200 250 300

4

3

2

15

1

0

Fig. 3. TA(t) versus t: (Solid line) α = 1.0, (Dotted line) α = 0.95, (Dashed line) α = 0.85.

Figs. 1–4 show the approximate solutions for T , TL, TA and TM obtained for different values of α using the multi-step
generalized differential transformmethod. From the numerical results in Figs. 1–4, it is clear that the approximate solutions
depend continuously on the time-fractional derivative α. It is to be noted that the step size 0.05 was used in evaluating
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TM

t
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0.01

0.02

0.03

0.04

0.05

50 100 150 200 250 300

Fig. 4. TM (t) versus t: (Solid line) α = 1.0, (Dotted line) α = 0.95, (Dashed line) α = 0.85.

the approximate solutions in Figs. 1–4. It is evident that the efficiency of this approach can be dramatically enhanced by
decreasing the step size and computing further terms or further components of T , TL, TA and TM .

6. Conclusions

In this paper, a fractional order differential system for modeling a human T-cell lymphotropic virus I (HTLV-I) infection
of CD4+ T-cells is studied and its approximate solution is presented using a multi-step generalized differential transform
method. The approximate solutions obtained by MSGDTM are highly accurate and valid for a long time. The reliability of
the method and the reduction in the size of the computational domain give this method a wider applicability. Finally, the
recent appearance of nonlinear fractional differential equations as models in some fields such as mathematical medicine
and biology makes it necessary to investigate the method of solutions for such equations and we hope that this work is a
step in this direction.
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