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A systematic mathematical approach is developed in the context of uniaxial cyclic ratcheting for the
parameter determination of the decomposed Chaboche hardening rule. This is achieved by deriving
the relation between the evolution of the backstress and the plastic strain accumulation. Unlike current
calibration techniques where a trial–error approach is employed to fit the simulation results to experi-
mental data, the proposed method determines the parameters directly from uniaxial ratcheting experi-
ments. Numerical results indicate that Chaboche’s hardening model is much more efficient than what
has been demonstrated before. Finally, as an improvement to the decomposed model, a modification is
made to one of the backstress components. This improved component enables the model to predict uni-
axial ratcheting with more accuracy.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction representing the Bauscinger effect in cyclic loadings but fails to
Ratcheting is defined as the accumulation of plastic strain dur-
ing cyclic loading in the presence of a mean stress. Many efforts
have been made to determine the cyclic characteristics of materials
in uniaxial and multiaxial loading. Experiments conducted by
Moyar and Sinclair (1963), Benham (1965), Freudenthal and Ronay
(1966), Ruiz (1967), Yoshida et al. (1978), Benallal et al. (1989),
Hassan et al. (1992), Hassan and Kyriakides (1992, 1994a,b), Yos-
hida (1995), Delobelle et al. (1995), Corona et al. (1996), Portier
et al. (2000), Bocher et al. (2001), Aubin et al. (2003) and Kang
et al. (2004) provide data for ratcheting properties of materials.
The uniaxial experiments are either stress or strain controlled.
Biaxial experiments mostly incorporate stress in one direction (ax-
ial tension or internal pressure) and strain in another direction
(shear strain or axial strain). One of the best works on uniaxial rat-
cheting is the experiments conducted by Hassan and Kyriakides
(1992) on 1020 and 1026 carbon steels. A set of stress controlled
tests were considered in these experiments with focus on the effect
of mean stress and stress amplitude on the plastic strain accumu-
lation. Since the work covers a wide range of peak stress values,
many researchers have attempted to verify their ratcheting models
with these experimental data, for example, Colak (2008) and Daf-
alias et al. (2008).

Parallel to experiments, various hardening models have been
developed to predict the cyclic response of materials using the the-
ory of plasticity. The linear hardening rule proposed by Prager
(1956) is the simplest kinematic hardening rule and is capable of
ll rights reserved.
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produce any accumulation of plastic strain in the presence of a
mean stress. This is because the stress–strain curves are in the
form of closed hysteresis loops. It should be mentioned here that
all models which produce a multilinear uniaxial stress–strain rela-
tion behave in the same manner and fail to predict ratcheting.

Two main modifications of Prager’s hardening rule where intro-
duced afterward. Besseling (1958) and Mroz (1967) suggested the
concept of a multisurface model where each surface evolved
according to a linear hardening rule. This idea was further pursued
by Dafalias and Popov (1974, 1975, 1976) and Krieg (1975) which
introduced a two-surface model and later by the bounding surface
theory of Dafalias (1986). These hardening rules present a much
better response of materials, but alike other multilinear models fail
to predict ratcheting.

The other modification to Prager’s hardening rule was made by
introducing the fading memory of the plastic strain path. This was
accomplished by adding the so called ‘‘recovery term” to the linear
term of Prager’s evolution law making the prediction of plastic
strain accumulation possible. Initiated by the nonlinear kinematic
hardening rule proposed by Armstrong and Frederick (1966), a
wide range of kinematic hardening rules have been presented to
simulate the ratcheting phenomena using the idea of strain hard-
ening and a recovery term in their equation. Chaboche et al.
(1979) and Chaboche (1986) decomposed the backstress into sev-
eral components where each of the components, individually
evolved according to an AF hardening law. The idea of decompos-
ing the backstress has become a main interest since. Chaboche
(1991) and Ohno and Wang (1993) later used a modified version
of the original AF equation in their decomposed models. Further-
more, in order to improve the uniaxial and multiaxial ratcheting
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simulation, modifications have been made to the Chaboche and
Ohno–Wang models by Mcdowell (1995), Jiang and Sehitoglu
(1996), Voyiadjis and Basuroychowdhury (1998), Abdelkarim and
Ohno (2000), Bari and Hassan (2002), Chen and Jiao (2004) and
Chen et al. (2005). A detailed review of various plasticity models
used for ratcheting simulation can be found in Chaboche (2008).

An important feature in relation with ratcheting simulation is
determining the material parameters used in each hardening mod-
el. Little effort has been made to develop a unified strategy for this
purpose. Bari and Hassan (2000) divided the uniaxial strain con-
trolled hysteresis curve into segments and related a number of
the material constants to each segment. However, some of the
parameters where eventually determined by trial and error in or-
der to produce a good fit to the uniaxial hysteresis curve. Koo
and Lee (2007) also used a similar approach. Chen and Jiao
(2004) took advantage of the monotonic uniaxial tensile curve to
determine the material constants. They also used a trial and error
method for the determination of some parameters. Hassan et al.
(2008) evaluated the parameters using four different experiments,
but also ended up using a trial and error method to fit the numer-
ical simulation to the experimental data. The use of either mono-
tonic or the cyclic stress–strain curves is still in controversy.
Unfortunately, in many cases, it has been shown that if the param-
eters of a model are determined by a specific property of the hys-
teresis loop, the model will fail to simulate other properties
efficiently. Moreover, many models are basically developed by uni-
axial hysteresis loops, while others are based on biaxial behavior.
According to Bari and Hassan (2002) and Chen et al. (2005), no
model is yet general enough to simulate both uniaxial and multiax-
ial ratcheting responses effectively.

The uniaxial experimental data of Hassan and Kyriakides (1992)
conducted on CS 1026 are used to confirm the validity of the pro-
posed methods in this paper. A stress controlled test (Fig. 1) is car-
ried out using seven sets of mean stress rm, and stress amplitude
ra given in Table 1. The first three set of experiments vary in the
magnitude of the mean stress while having the same stress ampli-
tude, and the other four set of experiments have the same mean
stress but differ in the magnitude of the stress amplitude.

2. Description of hardening plasticity models

Commonly used plasticity models for ratcheting simulation
possess similar main features. These models are based on the
von-Mises yield criteria and a kinematic hardening rule.

The von-Mises criteria is defined as:

f ðr� a; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� aÞ � ðs� aÞ

p
� k ¼ 0 ð1Þ

where s is the deviatoric stress tensor, a is the deviatoric backstress
tensor indicating the center of the yield surface and k ¼

ffiffiffiffiffiffiffiffi
2=3

p
ro is
Fig. 1. Uniaxial loading history.

Table 1
Mean stress and stress amplitudes used by Hassan and Kyriakides (1992) for CS1026.

Test No. 1 2 3 4 5 6 7

rm (MPa) 28.8 45.0 63.0 44.8 44.8 44.8 44.8
ra (MPa) 220.6 220.6 220.6 195.1 209.3 221.5 229.5
the size of the yield surface which will be constant in a kinematic
hardening model. The dot ‘‘�” indicates the inner product as
a � b = aij bij. For mathematical convenience, s � a will be further de-
noted by �s.

The flow rule establishes the direction of the plastic flow.
Assuming an associated flow rule in J2 plasticity, the plastic strain
increments will be in the direction of the gradient of the yield
surface:

dep ¼ dk
@f
@r
¼ dk

�sffiffiffiffiffiffiffi
2�J2

p ð2Þ

where dk is called the plastic multiplier and is determined by the
consistency condition and

ffiffiffiffiffiffiffi
2�J2

p
¼

ffiffiffiffiffiffiffiffi
�s � �s
p

.
In order to accommodate hardening effects, a hardening rule is

incorporated in the model. Among all hardening rules available,
the kinematic hardening rule is the most favorite for ratcheting
simulations. This hardening rule governs the evolution of the back-
stress denoted by a in Eq. (1). As stated in before, various harden-
ing rules have been proposed for hardening and ratcheting
simulation. The Armstrong–Frederick hardening rule is an original
form which has been modified by many researchers for improved
cyclic ratcheting simulation. This model and the decomposed mod-
el of Chaboche considered in this study will be briefly discussed
here. Detailed characteristics of these models can be found in Bari
and Hassan (2000, 2002).

2.1. The Armstrong–Frederick nonlinear hardening model

Armstrong and Frederick (1966) added a recovery term to the
linear hardening rule of Prager and proposed a nonlinear hardening
rule in the following form:

da ¼ 2
3

Bdep � ca
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

depdep

r
ð3Þ

The added term, takes into account a fading memory of the
plastic strain path. Starting with a plastic modulus of B � (3/2)ca
in a uniaxial loading condition, ax eventually stabilizes at a value
of (2/3)B/c. Incorporating the recovery term was a major develop-
ment eliminating the deficiencies of linear and multilinear harden-
ing rules. Uniaxial ratcheting can be simulated by this model.
However, since few material constants are available to produce
an acceptable shape of the stress–strain curve, the AF model is
no longer considered suitable for ratcheting prediction.

2.2. The nonlinear hardening rules of Chaboche

Chaboche et al. (1979) and Chaboche (1986) proposed their
decomposed hardening rule in the following form:

da ¼
X

dai; dai ¼
2
3

Bidep � ciai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

depdep

r
; i ¼ 1;2;3 ð4Þ

where each component has the form of an AF type rule. By increas-
ing the material parameters of the hardening rule, the Chaboche
model is able to simulate a more accurate prediction of ratcheting
than the AF model. However, numerical examples indicate that
the model is definitely not suitable for multiaxial ratcheting predic-
tions. The use of three components (i = 1,2,3) is suggested by
researchers to predict acceptable ratcheting predictions, but as will
be established later, utilizing four components will be more precise.

As stated earlier, a systematic method for the determination of
material constants of kinematic hardening models has not been
developed yet. A general mathematical approach will be estab-
lished for the decomposed Chaboche model in the following
sections. The results indicate that if the material constants of the
model are mathematically determined, the accuracy of the original
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Chaboche model is much more than what has been claimed in pre-
vious papers. For the development of the mathematical procedure,
the AF model is initially considered as a preliminary for the more
complex method given later.

3. Parameter determination of the Armstrong–Frederick
hardening rule

The AF hardening rule is described as in Eq. (3), which takes the
following form for uniaxial loading:

dax ¼
2
3

Bdep
x � ca dep

x

�� �� ð5Þ

The solution of Eq. (5) is as follows:

ax ¼ 2
3

B
c þ axo � 2

3
B
c

� �
exp �c ep

x � ep
xoð Þ½ �; dep

x P 0

ax ¼ � 2
3

B
c þ axo þ 2

3
B
c

� �
exp c ep

x � ep
xoð Þ½ �; dep

x < 0

8><
>: ð6Þ

Solving Eq. (6) for ep
x , the accumulated plastic strain can be

determined for one cycle of loading as given below:

Dep
x ¼

1
c

ln
ðanÞ2 � 2

3
B
c

� �2

ðapÞ2 � 2
3

B
c

� �2

2
64

3
75 ð7Þ

where ap and an are the maximum and minimum values of the
backstress during positive and negative loading, respectively. If
however both ap and an attain a same value in a cycle, the term in-
side the bracket becomes unity and the net plastic strain increment
will be zero for that cycle. This will be the case where no mean
stress is present during the loading (rm = 0) or when a decomposi-
tion of the backstress is used for the hardening model and the back-
stress components stabilize due to a small value of Bi/ci.

For the von-Mises yield criteria along with the associated flow
rule, the increments of the backstress tensor take place in the devi-
atoric plane, therefore, ay = az = � (1/2) ax. Referring to the defini-
tion of the yield criteria (Eq. (1)), the relation between stress and
backstress during uniaxial loading is rx � ð3=2Þaxj j ¼ ro, which
by introducing into Eqs. (6) and (7), the following relations can
be written:

rx ¼ ro þ B
c þ 3

2 axo � 2
3

B
c

� �
exp �c ep

x � ep
xoð Þ½ �

h i
; dep

x P 0

rx ¼ �ro þ B
c � 3

2 axo þ 2
3

B
c

� �
exp c ep

x � ep
xoð Þ½ �

h i
; dep

x < 0

8><
>: ð8Þ

and

Dep
x ¼

1
c

ln
ðrm � ra þ roÞ2 � B

c

� �2

ðrm þ ra � roÞ2 � B
c

� �2

2
64

3
75 ð9Þ

where rm is the mean and ra is the amplitude of the axial stress cy-
cle. Eq. (9) indicates that the AF hardening model can only produce
steady state ratcheting. This equation along with Eq. (6) can be used
as a simple calibrating formula for the AF model.

4. Parameter determination of Chaboche’s decomposed
hardening rule

The hardening rule of Chaboche is defined by Eq. (4). Imple-
menting the same methodology as before, it can be demonstrated
that Eqs. (6) and (7) hold for each component of the backstress,
therefore the following relations can be written:

aix ¼ 2
3

Bi
ci
þ aixo � 2

3
Bi
c

� �
exp �ci ep

x � ep
xoð Þ½ �; dep

x P 0

aix ¼ � 2
3

Bi
ci
þ aixo þ 2

3
Bi
ci

� �
exp ci ep

x � ep
xoð Þ½ �; dep

x < 0

8><
>: ð10Þ
and

Dep
x ¼ � 1

ci
ln

aixp�2
3

Bi
ci

aixn�2
3

Bi
ci

� �
ðpositive phaseÞ

Dep
x ¼ 1

ci
ln

aixnþ2
3

Bi
ci

aixpþ2
3

Bi
ci

� �
ðnegative phaseÞ

8>>><
>>>:

ð11Þ

where aip and ain are, respectively, the maximum and minimum
values of the backstress component during positive and negative
loading. By dividing a loading cycle and the corresponding plastic
strain into a positive phase (Dep

x > 0Þ and a negative phase
(Dep

x < 0Þ and assuming that each phase enters the plastic region,
the following conditions will be valid:

axp ¼
P

aixp ¼ 2
3 ðrx � roÞ ðpositive phaseÞ

axn ¼
P

aixn ¼ 2
3 ðrx þ roÞ ðnegative phaseÞ

(
ð12Þ

Combining Eqs. (10) and (12) will result the following relations:

axp ¼
P 2

3
Bi
ci
þ aixn � 2

3
Bi
ci

h i
exp �ciDep

x½ �
h i

ðpositive phaseÞ

axn ¼
P
� 2

3
Bi
ci
þ aixp þ 2

3
Bi
ci

h i
exp ciDep

x½ �
h i

ðnegative phaseÞ

8><
>:

ð13Þ

Eq. (13) can be used to calibrate the material constants (Bi,ci) of
a decomposed hardening rule. A set of equations can be attained by
using know states of (aixn;aixp;Dep

xÞ. Different cases of the parame-
ter determination procedure will be discussed in the following sec-
tions. These cases will be developed in sequence until an efficient
model is obtained.

4.1. One nonlinear component and one linear attachment component
(N1-L1)

In the first case a two-component hardening rule composed of
one nonlinear and one linear component is considered (i = 1, 2
and c2 = 0). If the hardening rule only consisted of one compo-
nent, the model would lead to a steady state ratcheting case.
However, a linear component also exists and its magnitude (a2)
tends to increase as the accumulated plastic strain increases.
Since the maximum and minimum values of the backstress are
constant (ap and an), this leads to the limitation of the maximum
and minimum attainable values of a1p = ap � a2 and a1n = an � a2,
respectively. This process will continue until jap � a2j = jan � a2j
and there would further be no accumulation of plastic strain.

For the calibration procedure, the material constants of the non-
linear component a1, are evaluated first. To achieve this, the plastic
strain increments of the positive and negative phase of the first cy-
cle are introduced into Eq. (11) and the equation is solved for B1, c1.
Next, the plastic strain accumulation of the kth cycle is considered.
The magnitude of the linear component of the backstress is de-
noted by (a2)k and by using Eq. (13) the following relation can be
written:

ðDep
xÞk ¼ ðDep

xpÞk þ ðDep
xnÞk ¼ �

1
c1

ln
ap � ða2Þk
� 	

� 2
3

B1
c1

� �
an � ða2Þk
� 	

� 2
3

B1
c1

� �
2
4

3
5

þ 1
c1

ln
an � ða2Þk
� 	

þ 2
3

B1
c1

� �
ap � ða2Þk
� 	

þ 2
3

B1
c1

� �
2
4

3
5 ð14Þ

Solving the above equation for (a2)k and knowing the total accu-
mulated plastic strain after k cycles, leads to the determination of
B2 by using Eq. (4) with c2 = 0.

Using results of Hassan and Kyriakides (1992) for the experi-
ments conducted on CS 1026, the following values have been ob-
tained by implementing the abovementioned procedure:
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E ¼ 181;300 MPa; m ¼ 0:302; ry ¼ 186:2 MPa
B1 ¼ 62;750 MPa; c1 ¼ 552:5
B2 ¼ 1250 MPa

Fig. 2 compares the predictions of the model with experimental
values. This figure shows the value of plastic strain at the positive
stress peak of every cycle. The parameters are calibrated for exp2
indicated in the figure.

It is evident from Fig. 2 that the obtained material constants can
produce a very good fit to exp1 which they where calibrated for.
However, the main shortcoming of the model for other tests is
the value of plastic strain in the first cycle. Adding more compo-
nents to the backstress can overcome this deficiency.

4.2. Three nonlinear components and one linear attachment
component (N3-L1)

By utilizing more backstress components, a more precise curve
of ax � ep

x can be attained. This can be accomplished by writing Eq.
(13) for more known states of ax � ep

x . However, when multiple
components are present, direct use of Eq. (13) is not applicable
for two reasons. Firstly because, experimental data can only be
used to determine the values of ax and not its components (aixn

and aixp). Secondly, solution of a multi-set nonlinear equation in
the form of Eq. (13) involves great complexity.

In order to overcome the first problem, Eq. (13) is rewritten in
the following form where the terms including aixn and aixp are
transferred to the left side of the equation:

axp�
P

aixn exp �ciDep
x½ � ¼

P 2
3

Bi
ci
þ �2

3
Bi
ci

h i
exp �ciDep

x½ �
h i

ðpositive phaseÞ

axn�
P

aixp exp ciDep
x½ � ¼

P
�2

3
Bi
ci
þ þ2

3
Bi
ci

h i
exp ciDep

x½ �
h i

ðnegative phaseÞ

8><
>:

ð15Þ

In the above equation, if the values of ci, aixn and aixp on the left
side are somehow to be suitably chosen, the terms of the right side
of the equations can directly be obtained by experimental data.
Calculations show that appropriate values of ci, aixn and aixp can
be effectively evaluated using the method discussed in Section 4.1.

The solution to the second deficiency of solving a nonlinear set
of equations in the form of Eqs. (13) and (15) is to predefine the
values of 2

3 ðBi=ciÞ and only consider the values of ci as unknowns.
Although this would increase the number of required components
for an acceptable curve fit, but reproduces the set of nonlinear
equations to a more easily solved form. The solution process is dis-
cussed in the Appendix.

Using results of Hassan and Kyriakides (1992) for the experi-
ments conducted on CS 1026, the following values have been ob-
tained by implementing the abovementioned procedure:
Fig. 2. Comparison of the N1-L1 model with experimental data from Hassan and Kyriak
Experiments 4–7.
E ¼ 181;300 MPa; m ¼ 0:302;ry ¼ 186:2 MPa
B1 ¼ 56;330 MPa; c1 ¼ 680:9
B2 ¼ 8710 MPa; c2 ¼ 841:7
B3 ¼ 1100 MPa; c3 ¼ 35:5
B4 ¼ 1100 MPa

It should be noted that the value of B4 for the linear component
is determined using the same method described in Section 4.1.

Fig. 3a and b compares the predictions of the model with exper-
imental values of the plastic strain at positive peak stresses of each
cycle. The parameters are calibrated using the curve of exp2 and
the plastic strain in the first cycle of exp3.Fig. 3c and d shows
the predictions obtained by Bari and Hassan (2000) with the three
component Chaboche model (C-H3). Fig. 3e and f is the results ob-
tained by Bari and Hassan (2000) using the four component Chab-
oche model with threshold (C-H4T). The C-H3 model consists of
three AF components in the form of Eq. (4). The C-H4T model is
composed of three AF components and takes advantage of one
modified AF component. This modified AF component utilizes a
threshold for the activation of the recovery term of Eq. (3). More
details on these models can be found in Bari and Hassan (2000,
2002).

In order to investigate more characteristics of the suggested cal-
ibration technique, Figs. 4 and 5 are presented. Fig. 4 compares the
N3-L1 and C-H4T models on their response to a strain controlled
hysteresis loop. As can be seen in this figure, the C-H4T model
has a slightly better fit to the experimental curve. The reason is
that the calibration method suggested by Bari and Hassan (2000)
makes direct use of this hysteresis curve to determine the param-
eters of the model. Fig. 5 exclusively demonstrates the difference
between the calibration methods suggested in this paper and by
Bari and Hassan (2000). This figure shows the development of plas-
tic strain in a partial reverse loading/reloading stress controlled cy-
cle. It is evident that the C-H4T model traces the rx � Dep

x curve
more closely than the N3-L1 model, however, the total plastic
strain accumulated in the cycle is more accurately predicted by
the N3-L1 model. These different responses are due to the different
strategies and purposes of each parameter determination tech-
nique, whereby Bari and Hassan (2000) calibrate the model mainly
on the strain controlled hysteresis loop, the present work focuses
on the accumulation of plastic strain in nonsymmetric loading
cycles.

5. An additional example

Another calibration example has also been prepared for demon-
stration. Three sets of experiments carried out by Hassan and
Kyriakides (1992) on a different material (CS 1020) are considered
ides (1992) for axial plastic strain at positive stress peaks. (a) Experiments 1–3. (b)



Fig. 3. Comparison of different models with experimental data from Hassan and Kyriakides (1992) for axial plastic strain at positive stress peaks. (a and b) Predictions of
model N3-L1 using the material constants obtained in this paper. (c and d) Predictions of the Chaboche model using the material constants obtained by Bari and Hassan
(2000). (e and f) Predictions of the Chaboche model with threshold using material constants obtained by Bari and Hassan (2000).

Fig. 4. Simulation of a strain controlled hysteresis loop by (a) N3-L1 and (b) C-H4T models. Data and C-H4T simulation from Bari and Hassan (2000).
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Fig. 5. Predictions of (a) N3-L1 and (b) C-H4T models for a reverse partial loading/
reloading situation. Experimental data and C-H4T simulation from Bari and Hassan
(2000).
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for this purpose. These are also stress controlled uniaxial experi-
ments with the loading values indicated in Table 2.

The method suggested in this paper is utilized to calibrate the
Chaboche hardening model. Noting that using one linear and one
nonlinear backstress components (N1-L1) produced satisfactory
results, the parameter values obtained were as follows:

E ¼ 173;200 MPa; m ¼ 0:3; ry ¼ 324:1 MPa
B1 ¼ 16; 092 MPa; c1 ¼ 35:8
B2 ¼ 68:9 MPa

In addition, the method described by Bari and Hassan (2000) is
also used for the parameter determination of the Chaboche model
with threshold (C-H4T). The attained values are:

E ¼ 173;200 MPa; m ¼ 0:3; ry ¼ 324:1 MPa
B1 ¼ 6895:8 MPa; c1 ¼ 92:0
B2 ¼ 1241:1MPa; c2 ¼ 88:5
B3 ¼ 13;800 MPa; c3 ¼ 89:2
B4 ¼ 690:0MPa; c4 ¼ 50:0; �a4 ¼ 4:8

Fig. 6 shows the ratcheting prediction obtained by the above-
mentioned parameters.
Table 2
Mean stress and stress amplitudes used by Hassan and Kyriakides (1992) for CS1020.

Test No. 8 9 10

rm (MPa) 64.1 64.1 64.1
ra (MPa) 331.6 337.8 351.6

Fig. 6. Comparison of the N1-L1 and C-H4T models with experiments 8–10 from
Hassan and Kyriakides (1992) conducted on CS 1020.
As can be seen in the above figure, for this set of experiments,
the predictions of the Chaboche hardening model with only two
components is more acceptable than the four-component Chab-
oche hardening model with threshold. This solely lies in the meth-
od utilized to determine the parameters of each hardening model
and not in the model itself. The parameter determination method
suggested by Bari and Hassan (2000) takes advantage of a stable
stress–strain hysteresis curve. Since the bounding stresses of the
hysteresis curve used for this example were close to the limiting
stresses of exp9 and exp10, it is understandable why these exper-
iments are better predicted by the obtained parameters. It should
also be mentioned that in this method, five of the parameters
(B2,c2,B4,c4, �a4) are determined by a trial–error approach. This im-
plies the fact that the results can be further improved, however,
this would be a time consuming task.

6. Three nonlinear components and one improved attachment
component (N3-A1)

As can be seen in Fig. 3, although the four-component harden-
ing model (N3-L1) improves the ratcheting predictions, but over
predicts some experiments and under predicts some other experi-
ments. Further calculations indicate that this cannot be resolved by
using more backstress components in the hardening rule. Also
shown in Fig. 3a are the results of using the same parameter con-
stants for the nonlinear components but utilizing different values
of B4 for the linear component in each experiment. These results
imply the idea of employing a modified component instead of
the linear attachment component used in this section.

In order to overcome the over- and under-prediction of ratchet-
ing encountered previously (Fig. 3a), the parameter constants for
the three nonlinear components of the backstress are determined
in the same manner discussed in Section 4.2, but an improved def-
inition of the forth component is introduced in the following form:

da4 ¼
2
3

C þ gFðbÞ
� �

dep ð16Þ

where C and g are material constants and F( ) has the same form of
the yield function. Tensor b can be assumed as a virtual backstress,
with the following evolution rule:

db ¼ H FðaÞ � FðbÞj j � �a½ �da ð17Þ

In the above equation, ā is a constant scalar value and H is the
Heaviside step function (H x½ � ¼ 0 for x < 0 and H x½ � ¼ 1 for x P 0).
This rule indicates that whenever the distance between a and b ex-
ceeds �a, the evolution of the virtual backstress will be equal to the
total backstress. Eq. (16) has the form of Prager’s hardening rule
with a varying hardening coefficient. The virtual backstress is em-
ployed only to designate the variation of this hardening coefficient
and is not a component of the total backstress.

It should be stated that a quite similar approach has also been
suggested by Dafalias et al. (2008), which introduced the multipli-
cative AF kinematic hardening rule. However, while the virtual
backstress changes the value of the hardening coefficient of a
Prage-type hardening rule, the multiplicative scheme essentially
has its influence on the recovery term of an AF hardening rule.

Unlike the AF hardening rule where the second derivative of ai

with respect to dep is negative, the backstress component defined
by Eqs. (16) and (17) has a positive second derivative. This might
be controversial, since after some plastic flow has taken place dur-
ing uniform loading, the predicted stress–strain curve would have
an increasing slope. The fact is that the influence of the modified
backstress component is much smaller than the sum of the other
components in strain ranges encountered in ratcheting simulation
or even in cyclic loadings of higher amplitudes, but when dealing
with monotonic loading, the increasing tangential modulus is a
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rather new property. However, the primary attention of this work
is towards ratcheting and the effect of using the new modified
component on both monotonic and cyclic stress–strain curves will
be discussed briefly, later in this section.

The values of Bi and ci are determined according to the method
given in Section 4.2. The values of C, g and �a can be evaluated by
using the variation of B4 given in Fig. 3a. For this purpose the fol-
lowing equation must be solved:

Bk ¼
2
3

C þ g
ffiffiffi
3
2

r
axk � �a

 !
ðk ¼ 1;2;3Þ ð18Þ

where Bk is the optimum value of B4 for each test and axk is the max-
imum absolute value of the backstress for that test. In this case, the
following values are obtained:

E ¼ 181;300 MPa; m ¼ 0:302; ry ¼ 186:2 MPa
B1 ¼ 56;330 MPa; c1 ¼ 680:9
B2 ¼ 8710 MPa; c2 ¼ 841:7
B3 ¼ 1100 MPa; c3 ¼ 35:5
C ¼ 690 MPa; g ¼ 7:78; �a ¼ 29:6 MPa

Fig. 7 shows the ratcheting predictions obtained by the new
model and the above parameter values. Comparison of these re-
sults with Fig. 3 clearly indicates the accuracy of the new model
in ratcheting predictions.

The result of employing the modified hardening rule in mono-
tonic and cyclic loading is given in Fig. 8. Fig. 8a shows that the
new model behaves quite similar to the N3-L1 model in a strain
controlled hysteresis loop (compare to Fig. 4a). This is due to the
small influence of the modified component compared to the other
Fig. 7. Comparison of the N3-A1 model with experimental data from Hassan and Kyriak
Experiments 4–7.

Fig. 8. Simulation of (a) strain controlled hysteresis loop and (
components of the backstress. Fig. 8b indicates that during mono-
tonic loading, the tangent modulus increases as plastic deforma-
tions take place. This response is different from commonly used
hardening rules where the slope of the stress–strain curve always
decreases during plastic flow. Although it will not be studied fur-
ther in this paper, but this response can be used to simulate the
strain hardening phenomenon encountered in some materials after
initial yielding.
7. Conclusions

A general systematic approach is established for the parameter
determination of Chaboche’s hardening model. The suggested
method is developed through using one, two and four components
of the backstress. The result of the new parameters is compared to
the ones suggested by Bari and Hassan (2000). Numerical analyses
indicate that if the decomposed hardening model is calibrated with
this technique, the hardening rule of Chaboche can be used more
efficiently than what has been credited before. After realization
of the deficiency of the model, an improvement is made by apply-
ing a new formulation to one of the backstress components. The
new model is demonstrated to be more precise in simulating all se-
ven uniaxial ratcheting experiments conducted on CS 1026 by Has-
san and Kyriakides (1992).
Appendix A

The multi-set nonlinear equation (Eq. (15)) encountered in Sec-
tion 4.2 can be rewritten in the following form:
ides (1992) for axial plastic strain at positive stress peaks. (a) Experiments 1–3. (b)

b) monotonic stress–strain curve using the N3-A1 model.
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Cj ¼
X

i

Ai � Aie�Mjxi
� 	

ðA:1Þ

As mentioned earlier in, for the solution of Eq. (A.1), the values
of Ai will not be considered unknown and are predefined. Hence,
the unknowns in the above set of equations are xi which are the
values of ci in the original equation (Eq. (15)). If three states of
Cj �Mj (j = 1,2,3) (which are actually three states of ax � ep

xÞ are
to be satisfied by the hardening model (j = 1,2,3), three backstress
components will be necessary for the model, therefore i = 1,2,3.
This leads to the following set of equations:

C1 ¼ A1 � A1e�M1x1 þ A2 � A2e�M1x2 þ A3 � A3e�M1x3

C2 ¼ A1 � A1e�M2x1 þ A2 � A2e�M2x2 þ A3 � A3e�M2x3

C3 ¼ A1 � A1e�M3x1 þ A2 � A2e�M3x2 þ A3 � A3e�M3x3

8><
>: ðA:2Þ

The sum of A1, A2 and A3 are taken to the left side of the equa-
tions and e�M1xi is replaced with Ui, leading to:

L1 ¼ A1U1 þ A2U2 þ A3U3

L2 ¼ A1UM2=M1
1 þ A2UM2=M1

2 þ A3UM2=M1
3

L3 ¼ A1UM3=M1
1 þ A2UM3=M1

2 þ A3UM3=M1
3

8><
>: ðA:3Þ

where Lj ¼
P

iAi � Cj and obviously Ui (i = 1,2,3) are the unknowns.
This equation is in a rather restricted form and may easily not have
a solution. The condition

P
Ai > ap

�� ��; anj j is a prerequisite for the
existence of a solution. If the solution exists, it can be achieved by
any iterative technique, for example the Newton–Raphson
approach.

L1

L2

L3

2
64

3
75�

f1

f2

f3

2
64

3
75 ¼

@f1=@U1 @f1=@U2 @f1=@U3

@f2=@U1 @f2=@U2 @f2=@U3

@f3=@U1 @f3=@U2 @f3=@U3
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DU1

DU2

DU3
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2
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3
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U1

U2

U3

2
64

3
75þ

DU1

DU2

DU3

2
64

3
75 ðA:4Þ

where:

f1ðU1;U2;U3Þ ¼ A1U1 þ A2U2 þ A3U3

f2ðU1;U2;U3Þ ¼ A1UM2=M1
1 þ A2UM2=M1

2 þ A3UM2=M1
3

f3ðU1;U2;U3Þ ¼ A1UM3=M1
1 þ A2UM3=M1

2 þ A3UM3=M1
3

ðA:5Þ

or the more simple backward approach, which is written as:

U1ðnewÞ ¼ 1
A1
ðL1 � A2U2 � A3U3Þ

U2ðnewÞ ¼ 1
A2
ðL2 � A1UM2=M1

1 � A3UM2=M1
3 Þ

h iM1=M2

U3ðnewÞ ¼ 1
A3
ðL3 � A1UM3=M1

1 � A2UM3=M1
2 Þ

h iM1=M3

ðA:6Þ

Calculations have shown that a suitable starting point for the
iterative solution is essential for convergence. Proper predefinition
of values of Ai can also help for faster convergence. It is advised that
the values of Ai not be close to each other and have the condition
Li < Ai.
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