
JOURNAL OF COMBINATORIAL THEORY (B) 14, 163-179 (1973) 

On Existence of Compoun 

Squared Squares of Sma%l 

State University of New York at Buffalo, Department of mathematics, 

4246 Ridge Lea Road, Amherst, New York 14226, 
and The University of Michigan, Department of Mathematics, 

Ann Arbor, Michigan 48104 

Communicated by W. T. TEctte 

Received April 17, 1972 

A compound perfect squared square must contain at Ieast 22 subsquares. The 
proof utilizes elementary combinatoric and graph theoretic ~gum~nts and an 
extensive computer search. 

1. INTRODUCTION 

A squared rectangle is a rectangle subdivided into a finite number of 
squares. A squaring is perfect if no two component squares are congruent. 
A simple squared rectangle is one that properly contains no sqna~ed 
rectangle consisting of more than one square. A squaring that is not 
simple is compound. The order of a squared rectangle is the number of 
its component squares. 

Duijvestijn [3] showed there are no perfect simple squared squares of 
order less than 20. We complement Duijvestijn’s results (in Theorem 5) by 
proving the nonexistence of a compound perfect squared square of order 
less than 22. The perfect squared square of Ieast order known has order 24 
and is compound. Pt was found by Willcocks [X 1,121 in 1948. A compound 
perfect squared square was first discovered by Sprague [6]. Tutte 17, 91, 
Willcocks [12], and Federico [4, S] found many interesting compound 
squared squares and rectangles, Federico by computer. Federico used 
the method of substituting an unknown resistance in one or more wires in 
the electrical network corresponding to a net (see Section 2) and sobbing 
that network by Kirchhoff’s Laws, subject to the constraint that the 
resultant squared rectangle be a square. We use a graph theory approach 
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to search for compound squared squares. Both methods ultimately depend 
upon a knowledge of simple squared rectangles. 

The authors acknowledge the help and advice of James Reeds III. 
He wrote the program for dissecting graphs and did considerable work on 
the net generating program. 

2. GRAPHS CORRESPONDING TO PERFECT SQUARED RECTANGLES 

Throughout this paper we deal only with finite graphs having no loops, 
and we consider them as point sets. Two graphs are considered as identical 
if their vertex adjacency matrices are the same or are similar via a permu- 
tation matrix. The order of a graph is the number of edges it contains. A 
net is a connected planar graph with positive order. If two vertices on the 
same face of a net are designated as poles, the net is a poIar net. If A is a 
polar net, A C B, and A meets the closure of B - A only at the poles of 
A, then A is a polar subnet of B. If S is a polar net with poles v and w, 
the completion S+ of S is given by S+ = S v {edge VW}. 

Let S be a net. If there exists a vertex v of S such that S - v is not 
connected, then S is l-connected. If S is not l-connected, H and K are 
subsets of S each containing at least two edges, and v and w  are vertices 
of S such that S = H u K and H n K = v u w, then S is 2-connected. 
If S is neither l-connected nor 2-connected, then S is 3-connected. As 
usual, M denotes the closure of a point set M. 

We begin our proof of nonexistence of a compound perfect squared 
square of order less than 22 by stating a theorem for rectangles that is 
analogous to a theorem of Tutte’s [8, Section 2.21 for triangles: 

THEOREM 1. For any squaring of a rectangle R, with component squares 
Sj , there exist closed line segments pia (G = h, v; i = 1,2,..., mJ where mh 
and m, are positive integers, such that: 

(a) The union of the pia is the union of the sides of the Si , each side of 

each Sj being contained in some pia. 
(b) pia is horizontal or vertical as G = h or o = v. 
(c) Two distinct segments have at most one point in common. 
(d) If w  is a vertex of some Sj and not a vertex of R, then w  is an interior 

point of just one of the segments p,“. If such a vertex w  is common to four of 
the squares (SJ, then w  is an interior point of some piv. 

A polar net P = P(R) corresponding to R may be defined as in [ 1, p. 3 141 
or [lo] with vertices and edges corresponding to the pih and Sj , respectively. 
(If the squaring has no four squares meeting at a point, P is identical to 
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the normal polar net of [I, p. 3141.) By part (d) of ‘Theorem 1, is 
well-defined for a given orientation of R. If we consider P as an e al 
network with unit resistance in each edge, a voltage across the poles 
induces currents in the edges which are proportional to th 
squares they represent. The currents are determined by Kir 

We define a class of polar nets which includes all nets associated with 
perfect squared rectangles according to the above ~orres~o~de~~e~ 

EFINITION 1. For n 3 5, let LYn denote the set of all planar graphs S 
such that: 

(a) S is a polar net. 
(b> S has n edges. 
(cl S+ is 2-connected or 3-connected. 
(d) No two edges of S have the same pair of end-points, 
(e) Each vertex of S that is not a pole is an end-point of at least 

edges. 

The set =!Zn is nonempty for each M > 5: 

LEMMA 1. If A is a polar net having n b 5 edges and A+ is ~~c~~~ected~ 
then A belongs to -CTn . 

This easy lemma ensures that A$ is nonempty for pz = 5 and al 
since there exist 3-connected nets of all orders 8 and above and of order 6, 
The complete graph on 4 vertices (with two vertices designated as 
is a polar net in T6 . 

2. Let R be a perfect squared rectangle of order n. Then 

Pro05 The net P is polar by construction, its poles correspondin 
the pih at the top and bottom of R. It has more than 5 edges because a 
perfect squared rectangle must contain at least nine component squares 
El, p. 3241. To establish the third property it is sufficient to show that for 
any vertex v of Pf there is a circuit containing v and the poles of P. Such 
a circuit may be found by tracing a path from v to each pole via the 
corresponding squares in R, and including the edge P+ - B. Finally, if 
either of the last two properties of membership in 3% were violated by P, 
then two edges of P would carry the same (nonzero) current in the elec- 
trical model. This is not possible because R is perfect. 

We are now able to characterize elements of 9% . 
contains those polar nets we must study to find perfect squared squares. 
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THEOREM 2. Each element S of 9% satisJies exactly one of the following: 

(1) S+ is 3-connected.’ 
(2) S = X u x, where X E snwl and x is an edge added to a pole p 

of X in such a way that x connects p to one pole of S and X n x = p. The 
secondpole of X is the secondpole of S. 

(3) S = Y u y, where YE 9& , the poles of Y are the poles of S, and 
y is an edge joining the poles of Y. 

(4) There exist integers m and k with m, k > 5 andpolar nets A in 9, 
and B in -rtP, such that A+ is 3-connected, and S+ is formed by joining A and B 
at their poles. 

Remark. One can always choose A in Conclusion 4 so that A C S, 
but other choices for A in Conclusion 4 with A C S+ but A p S may exist. 

We use three lemmas in proving Theorem 2: 

LEMMA 3. Let T be a 2-connected or 3-connected net, and let U be a 
polar subnet of T. Then Uf is 2-connected or 3-connected. 

The proofs of this and the following lemma are straightforward and 
are omitted. 

LEMMA 4. Let C be a poIar net with more than one edge. If no two 
edges of C have the same end-points, and if each vertex of C that is not a pole 
is the end-point of at least three edges of C, then C has at least five edges. 

LEMMA 5. If S E gm, then there exists a polar subnet A of S such that 
A+ is 3-connected and A has at leastJive edges. 

Proof. Given S E 97%) let 9 be the set of all polar subnets of S having 
more than one edge. The set 9 is nonempty because S E 9. Let A be an 
element of 9 with minimum order. By Lemma 3, A+ is either 2-connected 
or 3-connected since S+ is. If A+ is 2-connected, then there exist vertices v 
and w  separating A+ into two polar subnets U and W with common poles v 
and w, and each of U and W contains more than one edge. We may assume 
U C A. Then U is d fortiori a polar subnet of S. But W contains at least two 
edges, one of which belongs to A (since A+ - A is just one edge). Thus U 
is an element of a having fewer edges than A, contradicting the choice of A. 

Since A+ is neither l-connected nor 2-connected, it is 3-connected. 
As a member of 9, A has more than one edge, so that, by Lemma 4, 
A has at least five edges. I 

Proof of Theorem 2. We first prove that Conclusions (l)-(4) of the 
theorem are mutually exclusive. Suppose S satisfies Conclusion (2). Then 
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one pole of S is the end-point of exactly one edge of S, so that S cannot 
also satisfy Conclusion (3). Let t = S+ - S, and let = t w  x. Then 
El n X contains only the poles of X, each of and % contains at least 
two edges, and H u X = S+. Therefore S+ is 2-connected so that Conclu- 
sions (2) and (1) are mutually exclusive. 

If S satisfies Conclusions (2) and (4), the net B in Conclusion (4) contains 
both x and t = S+ - S, because A+ is kmmected. But then the vertex 
t 19 x meets only t and x, so that B does not belong to s!, D Thus Conclu- 
sions (2) and (4) are mutually exclusive. Arguments similar to these show 
that Conclusion (3) cannot hold simultaneously with either of Conclusions 
(1) and (4). Finally, Conclusions (1) and (4) are disjoint ~oss~bi~~ties 
because S- cannot be both 3-connected and 2-connected. 

For the remainder of the proof we assume S satisfies none of Conclusions 
(l), (a), and (3) of the theorem. We must show S satisfies Conclusion (4). 

y Lemma 5, there exists a polar subnet A of S such that A+ is J-connected 
and A has at least five edges. (We only use the relation A C S+ in the 
remaining argument.) Let ~2 be the order of A. By Lemma 1, A E Zm a 

= S+ - A, and let the poles v and w  of A be the 
hat B is a polar net, S+ is formed by joining A and 
E Zk for some k 3 5. 

e set B n A consists only of v and w. If B is not 
B = H v K, where H n if and H n K are both empty while neither of H 

is. The vertex v is not an isolated point of B, and we may assume 
Let H’ = H - v, and let K’ = (KU A) - u. Then hot 

are nonempty, each of H’ n K’ and H’ n %? is empty, and 
S+ - U. Thus Sf is l-connected, which contradicts the hyp 
S E Za ~ Therefore B is connected. Since A is also connected, v and w  
cannot be separated by a circuit (simple closed curve) in B. Conse~~e~t~y 
is a polar net, and S+ = A u B, with B and A joined together only 
their poles. 

remains to prove that B E Zk for some k 3 5. Let k be the order of 
ose two edges of B have the same end-points. If one such edge _ 

S+ - S, the other also has the poles of S as its end-points, which contradicts 
the assumption that S does not satisfy Conclusion (3). If both these edges 
are in S, the hypothesis that S E 9n is contradicted. Thus no two ed 
have the same end-points. Further, if a vertex I” of B is a pole of S 
a pole of B, and Y is the end-point of exactly one edge of S, then S s&is&es 
Conclusion (2) of the theorem, contrary to our assumption. Since S E cs9, 9 
any other vertex of B is an end-point of at least three edges of S, hence of B. 
Lemma 3 and the conclusions of this paragraph imply 
prove k 3 5. We proceed to do so. 

Since B is connected, lc >, 1. If k = 1, then v and w  are connected by 
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exactly one edge in B, so that S = A+ and S is 3-connected. This 
violates our assumption that S does not satisfy Conclusion (1) of the 
theorem. Therefore k > 1. We may now apply Lemma 4 to conclude that 
B has at least five edges. Therefore B E 64, for some k > 5, and S does 
satisfy Conclusion (4) of the theorem. I 

It is convenient to refer to the nets in _Ep by the types which Theorem 2 
assigns to them. We therefore make the following definition: 

DEFINITION 2. A net S in 9n is a Ti net (i = 1,2, 3,4) if S satisfies the 
i-th conclusion of Theorem 2. 

Although we are searching for a compound perfect square of order 21 
or less, we need not examine all elements of Zn for each n (5 < n ,< 21). 
For example, most TX nets do not correspond to compound perfect 
squarings of rectangles. But even those which do can be avoided: 

moREM 3. Let R be a compound perfect squared rectangle, and let 
P = P(R). Then P+ is 2-connected. 

Proof. By Lemma 2, P E -li”, for some n. Therefore P+ is 2-connected 
or 3-connected. Since R is compound, it properly contains a perfect 
squared subrectangle Rl . Let Pl = P(R,). By Theorem l(d), a vertex 
of Pl that is not a pole of Pl is incident only with edges corresponding 
to squares of R, . Thus Pl is a polar subnet of P, and P+ is 2-connected. 1 

3. NETS CORRESPONDING TO COMPOUND PERFECT SQUARED SQUARES 

In this section we show that the search for nets derived from compound 
perfect squared squares may be restricted to T4 nets. 

LEMMA 6. If Q is a nontrivial (compound or simple) perfect squared 
square, and P = P(Q), then any two meshes of P+ have at most one edge in 
common. 

ProoJ Let t = P+ - P. Suppose there exist two meshes of Pf with 
more than one edge in common. If t is one such edge, then all current 
flowing between the poles of P in the electrical analog of P must pass 
through another such edge r. Then r corresponds to a square whose width 
equals that of Q, which is impossible since Q is nontrivial. 

On the other hand, if r and s are edges common to these meshes with 
r # t and s # t, then the current in r equals the current in s in the electrical 
analog of P because each current is the algebraic sum of the mesh currents 
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in the meshes common to r and s; see ure 1. Therefore cannot be 
perfect, unless r and s carry zero current. t r and s correspo to squares 
in Q and hence have nonzero current. 

FIG. 1. Meshes with common edges Y aad s 

THEOREM 4. If Q is a compound perfect speared square o<f order n, 
then P = P(Q) is a T, net of order n. 

Proof. By Lemma 2 and Theorem 2, P is a T, net for some i, I < i < 
Theorem 3 and Lemma 6 imply i is neither 1 nor 2. Suppose P is a T3 net. 
Then the voltage across the poles of the electrical analog is the 

voltage across a single edge y joining the les, which forces Xpah-c: 

in Q to have a height equal to the height of 
We conclude P is a T4 net. 

4. GNOMONS 

We have narrowed our search for compound perfect squared squares to 
the collection of squarings of rectangles derived from T4 nets. When we 
dissect a T, net using Kirchhoff’s Laws, we first complete it and put a 
battery in the new edge. 

DEFINITION 3. The completion of a T4 net of 71 - 1 edges is a g~zomor~ 
of order ~1. 

Thus to organize an exhaustive search for compound perfect squared 
squares it is sufficient to create a hierarchal list of gnomons. Theorem 2 
provides the means for doing this. Conclusion (4) of Theorem 2 describes 
the compound structure of gnomons, and all the conclusions describe the 
basic parts of gnomons. In this section we present an algorithm for 
creating a complete, hierarchal list of gnomons. We also state a number 
of lemmas which help to eliminate certain portions of this list from 
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consideration. After applying these lemmas wherever feasible, we generated 
the remainder of the nets in the list having 22 or fewer edges by electronic 
computer and dissected them one at a time, also by computer. The com- 
puter program we used to perform the dissections is a modification 
of Duijvestijn’s program [3] that was written by James Reeds III. We 
emphasize that we dissect a gnomon of order n in all possible ways; 
that is, we solve the electrical networks determined by placing a battery 
in turn in each edge of the gnomon and unit resistances in each of the 
other n - 1 edges. The resultant it squared rectangles may be all different 
or there may be several alike. Each may be perfect or imperfect. 

We describe one method of constructing gnomons. Consider a T, net 
S = SO in 9:, , and let A, B, m, and k be as in Conclusion (4) of Theorem 2. 
Since B belongs to LYk , it is a Ti net for some i. If B is a T, or a T3 net, 
remove the edge that corresponds to the edge x or y of the theorem to obtain 
a net Bl in L?& . Repeat the procedure, ifpossible, to obtain B,, = B E LYk , 
Bl E LZ’k-l ,..., Bj E eY,,pj ,... . The procedure terminates at some S, = Bt , 
where S, is a T, or a T4 net. Then the gnomon S+ can be realized as the 
union of S, , a Tl net A, = A, and il = I edges of the types of x and y in 
Theorem 2. If S, is a Tl net, no further decompositions are needed; 
otherwise, S, is a T4 net, and S, is decomposed in the way S was decom- 
posed. Repeat the procedure for each Si (j = 1,2,...) until a Tl net, 
say S, , is reached. At this final stage the original T4 net S is described by: 

(1) a sequence of Tl nets A, ,..., A,., , A,. = S, , 

(2) a sequence of T4 nets SO ,..., S,-, , and 

(3) 4 = il + *em + i, edges of the types of x and y in Theorem 2, 

such that, for each j < r, the gnomon Sj+ is the union of Aj , S,+l and ij+l 
edges of the types of x and y; see Figure 2 for an example. 

FIG. 2. S+ = A,uB,, = A,UxuB,,wherei, = l;S, = B,,and 
S,+=A,~B,‘=A,uyuB,‘,whereB,‘=A,,andi,=l. 
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By reversing the steps in the above procedure we reconstruct S+ from 
the Aj’s and the extra edges. Indeed, starting with arbitrary LZ’, nets {A~) 
and as many extra edges as needed, we (theoretically) can construct all 
gnomons of a given order m. Then by solving the corresponding electric21 
networks we can determine all compound perfect squared squares of order 
m- 1. 

With the aid of some simplifying observations we are able t 
analyze a set of gnomons sufficient for the proof of Theorem 5. 
with three lemmas, whose proofs are easy and are omitted: 

t al 
begi 

bm+fA I. If S is decomposed according to the above scheme, at least 
two of the A,‘s are subsets of S+. 

hmMA 8. Let G be a gnomon of order n. Let C be a polar subnet of G. 
If the squared rectangle corresponding to C is imperfect, then so is any 
squared rectangle of order n - 1 derived by salving an electrical network 
obtained from G by piacing a battery in some edge of G - C and unit 
resistances in all other edges of G. 

COROLLARY. Let G be a gnomon of order n. Let C, and C, be polar 
subnets of G which correspond to imperfect squared rectangles and which 
have no edges in common. Then no squared rectangle of order n - 1 derive 
from G is perfect. 

bmA 9. If n > 1, a perfect squared rectangle with a width-to-~e~gt 
ratio of 1: n is composed of at least 3n - 1 squares. 

A polar net A may be inserted as a polar subnet of a polar net S in four 
ways. These come from rotating A so as to interchange the positions 
poles and from reflecting A in the line through its poles. Each of 
orientations of A as a polar subnet of S corresponds to one of the four 
ways to orient the rectangle corresponding to A in the rectangle corre 
sponding to S. We consider these orientations to be equivalent because 
the rectangles corresponding to S in each case are either all perfect or all 
imperfect, and each can be obtained from any other. 

The 3-connected nets of six to ten edges are illustrated in Figure 3. 
They will be referred to frequently in the ensuing discussion. Only one 
(Fig. 3f) can be dissected to produce perfect squared rectangles. The two 
nets of nine edges (Fig. 3c and d) are duals of each other: there exists a 
one-to-one correspondence between the edges of one and the edges of the 
other such that vertices and meshes of one net are mapped, respectively% 
into meshes and vertices of the other. Each of the remaining nets ~ict~~e~ 
is self-dual. Dissections corresponding to dual nets yield the same squared 
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a b 

lIIl 723 Dl 
d e f  

FIG. 3. The 3-connected nets of 6, 8, 9, and 10 edges. 

rectangles [l, pp, 321-3231, so that only one of a net and its dual need be 
dissected. 

We next state two lemmas that give properties of the squared rectangles 
obtained by inserting a net corresponding to a perfect squared rectangle 
into one of the Tl nets whose completions are pictured in Figure 3. These 
lemmas will be used in the proof of Theorem 1. They have the following 
hypothesis in common: 

HYPOTHESIS H. The graph A is a polar subnet of S+, A is a Tl net, andS 
is a T4 net in 5$ . The graph B is S+ - A, and the rectangle corresponding 
to B has a width-to-length ratio of b. 

An example of such a net S is illustrated in Figure 4. 

LEMMA 10. Under Hypothesis H, let A+ be the net shown in Figure 3a. 
Suppose the squared rectangle R corresponding to S has order n and a 
width-to-length ratio of c. If R is perfect, then c cannot equal 1,315, or 13124. 
If in addition n is 29 or less, then c cannot equal 213, 518, or 8113 either. 

LEMMA 11. Under Hypothesis H, let A+ be the net shown in Figure 3b 
(3c or 3d, 3e). Then S cannot correspond to a perfect squared square of 
order n unless b = 518 (8/13, 13124). 

Proof of Lemma 10. By Lemma 8, with A playing the role of C, the 
battery in the electrical analog of S+ must be placed in an edge of A. To 
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A: B: 2: 

S: 

FIG. 4. Example of a net satisfying Hypothesis H. 

solve the network corresponding to S, we can replace the subnetwork 
corresponding to B by a single wire of resistance b. The network may be 
solved for the currents, with c as a parameter. (See, for example, [I 
Solutions corresponding to c = 1,315, and 13124 do not yield geometrically 
realizable perfect squared rectangles. Solutions with e = 213, 518, and 8113 
yield solutions with b = 9, 25, and 41 (respectively), requiring R to have 
order 30 or more by Lemma 9. 

Lemma 11 is proved similarly. Symmetry arguments may be used to 
reduce the number of possible locations for b. 

5. NONEXISTENCE OF A COMPOUND PERFECT SQUARED S~JARE 

THEOREM 5. There exists no compound perfect squared square of order 
21 or less. 

Remark. In dissecting a gnomon, one may ignore any dissections with 
zero currents because the corresponding squared rectangles generate nets 
of lower orders. 

Proof of Theorem 5. By Theorem 4 and the above remark, it is su6cient 
to examine all T4 nets with 21 or fewer edges to determine all compound 
perfect squared squares of corresponding order. Lemmas 7, 8, 10, and 11 
remove some nets from consideration. The rest are examined with the aid 
of a computer. 

Let S be a T4 net of order 21 or less. We recall the decomposition of $ 
induced by Theorem 2 and described early in Section 4. The number of 
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TI nets in this decomposition is r + 1, and the number of extra edges of 
types x and y is q. If each TI net Aj has mj edges and p = xi=, mj , then 
S hasp + q - r edges; not p + q edges, because each step in the decom- 
position procedure decomposes the completion of a Td net. 

To prove Theorem 5 we must first find all T4 nets S such that 
p + q - r < 21 or, equivalently, all gnomons of order 22 or less. Recall 
that mj > 5 for each j. Since the squared rectangle corresponding to a T4 
net S is to be perfect and compound, it must contain at least one simple 
perfect subrectangle. This forces m, 2 9 for some k. Thus 

21 >p+q--r 

> (9 + 5r) + 0 - r, 

so that r < 3. Consequently there are three main cases to consider- 
r = 1, r = 2, and r = 3: 

(I) r = 3. In this case 9 + 4r = 21. Therefore the only way that 
a T4 net of 21 or fewer edges can be realized with r = 3 is if it has order 21, 
Al, is a net of nine edges for some k, and each Ai is the unique net, call it W, 
in Y6 for j # k. By Lemma 7, at least two of the TI nets Aj (j = O,..., 3) 
are subsets of S+. By Lemma 8, exactly two of them are subsets of S+ 
since no perfect squared rectangle of order 5 exists. Lemma 8 also implies 
that the battery must be placed in the 5-edge TI net W that is a subset of 
S+, and Lemma 10 with A = W implies that the dissection of S does not 
yield a perfect squared square of order 21. 

(II) r = 2. In this instance S determines TI nets A,, , A,, and 
A, = S, , T, nets S, and S, , and q = iI + iz extra edges. 

Case 1. Each of A, , A, , A, is a subset of S+. In this case, the corollary 
to Lemma 8 implies that at least two of them correspond to perfect 
squared rectangles. Thus their orders are at least 9, p > 2 * 9 + 5, and 

p+q-r>23+0-2221. 

But we assume that the order of S is 21 or less. Thus S has order 21, 
p = 23, and one of the A?‘s, say A,, , is the net W in & . It follows that 
Ai C S (i = 1,2), A, C S+, and the battery is in an edge of A, . We 
conclude, using Lemma 10 with A = A,, that S does not correspond 
to a perfect squared square of order 2 1. 

Case 2. Exactly one of A,, , A,, and AZ, say AS, is not a polar subnet of 
S+. Recall that at least two Aj’s are subsets of S+ by Lemma 7. Thus Cases 1 
and 2 are all-inclusive. If the battery is placed in an edge of (S+ - A,) - AI, 
then for S to yield a perfect dissection the inequalities m, 2 9, m, 2 9, 
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and (of course) m2 >, 5 must hold. Thus p >, 23. Since P is 2 and the order 
p $ q - r of 5’ is 21 or less, this forces 4 = 0, m, = 9, m, = 9, and 
m, = 5. For these values of the mj and q there are twelve gsse~t~a~~y 
different gnomons to consider. We drew these, coded them according to 

uijvestijn’s scheme, and directed the computer, an P 
ssect each gnomon in each possible way. No perfect s 

resulted. 
Otherwise the battery is placed in an edge o i (I At least 5ne of 

A, and A, (say AI) does not contain the edge so that A, is con- 
tained in S. (See the remark following Theorem 2.) If the battery is place 
in an edge of A, (see Fig. 5 for an example)? rn: 3 9, na, 3 5, an 
g $ 4 - I < 21, so that 

m,+9+5-2<p+q-rr21, 

FIG. 5. Example for &se 2. 

or nz, < 9. If A,,+ is the net of Figure 3a; Lemma 10 with A = A, im 
that S does not correspond to a perfect squared square. If A,+ is the n 
Figure 3f, then there are four gnomons to consider in addition to some 
of the twelve mentioned earlier in Case 2. Again we drew these nets an 
used the computer to show that their dissections yield no perfect square 
squares. 

The remaining possibilities are that A,+ is one of the three nets rne~~~o~c~ 
in Lemma 11. 

Case 2a. The net A,+ is the wheel of ten edges (Fig. 3e). Here Ino = 9, 
m, > 9, and m2 > 5 so that 
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Thus q = 0, S = A,, u S, , and S,+ = A, v A, . Moreover, me = 5 since 
m,+m,+m,-2 <21 and m, + m, 3 18. By Lemma 10 with 
A = A,, no dissection of S,+ can yield a 13 by 24 perfect rectangle of 
order 13. Then Lemma 11 with A = A,, and S+ = A u S, implies that S 
does not correspond to a perfect squared square of order 21. 

Case 2b. The net A,+ is a net of nine edges. Then m2 = 5 (there 
exists no 3-connected net of order 7), 9 < m, < 10, and q = 0 or 1. 
If m, = 10, or if m, = 9 and il = 0, we argue as in the preceding para- 
graph. Otherwise il = 1 and S,+ = A, u A, . By Lemma 10 with A = A, , 
S, does not correspond to a 5 by 8 rectangle of order 13. But S+ = 
A0 u t u S, , where t is an edge of type x or y in Theorem 2. Thus, since 
S, does not correspond to a 5 by 8 rectangle, neither S, u x nor S, u y 
corresponds to an 8 by 13 rectangle. Finally, by Lemma 11 with A = A,, , 
we conclude that S does not correspond to a perfect squared square of 
order 21. 

Case 2c. The net A,,+ is the wheel of eight edges (Fig. 3b). There are 
two subcases: 

(1) The net A, has five edges (mz = 5) and il = 0, 1, or 2. By applying 
Lemmas 10 and 11 and using techniques previously introduced, one shows 
that this case yields no perfect squared square of order p + q - r. 

(2) The net A, has seven edges (nzz = 7). Here, for S to have order 21 
or less, ml must be 9. We are thus led to consider four more gnomons 
S,+ = A, u A,. Using the computer, we showed that none of these 
yielded a 5 by 8 rectangle (corresponding to an S,). We now use Lemma 
11 with A = A,, , and we conclude that S does not correspond to a perfect 
squared square. 

Case 2 is completed. 

(III) r = 1. There are numerous gnomons falling in this case, 
about 17000 of which we generated and dissected by computer. We 
proceeded as follows. In this case, by Lemma 7, both A, and A, are polar 
subnets of S+, so that S is the union of T, nets A, and Al and q = il 
edges of the types of x and y in Theorem 2. Using a program based upon 
Duijvestijn’s [3], we generated and stored on the computer all simple 
perfect squarings of rectangles of orders up to and including 16. (All 
simple perfect squarings of rectangles up to and including order 18 were 
implicitly generated by Bouwkamp, Duijvestijn and Medema [2] and are 
available in implicit form.) None had width-to-length ratios of l/2, 2/3, 
315, 518, S/13, 2111, 11/13, or 13124, so that there exist no perfect squared 
rectangles (compound or simple) with width-to-length ratios of 5/8, 8/13, 
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or 13124 that are derived from T, , T, , or T8 nets of order 16 or less. 
As usual, arguments using Lemmas 8, 10, and 11 show that neither A,)‘- 
nor A,+ can be a net pictured in Figure 3a-e. 

In the case considered the conditions 

hold. At least one of each set of equivalent gnomons that satisfy these 
restrictions was constructed (except for those involving the lo-wheel 
Fig. 3e) and dissected on the computer, unless the corollary to Lemma 8 
applied. Two gnomons are equivalent if one is the dual of the other, or if 
the dissections of one correspond to those of the other except for the 
orientation of the subrectangles, or if each is equivalent to a third in either 
of the above ways. A brief description of the method used for co~st~ucti~~ 
all these gnomons follows. 

We began with pairs of 3-connected nets. An edge was deleted from 
each member of a pair, forming two T1 nets A, and A, . These nets were 
joined at their poles (the end-points of the deleted edges) to produce a 
gnomon. If the orders of A,+ and A,+ are YM and n, then all such construc- 
tions using these two nets will yield rnn gnomons of order rn + iz - 2. 
This collection was sorted to eliminate most of the duplicates. ( 
the sorting program was unable to assign an identification number to a net. 
In these few instances, no sorting was done.) If neither of the origin 
3-connected nets was self-dual, we replaced one by its dual and repeate 
the process. We considered all admissible pairs of 3-connected nets. 
All resulting gnomons, after sorting within collections to eliminate 
duplicates, were dissected. None yielded a perfect squared square. 

To add an edge of type y to a gnomon, we need only identify two non- 
adjacent vertices, each being a vertex of a common pair of meshes, and 
connect them with an edge. The edge may be drawn through either of the 
two meshes. The resulting gnomons are equivalent. An edge of type x 
in a gnomon corresponds to one of type y in the dual net, and conversely. 
These edges are thus also easy to add to a gnomon to get a gnomon. 
After each such edge is added the net is dissected. Lemma 6 of Section 3 
implies that one may alternate adding edges of types x and y in the 
construction. 

None of the gnomons formed in this way yielde a perfect squared 
square. Thus one of each set of equivalent gnomons of order 2.2 or less 
has been dissected or has otherwise been shown to produce no perfect 
squared square. Therefore, by Theorem 4, we finally conclude, having 
exhausted all possible cases, that no compound perfect squared squar 
of order 21 or less exist. 
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6. EXAMPLES 

By computer we found and printed all dissections of rectangles corre- 
sponding to 3-connected nets with 17 or fewer edges. We also generated 
all such nets of orders 18 and 19, dissected them, and printed perfect 
dissections yielding ratios p/q with p + q < 300. (Duijvestijn [3] counts 
eight 3-connected planar nets of 12 edges. We found nine. All other counts 
agree. [The referee has informed us that other versions of this thesis exist 
in which the correct Figure 9 appears.]) 

In Table I we give the Bouwkamp codes of the simple perfect squared 
rectangles of orders 16, 17, and 18 having sides with reduced ratios p/q 
such that p + q < 30. (The edge lengths of squares whose upper edges 
belong to the same pih are grouped in parentheses; the groups are listed 
in order of decreasing levels of the pih.) 

TABLE I 

Order p/q Bouwkamp code 

16 14/15 (87,95) (39,48) (40,55) (27,12) (3,60,25) (15) (10,45) (42) (35) 

16 ll/lS (70, 73) (67, 3) (76) (39, 9, 7, 12) (2, 5) (11) (8, 85) (19) (58) 
17 13/14 (51, 30, 88) (13, 17) (8, 5) (1, 16) (6) (56, 3) (9) (25) (19, 94) (75) 

17 5/7 (17, 19, 27, 21) (15, 2) (13, 8) (5, 16) (1, 4) (33, 3) (7) (28) (23) 
17 3/5 (40, 29) (13, 16) (36, 4) (2, 8, 3) (6) (19) (14) (12, 21) (39, 9) (30) 

17 14/15 (145, 93) (45, 48) (42, 3) (23, 28) (110, 35) (18, 5) (33) (75, 2) (20) (53) 
17 lljl5 (67, 52, 46)(6, 19, 21) (28, 30) (17, 2) (54, 13) (23) (41) (39, 8) (31) 

18 9jlO (163,98) (44,54) (21, 23) (13,41) (127, 57) (36) (8,33) (19, 25) (70,6) (64) 
18 13/14 (123, 150) (91, 32) (6, 144) (23, 8, 1) (7) (15) (38) (SO, 11) (9, 29) (20) (49) 

18 14/15 (95, 61, 30, 54) (17, 13) (7, 6) (14, 3) (1, 5) (11) (59) (34, 52) (129) (111) 
18 lljl5 (76, 69, 119)(19, 50)(64, 12)(31)(21, 67, 112)(85)(39, 28)(11, 17)(135)(129) 
18 lljl5 (60, 29, 43) (15, 14) (1, 56) (16) (37, 39) (32, 5) (3, 11, 81) (8) (19) (51) 

18 lo/l1 (129, 61, 70) (23,29, 9) (20, 59) (17, 6) (11,44) (28) (157) (5, 54) (49) (103) 
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